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Abstract. In this work we define the concept of relative flatness of a system with respect to
a subsystem. The subsystem associated to a set of outputs of a system is constructed, and called
here output subsystem. It is shown that the relative flatness of a system with respect to the output
subsystem implies the flatness of the corresponding implicit system obtained by setting these outputs
to zero. A sufficient condition of relative flatness based on a relative derived flag is presented. Based
on these results, a sufficient condition for the flatness of a class of nonlinear implicit systems is
obtained.

Key words. Nonlinear systems, implicit systems, time-varying systems, flatness, relative flat-
ness, feedback linearization.

1. Introduction and Motivation. The aim of this paper is to present the
notion of relative flatness with respect to a subsystem. We show that this concept
may be useful for control systems theory, in particular for studying the structure
of nonlinear implicit systems. Our approach is based on the infinite dimensional
geometric setting recently introduced in control theory [18, 42, 20] in combination
with the ideas presented in [52, 50, 55]. Our sufficient conditions for flatness of
implicit systems may be regarded as a generalization of the conditions obtained in
[52] for explicit systems. Our setting has some connections with the ideas of [49],
which has considered a different class of implicit systems.

Feedback linearization is an important problem in nonlinear control theory. This
problem was completely solved in static-state feedback case [26, 24] but necessary and
sufficient conditions for feedback linearizability by dynamic state feedback are not yet
known (see [6, 50, 7, 21, 53, 55, 1, 46, 54, 23, 43, 56]).

The notion of differential flatness was introduced by Fliess et al [17, 19] and is
strongly related to the problem of feedback linearization. This concept corresponds
to a complete and finite parametrization of all solutions of a control system by a
differentially independent family of functions, called flat output.

Linear singular (or implicit) systems are an important class of control systems and
many papers and books on this subject are found in the literature [5, 33]'. Solvability
of nonlinear implicit differential equations is considered in [3, 45]. Other problems
like controllability [30], stabilization [34, 8], canonical forms [47] and feedback control
[9], have already been considered.

Feedback linearization of implicit systems has been studied for instance by [31,
32, 27]. These works consider the problem of finding a state transformation and a
state feedback such that the closed loop system is a linear singular system. In this

*The first author was partially supported by Conselho Nacional de Desenvolvimento Cientifico e
Tecnolégico (CNPq) under grant 300492/95-2 and Fundacdo de Amparo & Pesquisa do Estado de
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INote that the module theoretic approach of [16] is also valid for implicit systems.
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work we tackle the problem of finding sufficient conditions for flatness of a class of
time-varying implicit systems of the form?
(L1a) #(t) = f(t,2(
(1.1b) y(t) = h(t,z(t)
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where z(t) € R”, y(t) € R, u(t) € R™ and all the components of f(x) and g(z) are
analytical functions of z.

Given a set, of p nonlinear differential equations of arbitrary order, one can always
define an equivalent system of the form (1.1a)-(1.1b). In fact, consider the following
differential equations®

(1.2) ¢i(ws, ... ,w%a”), W w D)) =0, i€ {1,...,p}
Let 8; = max;{a;;}, i € {1,...,p},j € {1,...,r}. Consider the system S with state
T = (wl,...,w?l*l), ...,wr,...,w,(«ﬁ"fl)), input v = (u1,...,u,), where u; = wJ(-Bj),
and output y defined by equations
u';§.0) _ w;;)
wj(ﬁ]) — Uj
Vi :¢i(w1,...,w%a”),...,wr,...,wﬁa”)), ie{l,...,p}.

It is clear that the system (1.2) is represented by the system (1.3) with the constraints
y; = 0, which is in the form (1.1a)-(1.1b). So, all the results developed here may be
applied to a set of differential equations of arbitrary order.

We now present, without being precise, a summary of the ideas and the results
of this paper. Roughly speaking, a subsystem S; of a system S is some part of S
that may be considered as a system by itself. Note that S; may affect the “quotient
system” S/Si, but it is not affected by S/S1 as depicted in the Figure 1.1 :

s |

SYSTEM S

Fic. 1.1. Structure of a system S with respect to a subsystem S.

Remark 1.1. We stress that, in figure 1.1, S/S; is not a subsystem.

Recall that a system is flat if and only if there exists a differentially independent
set of functions y = (y1, .- ., Ym), called the flat output, such that every variable of the
system is a function of the flat output and its derivatives. A system S is said to be
relatively flat with respect to a given subsystem S; if, after a convenient endogenous
feedback, S is decomposed into two independent subsystems S; and Sy such that S is
a flat system? (see figure 1.2). We stress that the fact that the system is decomposed

2This class is more general than the one considered by [31, 27].

3As in the behavioral approach of Willems [59], we do not distinguish input, state and outputs
among the variables w;,4 = 1,...r in the differential equations (1.2).

4See Definition 5.1 for a precise statement of relative flatness.
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into two independent subsystems is not artificial since the same structure occurs for
the algebraic counterpart of this definition (see Rem. 5.1).

In this paper, a sufficient condition for relative flatness is given (see Thm. 8.2).
One can easily conclude that a system S that is relatively flat with respect to a flat
subsystem is also flat® leading to a sufficient condition of flatness of system S.

U—{ S, (flat) |:
"SYSTEM S

F1a. 1.2. Structure of a system S that is relatively flat with respect to a subsystem Si. Note
that Sy is flat.

Now, let y be the output (not necessarily a flat output) of system S. We will
show that one can construct a subsystem Y of S such that Y contains only the
“information” of time and of y and its derivatives y*),k € N (see Theorem 4.3).
Subsystem Y will be called output subsystem.

SYSTEM S

Fic. 1.3. Structure of a System S with respect to the output subsystem Y.

The structure of the implicit system, obtained from S by setting y to be equal
to zero (see Figure 1.3) is directly related to the properties of S with respect to the
output subsystem Y. Under some regularity assumptions, if S is relatively flat with
respect to Y, then the implicit system obtained from S by including the constraint
y = 0 is also flatS.

The paper is organized as follows. In section 2 the notation and some math-
ematical background are presented. The infinite dimensional differential geometric
approach of [20] is briefly summarized in section 3. The notion of subsystem is pre-
sented in section 4. The existence and some properties of local output subsystems are
also discussed in § 4. The concept of relative flatness is discussed in section 5. In
section 6 it is shown that, under regularity assumptions, an implicit system (1.1a)—
(1.1b) may be considered as a system that is immersed in the explicit system (1.1a).
In section 7, the results of the previous sections are used to derive a sufficient condi-
tion for flatness of implicit systems. A sufficient condition for relative flatness based
on relative derived flags is developed in in section 8. Some examples are discussed in
section 9. Finally, some auxiliary results and proofs are presented in appendices A,
B and C.

2. Preliminaries and notation. The field of real numbers is denoted by R and
N stands for the set natural numbers (including zero). The subset {1,...,k} of N is
denoted by |k]. Given a set W, then card W stands for the cardinality of W. We
adopt the standard notations of differential geometry and exterior algebra in the finite
and infinite dimensional case [57, 4, 60]. Let us briefly recall the main definitions of

5See Proposition 5.2 for a precise statement of this idea.
6See Theorem 7.2 for a precise statement of this sufficient condition of flatness.
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the infinite dimension setting introduced in control systems theory [18, 42, 20]. This
approach is mainly based on the differential geometry of jets and prolongations (see for
instance [28, 60]) whereas the approach of [25] and [36] is based on finite dimensional
differential geometry [57].

Let A be a countable set. Denote by R the set of functions from A to R. One
may define the coordinate function z; : R* — R by z;(¢) = £(i),i € A. This set
can be endowed with the Fréchet topology (i.e., an inverse limit topology [2, 60]). A
basis of this topology is given by the subsets of the form B = {£ € R* | |z;(£) — 6] <
€i,1 € F'}, where F is a finite subset of A, §; € R and ¢; is a positive real number for
i € F. A function ¢ : R* — R is smooth if ¢ = o(x;,,...,2;,), where ¢ : R®* — Ris a
smooth function. Only the dependence on a finite number of coordinates is allowed.

From this notion of smoothness, one can easily state the notions of vector fields
and differential forms” on R4 and smooth mappings from R* to RP. The notion of
RA-manifold can be also established easily as in the finitely dimensional case [60].

Given an R*-manifold P, C*(P) denotes the set of smooth maps from P to R.
Let Q be an R -manifold and let ¢ : P — Q be a smooth mapping. The corresponding
tangent and cotangent mapping will be denoted respectively by ¢. : T,P — Ty, Q
and ¢* : Tg(p)Q — Tp*P.

The map ¢ : P — Q is called an immersion if, around every £ € P and ¢(§) € Q,
there exist local charts of P and Q such that, in these coordinates ¢(z) = (z,0). The
map ¢ is called a submersion if, around every £ € P and ¢(§) € Q, there exist local
charts of P and Q such that, in these coordinates, ¢(x,y) = x.

In the finite dimensional case, immersion and submersions are locally character-
ized respectively by the injectivity and surjectivity of the tangent mappings. However,
in the infinite dimensional case this is no longer true. Moreover, the inverse function
Theorem and the classical Frobenius Theorem (for distributions) do not hold and a
field does not admit a flow in general [60].

Given two forms 7 and £ in A(P), then 5 A € denotes their wedge multiplication.
The exterior derivative of n € A(P) will be denoted by dn. Note that the graded
algebra A(P), as well as its homogeneous elements Ay (P) of degree k, have a structure
of C*°(P)-module. See [57, 4] for details. Given a family v = (vy,...,v;) of a C*(P)-
module, then span {vy, ..., v} stands for the span over C>(P).

Given a field f and a 1-form w on P, we denote w(f) by (w, f). The set of smooth
k-forms on P will be denoted by Ag(P) and A(P) = UkenAr(P).

The following useful result of finite dimensional differential geometry is known
as “Cartan Lemma” ([57], p.80 ex. 16). Let {w1,...,w,} C A1(P) be independent
pointwise. Assume that there exist 1-forms ny, ..., n, such that 3., 7;Aw; = 0. Then
there exist functions a;; € C*°(P), with a;; = aji, such that n; = >27_ ajw; (i =
1,...,7). The same result is also valid pointwise, i.e., >\, 1; A wi|p = 0 implies that
ni(p) = 2221 a;jw;(p) (i =1,...,r) for convenient a;; = a;; € R.

A smooth codistribution J is a C'*°(P)-submodule J C T*P. Given a submodule
S of A(P) and p € P, then S(p) denotes the Relinear subspace of Ai(P)|, given
by spang {{(p)| ¢ € S}. In particular, if J is a codistribution, then J(p) denotes the
subspace of TP given by spang {w(p)| w € J}°.

"We stress that the forms are finite combinations of the form > ar;dxr,, where I; is the multi-
index (ji,1,..-,Ji,r; ), the ar, are smooth functions, dxy, = dzj; | A...Adzj, .. . On the other hand,

the fields are (possibly) infinite sums of the form -, 4 ai%.
80ne can also define a codistribution as a map p + J(p) where J(p) is a subspace of T;P.
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Assume that a codistribution I is locally generated by nq,...,n; and that ¥ =
{z;| i € A} is a local coordinate system around some open set U C P. As n; =
Y e @ijde; for convenient smooth functions a;j, then there must exist some finite
subset A9 C A such that all the functions «;; depend only on {z;| i € Ay} and
n; € span {dz;| j € Ap}. Consider the finite dimensional vector space R° and the
canonical submersion 7 : U — RA0 such that m o U~ (z;| i € A) = (x| i € Ap). Tt is
clear that the one-forms 7; = ) . «;jdz; on the open neighbourhood 7(U) C RAo
are such that 7; = 7*n;,i € |k]. Furthermore, if I = span {mi| i € |k]}, then I =
7*1. In other words one may apply to (locally) finitely generated codistributions the
standard techniques of differential geometry, for instance the Frobenius Theorem, by
“pulling-back” the results that hold on the finite dimensional case [42].

3. Diffieties and Systems. In this section we recall the main concepts of the
infinite dimensional geometric setting of [18, 42, 20]. We have chosen to present a
simplified exposition. For a more complete and intrinsic presentation the reader may
refer to the cited literature.

3.1. Diffieties. A diffiety M is a R*-manifold equipped with a distribution A
of finite dimension r, called Cartan distribution. A section of the Cartan distribution
is called a Cartan field. An ordinary diffiety is a diffiety for which dim A = 1 and
a Cartan field 0); is distinguished and called the Cartan field. In this paper we will
only consider ordinary diffieties, that will be called simply by diffieties.

A Lie-Bécklund mapping ¢ : M — N between diffieties is a smooth mapping that
is compatible with the Cartan fields, i.e., ¢.0p = Oy 0 ¢. A Lie-Backlund immersion
(respectively, submersion) is a Lie-Backlund mapping that is an immersion (resp.,
submersion). A Lie-Bécklund isomorphism between two diffieties is a diffeomorphism
that is a Lie-Backlund mapping.

Context permitting, we will denote the Cartan field of an ordinary diffiety M
simply by %. Given a smooth object ¢ defined on M (a smooth function, field or

form), then L%((b) will be denoted by ¢ and L™ (¢) by ¢(®, n € N. In particular, if
t dat

w is a 1-form given by w = >, . aidz;, then w =Y . (didz; + a;di;).

3.2. Systems. The set of real numbers R has a trivial diffiety structure with the
Cartan field defined by the operation of differentiation of smooth functions. A system
is a triple (S,R,7) where S is a diffiety equipped with Cartan field %, the mapping
7 : S5 = R is a Lie-Bécklund submersion and %(T) = 1. The function 7 represents
time, that is chosen once and for all. Context permitting, the system (S,R,7) is
denoted simply by S. A Lie-Backlund mapping between two systems (S,R,7) and
(S",R,7") is a time-respecting Lie-Bécklund mapping ¢ : S — S, i.e., 7/ = 70 ¢.
The previous condition means that the notion of time of both systems coincide. This
notion of system is time-varying as it will be explained bellow.

3.3. State Representation. We present a simplified definition of state rep-
resentation that introduces the state and the input and its derivatives as a local
coordinate system (see [18, 20] for a more intrinsic presentation).

A local state representation of a system (S, R, 7) is a local coordinate system 1) =
{t,z,U} where x = {x;,i € [n]}, U = {ugk)| j € lm],k € N}, where ugk) = L%uj,

and 7 = t. The set of functions x = (z1,...,2,) is called state and u = (uy,...,umn)
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is called input. In these coordinates the Cartan field is locally written by

(3.1) +Zfz +50 5 Wl (

i keEN je|m] uj

Note that f; may depend on ¢,  and a finite number of elements of U. In this sense,
the state representation defined here is said to be generalized, since one accepts that
fi may depend on the derivatives of the input. If the functions f; depend only on
{t,z,u} for i € |n], then the state representation is said to be classical. A state
representation of a system S is completely determined by the choice of the state x
and the input u and will be denoted by (z,u). A state representation is said to be
analytic if the f; are all analytic®.

3.4. Output. An output y of a system S is a set y = (y1,...,¥yp) of smooth
functions defined on S. If (z,u) is a state representation of S, then it is clear that

(32) y] :yj(tamauaﬂu(a]))? .] € |_p-|

If the y; depend only on {t,z,u} for j € |p], then the output is said to be classical
with respect to the state representation (z,u). A state representation (z,u) with
output y is said to be analytic if the functions f; and the y; are all analytic with
respect to its arguments x and {u(?) | j € N}.

3.5. System associated to differential equations. Now assume that a con-
trol system is defined by a set of equations

it =1
(3.3) & = filt,z,u,...,ul®)), i€ |n]
Yj = yj(t,.’L',’U/,...,’U/(Bj)), .7 € |_p-|

One can always associate to these equations a diffiety S of global coordinates 1) =
{t,z,U} and Cartan field given by (3.1).

3.6. Flatness. We present now a simple definition of flatness in terms of coordi-
nates'?. A system S equipped with Cartan field % and time function ¢ = 7 is locally
flat around £ € S if there exists a set of smooth functions y = (y1,...,ym), called flat
output, such that the set {t,y, ])| i € [m],j € N} is a (local) coordinate system of S

around £ € S, where yl( D = L]d y;. Note that the Cartan field is locally given by :

Fe T T

(

JEN €| m] 8 !

Let ¥ : S — T be a Lie-Béacklund isomorphism between two systems. Then S

is flat if and only if T is flat, also. If y = (y1,...,ym) is a flat output of T' then
{y109,...,ym o ¥} is a flat output of S.

9This definition is coordinate dependent since only smooth atlases are considered on diffities [60].
10For more intrinsic definitions and some variations, see [18, 20].
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3.7. Endogenous feedback and coordinate changes. Since a local state
representation (z,u) is by definition a local coordinate system, a new local state rep-
resentation (z,v) induces a coordinate change from {t,z, (u¥ : i € N)} to {t, z, (v\9) :
i € N)}. The coordinate changes of this kind are called endogenous feedbacks'!.

An example of endogenous feedback is static-state feedback. Two state represen-
tations (x,u) and (z,v) defined around £ € S are said to be linked by (time-varying)
static-state feedback if we locally have

(3.4a) span {dt,dz} = span {dt,dz}
(3.4b) span {dt,dz,du} = span {dt,dz, dv} .

Let (x,u) be a classical state-representation and let z and v be family of smooth
functions such that card ¢ = card z and card v = card v. Then it is easy to show
that, if (3.4) locally holds, then (z,v) is a local state representation that is linked to
(x,u) by static-state feedback [39, Prop. 3.2].

Another example of endogenous feedback is putting integrators in series with the
first k inputs of the system (3.3). This procedure induces a local state representation
(z,v) of the system S, where z = (z1,...,Zpn,u1,...,ur) and v = (G1,. .., Uk, Ukt1,
..y Um), called dynamic extension of the state.

4. Subsystems. A (local) subsystem S, of a given system S is a system S, such
that there exists a surjective'? Lie-Biicklund submersion 7 : U C S — S,, where U is
an open subset of S. A (local) subsystem will be denoted by (S, 7) or simply by S,.

4.1. State equations adapted to subsystems. Assume that there exists a
local classical state representation (z,u) of a system S of the form

(413) jja = fa(tamaaua)
(41b) jjb = fb(t,wa,mb,ua,ub)-

where z = (z,,x) and u = (u,,up). Assume that (4.1a) represents the state equations
of a subsystem S, and 7 : S — S, is such that 7 (¢,z,U) = (¢, x4, U,), where U denotes
the set (u)| j € N) and U, denotes the set (u,")| j € N). A state representation
of S the form (4.1a)-(4.1b) is said to be adapted to the subsystem S,. In the end of
this section we show that state equations adapted to a a subsystem can be generically
constructed (see Proposition 4.4).

4.2. Relative static-state feedback. We will consider now a special case of
endogenous feedback that will be called by Relative Static-State Feedback. Consider
that ((@q,xp), (ue, up)) is a local state representation for system S such that the state
equations are of the form (4.1a)—(4.1b). A relative state feedback is a new state
representation ((z4,2p), (ua,vs)) such that

2y = Zb(tamb; mayua;---yua(r))

4.2
( ) vy = Ub(tvmbaubyxaauay---:ua(rJrl))

where 7 is a convenient integer and similar equations do exist for xy,u;, as functions
of x4, zp, Ua,vp and the derivatives of u,. In other words, this is an invertible time-
varying feedback. The next definition renders this notion more intrinsic.

I1gee [18] for a definition of endogenous feedback that considers an equivalence relation between
systems.

128ince submersions are open maps, one can always consider that S, = 7(U) by restricting Sy to
the image of =.
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DEFINITION 4.1. Let S be a system and let (7, S,) be a (local) subsystem of S. Let
(z,u) and (z,v) be two (local) state representations of S. Let ¥ be the codistribution
defined by the pull-back'®> ¥ = n*(T*S,). Then (z,u) and (z,v) are linked by a relative
static-state feedback with respect to the subsystem S, if span {dx}+3% = span {dz}+X
and span {dz,du} + ¥ = span {dz,dv} + .

PROPOSITION 4.2. Let S be a system with local state representation (x,u) defined
on Ve C S, where © = (24,2), and u = (uq,up) are such that the state equations
are of the form (4.1a)-(4.1b). Let S, be the (local) subsystem associated to equation
(4.1a). Consider the set of smooth functions z = (x4,2p) and v = (ug,vy) defined
on V¢, where card x = card z = n and card v = card v = m. Then the following
statements are equivalent :

(i) (z,v) is a local state representation around  and (z,u) and (z,v) are linked
by relative static-state feedback.
(ii) span {dz}+ X = span {dz} + ¥ and span {dz,du} + ¥ = span {dz,dv} + X.

Proof. Deferred to the Appendix B.1. d

Remark 4.1.  The proof of the Prop. 4.2 shows that (i) implies that condition
(4.2) is satisfied for a subsystem S, defined by (4.1a). It will be shown (see Prop.
4.4) that all subsystems admit adapted state equations of the form (4.1a)—(4.1b), up
to relative static-state feedbacks.

4.3. Output Subsystem. Given a system S with output y, a (local) out-
put subsystem is a (local) subsystem 7 : U C S — Y such that «* (T;(E)Y) =

span {dt,dy®) : k e N} |¢,£ € U.

4.4. Existence of local output subsystems. Without loss of generality, as-
sume that (z,u) is a classic state representation with output y. If it is not the case we
can add integrators in series with the input until the required properties are fulfilled.
The next Theorem shows that local output subsystems can be constructed gener-
ically and they admit adapted state equations up to relative static-state feedback.
Furthermore, they are unique up to Lie-Bécklund isomorphisms.

THEOREM 4.3. (Existence and Uniqueness of Output Subsystems) Let S be a
system and let (x,u) be a classical analytical state representation defined on a open
neighbourhood W C S. Let y be a classical output of S. Let n = card z. Let
U C W be the set of reqular points of the codistributions Yy, Vi, k € |n], where Y}, =
span {dt, dy,... ,dy(k)} and Y, = span {dt, dx,dy, ..., dy(k)}. Then, around any & €
U, there exists an open neighbourhood Ve of &, a local classical state representation
(z,v) = ((za, 2b), (Va,vp)) of the system S defined on Ve such that:

(i) The (local) state equations are :

(4.3a) Za = fa(t, 2a,va)
(43b) 2}b = fb(tazaazbavaavb)'

(i) Let Y be the local subsystem associated to (4.3a) and let m : Ve — Y be
the corresponding Lie-Bdcklund submersion. We have n*(T*Y) = span {dt, dz,,

(dvgk) :k € N)} = span {dt,dy(k) 1k e N}. In particular, Y is an output subsystem
of S. Let Z = {za,(vgk) tkeN} and Y = {y](-k) :j € |pl,k €N}, Then ZC Y.

(iii) The state representations (z,u) and (z,v) are linked by relative static-state
feedback with respect to the subsystem Y associated to (4.3a).

13Note that span {dt} C X.
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Furthermore, two local output subsystems around any £ € S are (locally) Lie-Bdcklund
isomorphic.

Proof. See Appendix B.2. O

We state now the result that assures that a subsystem can be generically repre-
sented by state equations of the form (4.1a)-(4.1b).

PROPOSITION 4.4. Assume that S, is a subsystem of S and that there exist local
state representations for S, and S around every point of S, and S. Then, generically,
there exists local state representations of S of the form (4.1a)-(4.1b) in a way that
(4.1a) is a state representation of S,.

Proof. Let m : S — S, be the corresponding Lie-Bécklund submersion. Take a
local state representation (z,,€,) of S, around 7(§) € S,. We abuse notation and
denote z, o m and e, o w respectively by z, and e,. Now, consider system S with
output y = (z4,€,) and construct, possibly by extending the state with derivatives
of the input, a classical state representation of S such that y is a classical output.
The result follows easily from the application of Thm. 4.3 and the fact that T*S, =

span {dt, dz,(lk),degk),k € N}. 0

If the outputs are differentially independent, the next result shows that local
output subsystems are generically flat.

PROPOSITION 4.5. Let U be the open and dense subset of theorem 4.3. Assume
that the (explicit) system (1.1a) with output y = h(t,z,u) is right-invertible, i. e., the
the output rank p is equal to the number of output components'*. Let 7 : VeCcS—=Y
be a local output subsystem with Ve C U. Then'Y is (locally) flat with flat output y.

Proof. The proof is deferred to Appendix B.3. O

5. Relative flatness. We now state the concept of relative flatness.

DEFINITION 5.1. Let S be a system and (71, S1) and (wa,S2) be two subsystems of
S. The system S is said to be locally decomposed by S1 and Ss if, around £ € S, there
exists local coordinates (t,z') for Si, (t,x?) for Ss and (t,z',x?) for'® S such that
mi(t,xt, 2%) = (t,2%),i = 1,2. A system S is said to be (locally) relatively flat with
respect to a subsystem Sy if there exists a flat subsystem So such that S is (locally)
decomposed by S and Ss.

PROPOSITION 5.2. Let Sy be a (locally) flat subsystem of a system S. Assume
that S is relatively flat with respect to S1. Then S is (locally) flat.

Proof. The union of flat outputs of Sy and S> is a flat output of S. 0

Remark 5.1. In the differential algebraic approach of [15] (see also [22]) one can
define a subsystem of a system K/k as a field extension L/k such that L is a subfield
of K. Then a system K/k is relatively flat with respect to L if the system K/L is
flat, considering L as the ground field (see [12] for a a result similar to Proposition
5.2.). However, these algebraic notions are not suitable for our purposes because
integrability conditions are not available in this algebraic context.

It can be shown that, if K/k is relatively flat with respect to L, then K /k can be
decomposed into two independent subsystems L/k and F'/k, where F/k is flat. (see
Appendix A and [58]). In this sense, the assumption that the system is decomposed
into two independent subsystems in the definition of relative flatness is not restrictive
with respect to the algebraic definition (see also [38] for similar facts that occur when
L corresponds to the noncontrollable subsystem.)

143ee Appendix C for the definition of the output rank p.
15We abuse notation and denote x? o 7; simply by zt.
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The following proposition is a necessary and sufficient condition for completing a
given output y into a flat output (see [44] for related results).

PROPOSITION 5.3. Let S be a system and let Sy be a flat subsystem of S. Let y
be a (local) flat output for Si. Then there exists a set z of smooth functions such that
S is locally flat with flat output (y,z) if and only if S is relatively flat with respect to
the subsystem S .

Proof. The necessity is obvious. The sufficiency follows from the proof of Prop.
5.2. 0

6. Implicit systems regarded as Lie-Backlund immersions. Let S be the
nonconstrained system defined by (1.1a). We show that, under some regularity as-
sumptions, (1.1a)-(1.1b) may be regarded as a system that is immersed in S. We
construct a system I' and a Lie-Bécklund immersion ¢ : I' — S such that every inte-
gral curve o(t) of the Cartan-field of S, respecting the constraints y(t) = 0, is of the
form o(t) = ¢ o y(t) for a suitable integral curve () of the Cartan-field of I.

Consider the explicit (nonconstrained) system S defined by (1.1a) with output

y = h(t, z,u), global coordinates {t, z, (uEJ) 14 € |m];j € N)}, and Cartan field (3.1).
Consider now the following assumptions :

Al. Existence and Regularity Assumption. Let T = {¢ € S | y*)(¢) =
0 for all k € N}. Assume that T' # 0 and furthermore, T C U, where U is the open
and dense subset of the system S such that the statement of Theorem 4.3 holds'®. In
other words, around every point £ € ', we can construct a local output subsystem.

A2. Time Interval Assumption. For every £ € I' and every open neighbour-
hood U C S of &, there exists some € > 0 such that 7(C'NU) contains an open interval
(7(§) — €,7(§) +€).

Remark 6.1. Note that assumption A2 means that [' “does exist” during an
interval of time. If the system is time-invariant it is easy to verify that assumption
A2 is not needed. Note also that the set I' may be empty, and in this case the implicit
system has no solution. For instance, let y; = x1 + 1 and y» = 22 + 2. Then y; = 0
implies that y» # 0. A problem of this nature may occur with output derivatives.

When the assumptions Al, A2 holds, the set I' C S may be endowed with the
structure of an immersed Fréchet manifold by choosing the subset topology, as shown
by the following proposition.

PROPOSITION 6.1. Suppose that assumptions A1 and A2 are satisfied for system
S. Then the subset I' C S has a structure of immersed manifold in S. Let ¢ : T' = S
be the canonical insertion. We can define a Cartan field Or on T' by the equation
LOr(y) = % ou(y),y € T. Equipped with this Cartan field, T is a system such that
v s a Lie-Bdicklund immersion. Furthermore, all the solutions £(t) of (1.1a) obeying
the restriction (1.1b) are of the form &(t) = v o v(t) where v(t) is a solution of T.

Proof. We show first that I' is an immersed manifold. For this, consider the
topological subspace I' C S with the subset topology. For each point £ € I, Thm. 4.3
gives local charts ¢ : U — U C R4, where ¢ = {t,2a, Va, 26, Vb }, Vo = {vgk) : ke N}
Vi, = {ng) : k € N}, and we have span {dt,dz,,dV,} = span {dt,dy(k) k€ N}. This
local chart is adapted to a local output subsystem = : U — Y, and is such that
w(t, 2a, Va, 26, Vo) = (t, 24, V4). Furthermore, by part (ii) of Thm. 4.3, the functions of
the set Z = {z,,V,} are such that Z C ), where Y = {y®) : k € N}. By construction,

16Note that in this case the state representation (1.1a) is globally defined. According the proof
of theorem 4.3 we have that U is the open and dense set of regular points of the codistributions
Y, = span {dt,dy,...,dy(®} and Yy = span {dt,dz,dy,...,dy®)} for k € {0,1,...,n}.
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if v € UNT then y® (v) = 0 for all k € N. This implies that all the components of Z
are also null in v. If we show that the functionsin W = Y—Z are alsonullin v € FﬂU,
we will show that a point v isin U if and only if z, = 0and V;, = 0in v. In fact, note
first that, since span {dt,dZ} = span {dt,d)}, all the functions € in ) can be locally
written in the form 6 = 6(t,z2,,V,). By assumption A2, if we restrict U to a basic
open set of the form I,y x W where I.(¢) = (7(§) —€,7(£) +¢), we may assume that,
for every t € I (¢), then UNT contains a point & = (£, 2a, Va, 26, Vo) = (£, 0,0, 23, V).
For any fixed ¢ € I.(¢), since & € T'N U, we have that 6(&) = 6(¢,0,0) = 0. Since this
is true for all ¢ € I (¢), we have showed our claim.

Now consider the map p: T NU — (D NU) C RE such that u(t,0,0,z2,V3) =
(t,2p, V). We shall show that these maps form an smooth atlas of I'. By construction
it is clear that these maps are homeomorphisms. Hence it suffices to show that
these charts are C'*° compatible. By convenience denote the functions of the chart
¢ by {t, X, Z} and the functions of the chart u by {t,Z}, where X = {z,,V,} and
Z = {Zby ‘/b} .

Now let pu; : ' NU; — V;, i = 1,2, be two local charts constructed in that
way, based respectively on the local charts of S given by ¢; = {t,X;, Z;}, i = 1,2.
In particular, it follows that wu; o ¢;(¢,0,2;) = (¢,Z;), i = 1,2. Without loss of
generality, assume that U; = Us. Consider the local coordinate change (¢, X1, Z;) =
$10¢5"(t, X2, Z2). Note that the map 6 : Va — Vi such that (t, Z,) — (t, Z5) defined
by (t,0,Z1) = ¢1 0 ¢3'(t,0,Z5) is a local diffeomorphism with inverse defined by
(t,0,Z5) = ¢a 0 ¢y *(,0,7;). Since § = pyy o ju,*, we conclude that such charts are
C*° compatible.

Now let ¢ : ' — S be the insertion map. In the coordinates ¢ and u previously
constructed, we have «(t, Z) = (¢,0, Z). In particular ¢ is an immersion between R -
manifolds and so ¢, (() is injective for all { € I'. Remember that any function 7 of the
set X ={z,,V,} C Y is such that 5|, = 0 for every v € I' N U. In particular, we have
that the image of 1+ (v) contains 4 (4(v)) for every v € I'N U. So we can define p by
the rule t.0r = 4% o . By definition, it follows that ¢ is a Lie-Bécklund immersion.

The last afﬁrmation of the statement is a consequence of the first one. O

Remark 6.2. Let ¢ = (t,xq4, Ve, xp, Vo) and u = (¢, xp, V) be respectively the
coordinates of S and I constructed above. In this coordinates we have

(6.1) ap——+2fb tOO:vb,Vb—+22 gy

, (J
bi i=1 jEN 8

where fy, = £ (zp,) = fo,(t,Ta, Va, 23, V3), i € [n5]. In other words, (zs,us) is a state
representation of I.

It is easy to show that the pull-back (by ¢) of a relative static-state feedback for
S w. r. t. a local output subsystem Y induces a static-state feedback for I, if one
considers the state representation ((z4,s), (tq,up)) for S and (zp,up) for T.

7. Flatness of implicit systems. In this section we will derive a sufficient
condition for flatness of implicit systems. Let us begin with an auxiliary result.

PROPOSITION 7.1. LetT', S and Y be systems, where I' is immersed in S and Y is
a subsystem of S. Let 1 : ' — S and w: S — Y be respectively the corresponding Lie-
Backlund immersion and submersion. Assume that there exist local coordinates (t,~)
of T, (t,v,y) of S and (t,y) of Y such that v(t,) = (t,7,0) and'" = (t,~v,y) = (t,v).

1T"We assume that (¢,y) is inside the domain of our local chart of Y for y = 0.
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Assume that S is relatively flat with respect to Y. Then T is (locally) flat.

Proof. Let S be a flat subsystem of S such that Sy and Y decomposes S (see
Definition 5.1). Let w2 : S — Sy be the corresponding Lie-Bécklund submersion.
Recall that there exists coordinates (t,z,7) of S, (¢t,4) of Y, and (¢,2) of Sy such
that 7o : (¢,2,9) = (t,2) and 7 : (¢,2,7) = (t,9). Since the coordinate change map
(t,y) — (t,9) is a local diffecomorphism, we may assume without loss of generality
that § = y. With a possible restriction of domains, we can consider the coordinate
change mapping ¢(t,7v,y) = (¢,z,y). Note that the map ¢o(t,v) = (¢,2) such that
o(t,7,0) = (¢o(t,7),0) = (¢,2,0) is a local diffeomorphism. Let ¥ : I' — S5 be such
that ¥ = w5 0+. By definition, ¥ is a Lie-Bécklund mapping since it is a composition
of Lie-Bécklund mappings. In the coordinates (¢, z) for Sy and (¢,7) for I" we have
U(t,y) = ¢o(t,y). Hence ¥ is a local Lie-Bécklund isomorphism and so I is flat. In
particular if € is a flat output of S5 then 6 o ¥ is a flat output of T'. O

The following result is a sufficient condition for flatness of an implicit system.

THEOREM 7.2. Let S be the explicit system defined by (1.1a). Let y = h(t,x, u)
be an output for system S and let Y be the corresponding output subsystem of S. Sup-
pose that Assumptions A1-A2 of the previous section hold for the system (1.1a) with
the constraints (1.1b). According to Proposition 6.1, equations (1.1a)-(1.1b) define a
system I' that is immersed in S. Assume that the explicit system (1.1a) is (locally)
relatively flat w.r.t. the subsystem Y. Then the implicit system I is locally flat around
all € €T.

Proof. Let + : I’ — S be the insertion map and let 7 : U C S — Y be the canonical
submersion onto the local output subsystem Y. According to the proof of Prop. 6.1,
we can define local charts ¢ = (¢, X,Z) of S, p = (t,Z) of ' and ¥ = (¢, X) of ¥ such
that ¢(t,X) = (¢,0,Z2) and 7 (t,X,Z) = (t, X). Hence, by Prop. 7.1 (for v = Z and
y = X) the result follows. O

Let (1.1a) be a flat (explicit) system and assume that the output y of (1.1b) is
part of the flat output of the explicit system (1.1a). Then next result shows that the
implicit system (1.1a)-(1.1b) is flat.

COROLLARY 7.3. Assume that S is locally flat with flat output y = (y1,...,Ym)-
Assume that the local coordinate system {t,y(]) 11 € [m],j € N} is defined on open

(2

set V whose image is a basic open set V'8, Let T C V defined by {¢ € V |y§])(£) =
0,i € |r],7 € N}. Assume that T is nonempty. Then T is an immersed system in
V C S. Furthermore T is (locally) flat with flat output yra1,-- -, Ym-

Proof. Consider system S with output § = (Yri1,---,¥m). Let £ = 0 and
@ = (j1,.-.,9m)- Then (Z,4) is a local state representation of S. Let Y, = span {dt,
dy, ...,dy"®} and Y, = span {dt, dz, dy, ..., dy®}. Then Y, = ), are nonsingular
codistributions on S for r € N and hence the assumption A1 of § 6 holds. Since V is
a basic open set, it is also clear that assumption A2 holds. By Thm. 4.3, the output
subsystem Y is well defined, and by Prop. 4.5, it follows that Y is locally flat. By
Prop. 5.3, S is relatively flat w. r. t. Y. The desired result follows from Thm. 7.2.
a

8. A sufficient condition for relative flatness. Consider a system S and a
subsystem S; of S given by equations (4.1a)-(4.1b) where (4.1a) represents S;. Let
dimz, = n,, dimzy = nyp, dimu, = m,, and dimwu, = my. For this system one can

18Recall that a basic open set is of the form V = {¢ € S ‘ \yzm(é) - gjgj)| < €5 ,(4,5) € A}, where
A is a finite subset of [m] x N, gEj) €R, and ¢;; € RT.
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define the Relative Derived Flag as follows.

DEFINITION 8.1. The Relative Derived Flag of the system (4.1a)-(4.1b) is the
sequence of codistributions I*) defined by I'-Y) = span {(dxy — fydt), (duy — tpdt)},
and 1™ (p) = span{w(p) | w € I*V dw(p) mod (I*~Y 4 J)|, = 0}, k € N where

(8.1) J = span {(dz, — adt), (du,9) —u,TVdt)| j € N} .

Remark 8.1. In the proof of Prop. 8.3 it is shown that if 7®) is nonsingular
then it is smooth (otherwise I(*+1) is not well defined). The 1-forms in span {%}L

are called contact forms [42]. Let = : S — S, be the Lie-Béacklund submersion of S
onto subsystem S, (see § 4.1). Then it is easy to show that J is the codistribution

) 1
generated by the contact-forms of S, i.e., J = m*(T*S,)Nspan { &} . It follows that
J is invariant by coordinate changes, and in particular, it is invariant by endogenous
feedback. In Appendix B.4 it is shown that :

(8.2) I = span {dxy — &,dt}

By construction we have dimI-Y = ny + my and dimI(®) = n,. Note also that
I®) 4 J c 1=V 4 J C span {%}L ,k € N. We will show that the relative derived
flag carries an intrinsic structural information, at least if one restricts the class of
transformations to relative static-state feedback (see Cor. 8.4).

THEOREM 8.2. Assume that the codistributions span {I(k),dt, J} are involutive,
that I™®) are nonsingular for all k € N and that I'™N) =0 for N big enough. Then the
system S is (locally) relatively flat w.r.t. Si.

Remark 8.2. It is easy to verify that J is involutive, i.e., that dw mod J =0
for all 1-forms w € J. Furthermore, the codistribution span {I(k),dt, J} is involutive
if and only if span {I¥), dt, J,, } is involutive for p; big enough, where

(8.3) Ji = span {(da:a — fudt), (dua D — u, UVt j € 1] } .

To prove Theorem 8.2 we need the following auxiliary result whose proof is de-
ferred to Appendix B.5.

PROPOSITION 8.3. Assume that the conditions of the Theorem 8.2 are satisfied
on an open neighbourhood V¢ of & in S. Then, for every p € V¢ and k € N we
have dim(I*®) + J)|,/J(p) = dim I®)(p). Assume that I*~1) + J has a local basis
B = B U By, where By is a local basis of J and B is of the form

(8.4) B= {ng) iels],je {0,...,ri}}

where w; = d; — 0;dt, 0; € C>(S), i € |s] (or B = 0). Assume that the subset
{wlgri) 21 € |s]} is linearly independent mod {I*) + J}. Let B = {wE”H) ti € |s]}
Then we may complete the set B U B with a set B = {wi,i = s+ 1,...,0}, where
w; = db; — éidt in a way that B U BUB is a basis of I*=2) 4+ J such that BU B is
linearly independent mod {I*~1) + J}.

Proof. (of Theorem 8.2'%). Let N € N be the smallest integer such that I(*)
I+ — 0 for all k > N. Let By be a basis for J = IV) 4+ J given by By =

19Most of the techniques that are necessary for the proof of our sufficient condition of relative
flatness are very similar to the techniques of the proof of the main result of [38].
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{n,m| I € N} where n = (dz, — &odt) and p = (dugV — u,(*1dt),1 € N. Since
span { (V=Y J dt} is involutive and I(N~1) is nonsingular, by Prop. 8.3 with B = 0,
we can construct a local basis By_; of IV =Y 4] of the form By_; = An_;UBN where

Anv_1 = {(d017i1 — %ﬁl,ildtﬂ i1 € |_SN_1—|} . Let AN,1 = {(dﬂ(l) —0(2) dt), 11 €

1,41 1,i1
|sy_11}. By Prop. 8.3, we may construct a set Ay 1 = {(df;, — 40, :,dt)| iz €
sn—2]} in a way that By_o = Ax_2 U By is a basis of IN=2) 4 J where Ay_» =
Av 1 UAN 1 UAy 1 = {8 — 67 db)| ke (2], in € [sv-il,j € [2—k+1]}
Note also that, by Prop. 8.3, it follows that the set Ay_1 U Ay_1 = {(dﬁ,(j;kk) —

(2—k+1) . . 1. . (N-1)
Ori At k€ [2], i, € [sn—k]} is linearly independent mod I +J.
Continuing in this way, using Prop. 8.3, we may construct in the rth step, a basis
for IIN=") 4 J of the form

(8.5) By_r =ANn_, UBNn
where Ay_, = AN,,,H U AN,,,H UAN_ry1 and

Anrr = (@97, —609) dt)| ke [r—11,ix € [sn—i],j € [r — K1}

k iz

An_pi1 UAN_pyy = {(@0" 79 — 0¥ a0 k€ |r],ir € [snv—i]}

ki ki

(8.6)

and where AN_,«_H U AN—r+1 is linearly independent mod {I(N_’"+1) + J} for r €
|N 4 1]. From Prop. 8.3, note that that dim(I®)(p) + J(p))/J(p) = dim I®)(p),
keN

_ Takingr = N+1in (8.6) we obtain a basis B_; = A_; U By where A_; =
Ao U AO U AO and

Ao = {(d6Y7" —8Y) dt) | k€ |Nlyix € lsn—],j € [N —k+1]}
@87 . (Nokt1)  (N—k+2) .
AgUAy = {(df;;, — 05, dt) | k€ |N+1],i € [sn—i]}-

where the set Ag U Ag is independent mod I 4+ 7. Since dimI® = n, and
dim IV = n, + m;, we have card Ay U Ay = my,. Now define the set w of ny (state)
functions and the set v of m; (input) functions given by

wo= why wky, =005 ke IN]in € lsv-al L€ LN =k +11)
v o= (ki) kg =00 Y k€ [N+ 10,0k € [sv—i])

By construction of By and B_; it is clear that I(®©) 4+ J + span {dt} = span {dt,
dz,, dw} + J = span {dt, dz,, dry} + J and I'=Y + J + span {dt} = span {dt,
dze, dw, dug, dv} = span {dt, dz,, dzy, dus, dup} + J. Since card z, = card w
and card v, = card v then, by Prop. 4.2 we conclude that ((z,,w), (uq,v)) is a state
representation that is linked to ((z,, ), (ua, up)) by relative static state feedback.

Since I®) C span {%}L, the equations ((dt‘),(c] - O(HI)dt), %) =0,ke€ |[N] iy €

)
ix k ik

Isn—k], J € [N —k + 1] implies the following closed loop state equations :

t=1
Tq = fa(Ta,uq)
wllczk = w%zk
(8.8) Wi = Wei
. k€[N, ik € lsni]
- N—k+1

K ix = Uk,
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ad

Remark 8.3. Notethat, if s_; > 0, then the inputs {vg i, | k = N+1,i; € |s_1]}
are completely decoupled from the state of system (8.8), i.e., (8.8) is not well-formed
in this case [48]. Note also that, if one restricts the coordinate transformations to
the class of relative static-state feedback (see Definition 4.1) then the conditions of
Theorem 8.2 are necessary and sufficient. This follows from the invariance of the
relative derived flag with respect to relative static-state feedback (see Cor. 8.4) and
after (tedious) calculations of the relative derived flag of a system of the form (8.8).

COROLLARY 8.4. Consider the system S of equations (4.1a)-(4.1b). Let z =
(a,xp) and J be defined by equation (8.1). Let IY = span {dz — &dt,du — udt} +J
and T®) (p) = span{w(p) | w e I* D, dw(p) mod Tk-1 | = 0} for k € N. Assume
that the codistributions span{[ (k) dt} are involutive, dim 7 (g )/ J(q) is (locally) con-
stant for k € N, and that I = g for N big enough. Then the system S is (locally)
relatively flat w. r. t. S1. Furthermore, the codistributions IA(’“), k € N are invariant
by relative static-state feedback with respect to the subsystem defined by (4.1a).

Proof. We show first that T®) = I®) 4 J for k € {—1}UN. This is obviously true
for k = —1. Assume that this is true for k — 1 and let & € I*=D. Then & = w + I,
where w € I~V and p € J. As J is involutive, then d& mod It=1) = 0 if and
only if dw mod (I*~Y 4+ J) = 0. In particular, & € I if and only if w € T, Tt
follows that T(®) = (k) 4 J, showing our claim. Hence, the first affirmation follows
easily from Theorem 8.2. To show the invariance of the flag I I®) | et (Z,1) be a
state representation of S that is linked to (z,u) by relative static- state feedback. Let
1Y = span {d& — &dt, di — Gdt} + J. Since J + span {dt} = & = 7*(T*S,),
by Def. 4.1 it follows I(=") + span {dt} = I=Y 4+ span {dt}. Hence, @ € I-1) if
and only if @ = & + Bdt where & € I{-1). Now note that I(-1) and I( ) are both

A

contained in span {E} . In particular (@, %) = (&, £) = 0 implies that # = 0. We
conclude that f(_lA) = 7=V Since the computation of I follows the same rule than
the computation I'®) and J is invariant by endogenous feedback (see Rem. 8.1), we
conclude that I(F) = A(k),k: eN. d

Remark 8.4. Let U = span{dz}" and H = J*+. Let Go = U N H and let
Gry1 = G + [%,Gk]. It can be shown [10] that the conditions of Theorem 8.2 for
time-invariant systems are equivalent to the involutivity of the distributions G; and
the existence of k such that G; = H for all ¢ > k.

8.1. Flatness and local output subsystems. Theorem 8.5 is a sufficient con-
dition for relative flatness w. r. t. a local output subsystem.

THEOREM 8.5. Let S be the explicit system (1.1a) with state representation (x,u)
and outputy = h(t,xz,u). Let U be the the open and dense set where theorem 4.8 holds.
Let T = span {dz — @dt} + J, where J = span{dy*=Y— y(M)dt : k € N}. Consider
the relative derived flag 1) (p) = span{w(p) | w € 10D, dw(p) mod 101 (p) =
0}. Assume that, in U, the codistributions span{f(k),dt} are nvolutive, and that
dim 7(H) (9)/J(q) is (locally) constant dimensional for k € N and IN) = J for N big
enough. Then S is (locally) relatively flat w.r.t. the output subsystem Y around every
Eel.

Proof. By Thm. 4.3 there exists a local output subsystem Y of S and new
state representation ((z4, 25), (va, vp)) linked to (z,u) by a a relative static-state feed-
back, such that the closed loop state equations are given by (4.3a)—(4.3b), where

span {dt,dza,dv,(lk) ke N} = span {dt,dy(k) ke N} = J +span {dt}. Let J =
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span {(dza — Zq), (dvgk) - vgkﬂ)) ke N}. It follows easily that J + span {dt} =

J + span {dt}. Using the fact that J C span {%}L and J C span {%}L, (see the
arguments of the proof of Cor. 8.4), it follows that J = J. Then the result follows
from Cor. 8.4. O

9. Examples. We begin with an counterexample of the necessity of the condition
of Prop. 5.2 for flatness of a system S.

9.1. A counterexample. Consider the system S defined by

(91&) j?l = U
(9.1b) &2 =z (25 + 1)
(910) j?3 = U2

Then this system is flat with flat output y;, = z3 and ys = x».
Consider the susbsystem S; defined by (9.1a). Then this system is not relatively
flat with respect to Si. An indirect way to see this is by noting that the “implicit”

system that we get by making y = z; = 0 and y*) = ugkfl) =0,k € N is given by

o = 0
T3 = U

It is easy to show that this system is not flat because it is not controllable [20].

Note that the explicit system S is time-invariant and the codistributions Y} =
span {dt,dy,...,dy(k)} and Y, = span {dt,dz, dy, ..., dy®} are nonsingular for
k € N. In particular the assumptions A1l and A2 of § 6 are satisfied. Notice also that
S1 is an output subsystem for system S. If S were relatively flat with respect to Si,
then Thm. 7.2 would imply that the implicit system is locally flat.

9.2. A second counterexample. The following example shows that the con-
ditions of Thm. 7.2 are sufficient conditions for flatness of implicit systems, but they
are not necessary conditions.

Consider the explicit system S with output y defined by :

i’l = U
i’z = Z’Zl’l + T3
(92) j?3 = X4
g = U
Yy = I —€

It is easy to see that the “implicit” system (that is already explicit in this case)
obtained by making y(*¥) = 0,k € N is given by

i’z = 61‘?1 + T3
(93) j?3 = T4
j?4 = U2

System (9.3) is linearizable by static state feedback if and only if ¢ = 0. In other
words the implicit system obtained by making y*) = 0,k € N is flat if € = 0 (but is
not flat if € # 0 because it is not linearizable by static-state feedback in this case).
However the explicit system is not relatively flat with respect to the subsystem
defined by the first equation of (9.2). An indirect proof of this fact can be given
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by noting that, if system (9.2) were relatively flat with respect to the subsystem S
defined by the first equation, then by Thm. 7.2, taking any € € R, the implicit system
would be locally flat (see the arguments of the end of the last example). However the
implicit system is flat only for € = 0.

9.3. An academic example. Consider the implicit system

2

T .
W + e””3u1, Ty = (1 + mg)m +

(9.4b) y=x1=0

2%2%3

(94&) 5&1 = m

Uz, &3 = U2

Let S be the (explicit) system (9.4a) with output y = z;. It is easy to verify that the
codistributions Yy = span {dt,dy, ...,dy"™} and Y}, = span{dt,dz, dy, ..., dy®} of
Lemma C.1 are nonsingular everywhere for k¥ € N, and o = 1,k > 1. Note also
that ' = {¢ € S | y®(¢) = 0} is nonempty because T' contains the point ¢ € S
defined by z1(§) = z2(§) = z3(¢) = ugk) &) = ugk) (&) =0, k € N (for any t). Since
the system is time-invariant then the assumptions A1 and A2 of § 6 are satisfied. By
Prop. 6.1, the implicit system is a immersed system in the nonconstrained system.
Let J = span{dy® — y(kt1dt : k € N} and let I') = span {dx — &dt} + J. Using
condition (B.4), some calculations show that20T(") = span{n— (n, 4Vdty+ J, where

n = drs — ﬁf—f%dmg, and 1(® = J. Since dn = (ﬁf—;g)(n A dz3). From Theorem 8.5,
for every local output subsystem Y, the explicit system S is relatively flat w. r. t. Y.
By Theorem 7.2, the implicit system I' defined by (9.4a)—(9.4b) is locally flat around
every point £ € ['. By the proof of theorem 8.2 and the construction of I" in § 6, a flat
output of the implicit system can be constructed by finding a function v such that
d¢ = an. A possible solution is ¢ = uﬁ—ig)

By Props. 4.5 and 5.3, one may complete the output y into a flat output (y, 2)
for system S. In this case one may take z = .

9.4. Constrained robots. Constrained robots are robots whose movement is
restricted by some physical contact surfaces. Such restrictions can be represented by
adding r holonomic constraints ¢;(¢) =0 (1 =1,...,r) to its original equations.

The following model can be obtained by taking into account the contact forces
[29] :

(9.5a) M(q)i+ H(q,q) = (Jo)" (@A + 7
(9.5b) oi(q)=0 (i=1,...,7)

where ¢ € R, J¢(q) = 9¢/0q, \ = (\1,...,A.)T is a vector corresponding to the
contact forces, M(q) is the symmetric positive definite mass matrix, and H(q,q)
corresponds to Coriolis and gravity forces. We will assume that d¢/0q has rank r for
all ¢ in the operation region of the robot. A representation of the system (9.5a)—(9.5b)
in the form (1.1a)—(1.1b) is given by

(9.62) % ( i ) - ( Yy ) * < M‘I(()M)T Vo ) < ; )

(9.6b) 0=1¢i(q),i=1,...,r

20The application of part (ii) of Prop. 8.3 is the easiest way for computing relative derived flags,
and lead to linear equations with coefficients that are functions defined on S as shown in the proof
of Prop. 8.3.
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Let v = (¢1,...,%n—r) be chosen in a way that map ¢ — (¢,v) is a local
diffeomorphism. Considering only the explicit system S defined by (9.6a), it is easy
to show that (g, A) is a flat output for S. In particular (¢,v, A) is also a flat output
for S. From Cor. 7.3, it follows that (¢, \) is a flat output for the constrained robot.
Note now that v are local coordinates of the constraint surface. In particular, the
simultaneous tracking of the position along the constraint surface and the contact
forces are possible. The reader may refer to [37, 40] for details and the presentation
of the design of a flatness based control, including the underactuated case. Another
approach for the solution of this problem is considered for instance in [29].

10. Conclusions. In this paper we state the notion of (local) subsystem. The
definition and construction of (local) output subsystems are also presented (Thm.
4.3). Tt is shown that subsystems admit (generically) adapted state equations (Prop.
4.4).

We show, under regularity assumptions, that an implicit system (1.1a)—(1.1b)
defines a system I' (in the sense of § 3.2) that admits state space representations and
is immersed in the (explicit) system S defined by (1.1a) (Prop. 6.1). This immersion
is in fact an embedding since the topology of the immersed system is the subset
topology. This result may be regarded as a generalization of the fact that equations
f(z) = 0, where f : R® — RP, defines implicitly an embedded submanifold of R"
when the Jacobian matrix Jf(z) has constant rank in the solutions of f(z) = 0.

The concept of relative flatness w. r. t. a subsystem is introduced (see §5). We
show that a system S is relative flat with respect to a flat subsystem if and only if
the flat output of the subsystem may be completed into a flat output of the system
(see Prop. 5.3).

Given a system S with output y, we show that relative flatness w. r. t. a (lo-
cal) output subsystem implies (local) flatness of the implicit system I' obtained by
restricting S to the constraint y = 0 (Thm. 7.2).

Sufficient conditions for relative flatness of a system w. r. t. a subsystem are
developed (see Thm. 8.2 and Cor. 8.4). These condictions restricts the class of trans-
formations to relative static-state feedbacks (Def. 4.1).

Sufficient conditions of relative flatness with respect to an output subsystem are
obtained (see Thm. 8.5). This result can be combined with Thm. 7.2 in order to study
flatness of implicit systems (1.1a)—(1.1b), as illustrated in the example of § 9.3.

Although it is assumed that system (1.1a)—(1.1b) is analytic, this hypothesis is
only needed to assure that the output rank p of the explicit system (1.1a) with output
y = h(z,u,t) is a global invariant, at least in the subset U C S of nonsingular points
of the codistributions Y, and Y for £ = 0,...,n (see Lemma C.1). Note that the
differential dimension?® of the implicit system I' defined by (1.1a)—(1.1b) is 7 = m—p,
where m = card u. Hence the assumption of analycity implies that /m is an invariant.
All the results of this paper could be rewritten in the smooth case (see [39, Lemma
6.2] for a smooth version of Lemma C.1), but in this case the differential dimension
of I may depend on the working point. In the same way, it is easy to restrict our
results to the time-invariant case (see [39, Lemma 8.1]).

All the definitions and results of this paper are local (note that the time-varying
notions are also local in time). The only exception are the construction of the system
Iin § 6 and Prop. 6.1, that is a “global” construction.

21The local differential dimension is the cardinal of the input of a local state representation. Note
that a differential dimension m of a connected smooth system that admits a local state representation
around every point is a global invariant [18], [39, Cor. 7.2].



RELATIVE FLATNESS 19

Appendix A. A differential algebraic interpretation of relative flatness.
The next proposition is a precise statement of the affirmation made in Rem. 5.1. The
proof may be found in [58].

ProPoOSITION A.1. [58] Let K/k be a system. Let L/k be a subsystem of K,
i.e., k C L C K. Then K/L is a flat system if and only if there exist a flat system
F/k such that F is algebraic over K, K is algebraic over k(L,F), and L and F are
algebraically disjoint over k. In other words, M = k(F,K) is decomposed into two
independent subsystems L and F'.

Appendix B. Proof of Auxiliary Results.

B.1. Proof of Prop. 4.2. By definition, (i) implies (ii). To show that (ii)

implies (i) it suffices to show that {t,z, (v : k € N)} is a local coordinate system.
()

Consider the state representation (#,@) where & = (zp,%q,Uq,---,Us ) and @ =
(up, u,(fﬂ)) for some 7 to be determined. It will be shown that Z = (23, T4, g, - - - ,uy))

and o = (vb,uffﬂ)) are such that their differentials are linearly independent, that

span {dt,dz} = span {dt,dz}, and that span {dt, d%,du} = span {dt,dz,dv}. By § 3.7,
it follows that (Z,0) is a state representation and it is linked to (Z,a) by static-
state feedback, completing the proof. To show this, note that ¥ = span {dt, dz,,
(du,") : j € N)}. From the particular form of z,z,u and v, it is clear that (ii) is
equivalent to span {dz;}+ X = span {dz} + ¥ and span {dz;, dup}+ X = span {dz,
dvp}+ . Since {t,z,(u® : k € N)} is a coordinate system, it follows that dz® =
aodt + Y, cdry,+ Y-, frdra, + Zj7k<k* yjkdugf). In particular one concludes that
span {dz;} + %, = span {dz,} + X,, where ¥, = span {dt, dz,, (du,"?) : j € [r])}, for
any r > k*. One shows similarly, possibly by taking a bigger r, that span {dt, dzy, duy }
+ ¥,41 = span {dt,dzp,dvp} + p41. By § 3.7 it follows that (£,0) and (Z,a) are
linked by static-state feedback. O

B.2. Proof of Thm. 4.3. In this proof we use the results and the notations of
Lemma C.1. Let n = dim z. By that Lemma, around £ € U, there exists a local state
representation (zp,u,) defined in Vg such that

(B.1a) span {dt,dz, } = span {dt, dz,dy, ... ,dy(")}
(B.1b) span {dt,dz,,, du, } = span {dt, dz,du,dy, ... ,dy(”+1)}
and where u, = (gﬁ[‘“),an). Now choose a subset z, of {y,...,y"™} in a way

that {dt,dz,} is a local basis of span {dt,dy,...,dy™} and choose z, in a way that
{dt,dz,,dz} is a local basis of span {dt,dz,dy,...,dy"™ } around &. Let u, = e
and up = Gy,. By construction, ((zq4, 2p), (uqe,us)) is a local state-representation of S
around &, since it is linked to (z,,u,) by local static-state feedback (see (3.4)).

By Lemma C.1 part 8, it follows that span {dz,} C span {t, z,,u,} and that (i)
and (ii) holds. Now note that (iii) follows easily from Def. 4.1 and conditions (B.1).

To show that two output subsystems are Lie-Backlund isomorphic, let 7; : Vg —
Y; be local output subsystems for ¢ = 1,2. Assume that Vg N Vg # (). We will show
that there exist a local Lie-Béacklund isomorphism ¢ : W; — W, where H is some
open neighbourhood of ¢ for which H C V' N'VZ and W; = m(H),i = 1,2.

Since the m; are Lie-Backlund submersions for i = 1,2, there exists local charts
of ¢; = (t,X;,Z;), i = 1,2, defined in some H C S and local charts ¢; = (¢, X;),
of Y, i = 1,2, defined on W; = m;(H) such that, in these coordinates ¢; o 7ri_1 o
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vi(t, X, Z;) = (t,X;), i = 1,2. Since Y7 and Y> are both local subsystems we have
span {dt,dX;} = span {dt,dy® : k € [N}, for i = 1,2. In particular, it follows
that the local coordinate change (t, X1,2;) = é1 o ¢5 (¢, X2, Z) is such that X; =
6(t, X5) and X5 = 0(t, X1). So the map u defined by (¢, X») — (t,0(t, X3)) is a local
diffeomorphism?2. Let 6 : Wy C Yo — W, C Y] be the local diffeomorphism defined
by 6 = 1/1{1 o po1y. To complete the proof it suffices to show that § is Lie-Backlund.
For this, we show first that d o mo|yg = 71 |g. In fact, note that

) = Yro(Bomod,)o(peod )t X1, Z1) =

) = (nowp)omogy (t,Xs,Zs) =
po(oomody )t Xo, Zo) = p(t,Xo)=

) = Yromogy (t,X1,21)

From the first and the last terms above, we have that § o ma|g = 7r1| . Denote by

0; the Cartan fields respectively of Y;, for ¢ = 1,2. By definition «} E =0;om;. In

particular 9y ooy = 0y o = (m) * ;t = (0 07r2)*;t = 5*(7T2)*dt = 0,05 07ms. As
o is surjective it follows that 01 o § = §,.0s, showing that ¢ is Lie-Bécklund. O

B.3. Proof of Prop. 4.5. Let p = p be the output rank and let {o1,...,0,} be
the structure at infinity of the system. By Lemma C.1, the sequence ¢; is nonincreas-
ing. Since o; converges to p, we must have o; = p,i € |n]|. Thus, the differentials
{dt, dy) :j e N} must be independent in U. In particular, in the proof of Theorem
4.3, a possible choice of z, and u, can be z, = (y, ... ,y(")) and u, =y, Tt is
then clear that the subsystem Y is (locally) flat with flat output y. O

B.4. Proof of equation (8.2). From (B.5) it follows that w € I°) if and only
if we IV and w € IV + J + span {dt} = span {dmb,dub,dma, (dugj) 1j € N),dt}.
Let w € I™Y. Then w = Y, ai(dzy; — @, dt)+ > Bi(dup; — tp,;dt) for convenient
functions a;, B; defined on S. Hence w = 7, &i(dwy; — @, dt)+ >, Bj(dup; — i, dt)+

Zi a;(dzy, — Zp,dt)+ Zj ﬂj(d’[tbi — ﬁbjdt) = Zl Yidx,+ El Ordig,+ Ez €:dxp;+
Cidup; + Odt+ E]- Bjdiy, where 7;,6,,€;,(; and 6 are convenient functions. No-

tice that {t,z, (u®) : k € N)} is a local chart, where z = (2,,23) and u = (uq, up).
Hence w € I if and only if 8; = 0 for all j € |m;]. O

B.5. Proof of Proposition 8.3. In order to prove Prop. 8.3 we need the fol-
lowing lemmas :

LEMMA B.1. For all integers k > 0, r > 0 and for every point p € S, we have :

i) (I™ + J, + span {dt}) |p Nspan {%}L C I (p) + J,.. The same result also
holds when replacing J,. by J.
(ii) span {I™, J,dt}|, = I (p) & J(p) & span {dt} (p)

Proof. (i) Assume that w(p) € (I®) 4 J, + span {dt})|pﬂ span {%}L. Then
w(p) = w(p)+Bdt|, where @ € I®) +J, and 8 € C=(S). Then (w, L)|, = (=, L)|,+
Bldt, L), Since (dt, &) =1 and I®) +.J C span { £ 1" it follows that B(p) = 0 and
hencew() ()EI’“)()+J()

(ii) Let w(p) € {(I® +J ) N span {dt}}| We have w(p) = B(p)dt. So (w,L)|,
(

B(p) = 0 and so B(p) =

22We stress that we are not using the Inverse Function Theorem, but only the existence of the
inverse of the coordinate change map.
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Let w(p) € {(I® + span {dt}) N J}|p. We have w(p) = w(p) + B(p)dt, where

w(p) € I C span {%}L. Since J C span {%}J‘, then (w(p), £) = (w(p), L) +
B(p)(dt, L) = 0. Hence w(p) € I®. Since I¥) N .J = 0, it follows that w(p) = 0.

Let w(p) € {(J + span {dt}) ﬂI(k)}|p. Using the same reasoning above, one
verify easily that w(p) = 0. 0

LEMMA B.2. Assume that the conditions of the Theorem 8.2 are satisfied on an
open neighbourhood V¢ of £ in S. Then I®) k€ N is a smooth codistribution and for
every p € Ve and k € N we have :

(i) For all k € N there exists a set of covector fields @ = {wi,..., w,, } C
I®) 4 J, where r, = dimI®) | w; = (df; — 6;dt), with §; € C*(S), and an open
neighbourhood V' of € such that the canonical projections of the elements of Q(v) form
a basis for (I'®) (v) + J(v)) mod J(v) for all v in V.

(ii) Ifw is of the form (d0 - édt) for a function § € C®(S), thenw € IFTD) 4+ J
if and only if & € I®) + J. In particular I®) + J > 1+1) 4 L p(k+1) 4 .

(iii) Let {wi,...,w.} C I~V 4] be a set of 1-forms such that w; = (df; —B;dt),
where §; € C*(S). Assume that the set {w1(p),...,wr(p)} is linearly independent®?
mod I®) (p) + J(p). Then {1 (p),...,wr-(p)} C (I'*=2)(p) + J(p)) is linearly indepen-
dent mod (I*~Y + J 4 span {dt})|,.

Proof. Assume by induction that I(),j = —1,0,...,k is smooth. We will show
first that (i) and (ii) holds. (i) We show now that, for an integer I big enough then
span {I¥), J,  dt} is involutive (see eq. (8.3)). In fact, since I®) is nonsingular and
finite dimensional, there exist a local basis {@; : i € |ry]} of I®®). By part (ii) of
Lemma B.1, it follows that the set {(@; : i € |7k ]), dzq,du,,. .. ,dugl’“), dt} is a local
basis of T(F) 4 Ji,, +span {dt}. Since the codistribution span {I(k), J, dt} is involutive,
then dw; = Z;’;l i A v; for convenient 1-forms n;;,v;; with v;; € span {I(k), J, dt}.
Hence v;; € span{(wi (1€ er]),da:a,dua,...,dul(f""),dt}. Let I; = max; ;j{s;}.
Then span {I(®), J;, , dt} is involutive for every I;, > I;. By the Frobenius theorem and
part (ii) of Lemma B.1, we see that span {I(k), Jies dt} is spanned by linearly indepen-
dent 1-forms {db,...db,,,dz,,du,, ..., du, "), dt}, where dim I*) = 1. Now note
that w; = (d6; — 6;dt) € span {%}L. Since w; € span {I¥), ], ,dt}, by Lemma B.1
part (i) it follows that w; € I*®) +.J;, . Let K = span {J;,,dt} |, and L = span {J, dt},.
By construction the canonical projection of the set {w;,i € %]} on (I®) (p) + K)/K
form a basis of (I'*)(p) + K)/K. By part (ii) of lemma B.1, it is easy to see that the
map ¥ : (I®(p) + K)/K — (I (p) + L)/ L such that w(p) mod K ~ w(p) mod L is
an isomorphism. In particular the canonical projections of the w; on (I*)(p) + L)/L

also form a basis.
(ii) We show first that we have

(B.2) dw(p) mod (I'M (p) + J(p)) = — & A dt], mod (I'™)(p) + J(p))

for all p € S. For, by (i), note that w = > 1%, aiwi+ﬁn+zg’;0 v for w; = do; —0;dt,
n = (dzy — adt), and p; = (duy) —u, TV dt) for convenient smooth functions a, 5
and 7;. Hence, dw mod (I® + J) = [S20% (azdw; + da; A wi)+ (Bdn + dB A n)+

23The linear independence of the set {w1(p),--.,wr(p)} mod (I¥)(p) 4 J) for some p € S means
that (3°7_; aswi(p) + w(p))|p =0 forw € I*) + J and a; € R implies that w(p) = 0 and a; = 0.
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S (vidus + dy; A )] mod (I%) + 7). Since d(d6 — 8dt) = —df A dt for all § €
C>(S), and [Y2; da; Aw; +dB An+ Y, dy; Anj]l mod (I 4 .J) = 0, we see that

(B.3) dwmod (I™ +.7) = =" a;df; Adt — Bdicq Ndt =Y vidu, I Adt

? J

Now note that & Adt = [0 (ai; + diws)+ (Bi+ Bn)+ S0y (v +357)] Adt.
Since {[Y°0% ) cw; + B0+ Y0 Aipi] Adt} mod (I +.7) = 0, £ (df —fdt) = df —dt,
it follows by direct computation that w A dt is also given by the right hand side of
equation (B.3) and so (B.2) holds.

Now we will show that, for all p € S and w € I®) we have

(B.4) w(p) € I*V(p) & w(p) € span {I¥), ], dt} (p)

Let {dt,(w; 14 € [r]),m, (1 : j € [Ix])} be a basis for span {I®),.J;, dt}. Notice
that, @A dt|, mod (I¥)(p) + J(p)) = 0 means that & Adt|, + 375, ¢ Awil, +

EAnl,+ Eé’;l p;j A pj| = 0 for convenient 1-forms ¢;, &, p;. From the Cartan Lemma
P

(see section 2), we conclude that w(p) € span {I¥), .J;, ,dt} (p). Then, (B.4) follows
from (B.2) and the Definition 8.1. It is easy to show that the same arguments and
the fact that J is involutive imply that

(B.5) w(p) € I (p) + J(p) & &(p) € span {IW), J,dt} (p)

If w = df — fdt then & € span {%}L. By (B.5) and from Lemma B.1 part (i),
it follows that w € I*) + J. Now note that, by (i), I**1) 4+ .J has a basis for this
particular form. This completes the proof of (ii). We show now that our induction
hypothesis (i.e., that I\9) is smooth for j = —1,0, ..., k) implies that I(*+1) is smooth.
In fact, by the proof of (i), given a local basis {&; : i € [ry]} of I*), there exists
a local basis {(©; : @ € er]),dxa,(dugk) : k € N),dt} of Wy = span {I®), J,dt}.
Note that Wy C Wy = span {dxy, J,dt}. In particular we have @; = ©; + ~;, where
@; € span {dxzp} and ~y; € span {J,dt} = T*S,. Note that u; = 4; € span {.J,dt} and
we may replace @; by @; in the basis of Wy, , obtaining another basis of W. Note also
that there exist a subset &, of x}, such that {dZy,duy, (©; : i € |ri]), dza, (dugk) ke
N),dt} is a basis of W_;. Let z = (&,up). Let @; = w; +%; = > aijdzj + p;, where
w; € span {J,dt}. Denote the matrix formed by the functions a;; by A. By (B.4),
w(p) = 3, aid; € I+ (p) if and only if > (diw; + a;@;)|p, € Wi(p). Denoting
by a the column vector with components a;, then w(p) € I'*+1)(p) if and only if
A(p)a(p) = 0. Then if I*+1) is nonsingular if and only if A(p) has (locally) constant
rank and in this case it is clear that I(*) is smooth?*.

(iii) To prove (iii), assume that there exists w in I(*=1) 4 J and functions «; €
C*>(S) such that, for p € S then (w+ aodt+ 3, aiw;)|, = 0. Hence, {[w —
S (d)wi]+ aodt+ %(E:zl Oéiwi)}|p = 0. Since [w—Y";_, (c&;)w;](p) € I*R=1D (p) +
J(p), it follows that £ (37, aiwi)|p € span {I*=Y ] dt} (p). Tt follows from (B.5)
that (37, ayw;)(p) € I'®(p) + J(p) and hence the set {wi,...w,} is not linearly
independent mod I'®) 4+ J(p) in p € S. d

24This proof shows also that one may compute the relative derived flag by solving linear equations.
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Proof (of Prop. 8.3). Since w; = df; — 6;dt, i € |s], by part (ii) of Lemma B.1, the
set B = {(dﬁz(j), j€{0,...,r;}, i € |s]), dza, dug, ..., dug’“_l), dt} is a local basis of
I =1 4 ., +span {dt}, for any Iy 1 > I}_, for some [}_,.

By part (iii) of Lemma B.2, B is linearly independent mod {rk=1 4 J 4
span {dt}}. Hence BUB = {(d8\”, j € {0,...,r; + 1}, i € |s]), dza, dua, ...,
dug’“_l), dt} is linearly independent for all Ij,_;.

From the proof of part (i) of Lemmma B.2, we also have that there exists a local
basis {(6; : i € [r]), dza, dug, ..., dul*=?, dt} of I"=2 4 J, . +span {dt} for every
lho > 15 . Let l_1 = lj_» = max{l}_,,I} ,}.

As I=1)  1(k=2) e may complete BUB with a subset B = {6;,i =s+1,...,0}
of {#; : i € |r]} in order to form a basis of I(*=2) 4+ J, . + span {dt}. By the same
reasoning of the end of the proof of part (i) of Lemmma B.2, it follows that B UBUB
is a basis of I*=2) 4+ J. The fact that BUB is linearly independent. mod (I*=1) 4 J+
span {dt}) implies that B U B is also linearly independent mod (I*=1) 4 J). O

Appendix C. Geometric Interpretation of the Dynamic Extension Al-
gorithm.

In [14] it was shown, using an algebraic approach, that the output rank (the
number of differentially independent outputs [15]) can be computed by the structure
algorithm [51] and the dynamic extension algorithm [13, 35]. This interpretation was
developed further in [11] in order to study control synthesis problems by quasi-static
state feedback. In [39], the algebraic results of [14, 11] are translated to the differential
geometric approach of [20], giving the following Lemma :

LeEmMA C.1. [39, Lemma 8.2] Consider the analytic (explicit) system S defined by
(1.1a) with analytic output y = h(t,z,u). Let Sy be the open and dense set of reqular
points of the codistributions Y; = span {dt,dy, . ,dy(i)} and Y; = span {dt, dz, dy,
cee dy(i)}. In the kth step of the dynamic extension algorithm, one may construct a
partition®® y = (U, 9r) and a new local classical state representation (zy,uy) of the
system S with state x = (a:,gj(()o), e ,gj,(ck)) and input up = (y;ckﬂ),ﬂk), defined in an
open neighbourhood V¢ of £ € Sy, such that

1. span {dt,dzy} = span {dt,dz,dy, ...,dy"}.
2. span {dt,dzy, du} = span {dt, de,dy,. .., dy(’”l),du}.

3. It is always possible to choose gj,(clf:;l) n a way that gj,(ckH) C gj,glf:;l).

4. It is always possible to choose g1 C Uy.

5. Let D(C) denote the generic dimension of a codistribution C generated by the
differentials of a finite set of analytic functions. The sequence o, = D(Vi) — D(Vi—1)
is nondecreasing, the sequence pr = D(Yy) — D(Yir—1) 4s nonincreasing, and both
sequences converge to the same integer p, called the output rank, for some k* <n =
dim x.

6. Sy = Sp+ for k > k*.

7. Y Nspan {dx}|, = Yi+_1 Nspan {dz}|, for every v € S« and k > k*.

8. Around & € Uy, one may choose, yr = yp~ for k > k*. Furthermore, Y11 =
Y: + span {g,i’“*l)} for k> k*.

Proof. A complete proof of this result can be found in [39]. (see [14, Thm. 2.5]
and [11, Lemma 4.1.6] for similar results in algebraic contexts). O

25Including a possible reordering of the outputs.
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