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RESUMO: Neste trabalho mostramos que um robo sub-atuado com n graus de liber-
dade, r restricoes e [ juntas ativas é genericamente “flat”. Um sistema de controle que

assegura rastreamento simultaneo de » — n + [ forcas de contato e da posicao do robo

ao longo da restricao é construido baseado nesta propriedade

Palavras chave: Robdtica, sistemas nao lineares, sistemas implicitos, linearizagao

por realimentacao.

ABSTRACT: In this paper we show that a constrained under-actuated robot with
n degrees of freedom, r constraints and [ active joints, where { > n — r is flat (under
generical non-orthogonality conditions). We construct a flatness-based control that
assure simultaneous tracking of » — n + [ contact forces and the position of the robot

along the constraint surface.

Keywords. Robotics, nonlinear systems, implicit systems, feedback linearization.

1 Imtroduction

Constrained robots are robots whose movement is
restricted by some physical contact surfaces. Such
restrictions can be represented by adding r holo-
nomic constraints ¢;(¢) = 0 (¢ = 1,...,7) to its
original equations.

The following model can be obtained by taking
into account the contact forces (McClamroch &

Wang 1988, Krishnan & McClamroch 1994) :

M(q)i+ H(q,4q) (J&)T (@A + 7 (1.1a)
éiq) = 0 (i=1,... rYL1b)

where ¢ € IR™, Jo(q) = 0¢/0q, A = (Ay, ..., A)T
is a vector corresponding to the contact forces,
M (g) is the symmetric positive definite mass ma-
trix, and H(q,q") corresponds to Coriolis and
gravity forces. We will assume that d¢/dq has
rank r for all ¢ in the operation region of the robot.

Simultaneous force/position control for con-
strained robots was studied by (McClamroch &

Wang 1988, Lozano & Brogliato 1992, Reith-
meier & Leitmann 1992, Jean & Fu 1993, You
& Chen 1993, Krishnan & McClamroch 1994,
Leviner & Dawson 1995, Pereira da Silva 1996, Si-
ciliano & Villani 1997, Liu & Chen 1998, Lian
& Lin 1998, Vukobratovic, Stojic & Ekalo 1998)
for the case of active joints. In this paper we
develop a flatness-based control for constrained
under-actuated robots with simultaneous tracking
of some components of the contact forces based
on the infinite dimensional geometric approach of
(Fliess, Lévine, Martin & Rouchon 1999). We sup-
pose that position and velocity measurements are
available and the perfect knowledge of the model
and the constraint surface is also assumed. In the
case of model and /or constraint surface uncertain-
ties, these results have at least some philosophical
importance. Our main result (Theorem 2) is a
generalization for the under-actuated case of pre-
vious results (Pereira da Silva 1996) that are valid
in the full-actuated case.



Flatness 1s a notion of control systems the-
ory that corresponds to a complete and finite
parametrization of all solutions of a control system
by a differentially independent family of functions
(Fliess, Lévine, Martin & Rouchon 1992, Fliess,
Lévine, Martin & Rouchon 1995). Many models
are found to be flat in control applications, show-
ing the relevance of this concept in pratice. Since
flatness implies feedback linearization by dynamic
(or static) feedback, a linearizing feedback can be
used to assure stabilization or asymptotic tracking
(see for instance (Isidori 1989)). In many appli-
cations, the flat output is the set of functions that
one is interested to control. In this case, asymp-
totic tracking of the flat output is always possible
by a flatness-based control.

Singular (or implicit) systems are an impor-
tant class of control systems. Solvability of non-
linear implicit differential equations is considered
in (Brenan, Campbell & Petzold 1995, Rheinboldt
1991). Some results on feedback linearization
and flatness of implicit systems can be found
on (Liu 1993, Liu & Zhang 1993, Kawaji &
Taha 1994, Pereira da Silva & Corréa Filho 1998q,
Schlacher, Kugi & Haas 1998, Pereira da Silva &
Corréa Filho 19985).

In (Pereira da Silva & Corréa Filho 1998a,
Pereira da Silva & Corréa Filho 19985b) its shown
that the infinite dimensional geometric setting re-
cently introduced in control theory (see (Fliess,
Lévine, Martin & Rouchon 1993, Pomet 1995,
Fliess, Lévine, Martin & Rouchon 1997, Fliess
et al. 1999, Fliess, Lévine, Martin & Rouchon
1998)) is useful for studying flatness of implicit
systems. Consider the system

((1)) + g(x())u(t)  (1.2a)
y(t) = h( =0 (1.2b)
where x(t) € R, y(t) € IR", u(t) € IR™ and all
the components of f(x) and g(x) are analytical
functions of z. The following result is shown in in
(Pereira da Silva & Corréa Filho 19984, Pereira da

Silva & Corréa Filho 19984)

Theorem 1 (Pereira da Silva & Corréa Filho
1998a, Pereira da Silva & Corréa Filho 1998b)
Consider the unconstrained system S given by
(1.2a) and assume that this system is locally flat
with flat output (y,v), i. e. the restriction func-
tions y; = hj(x),j = 1,...,r are part of a lo-
cal flat output of system (1.2a). Then the implicit
system (1.2a)—(1.2b) is locally flat with flat output

.

Remark. Theorem 1 is a simplified ver-
sion of the result presented in (Pereira da Silva

& Corréa Filho 1998a, Pereira da Silva &

Corréa Filho 1998b). In fact, it is shown in these
papers that there exists a system T' (i. e. a diffi-
ety with Cartan field and a notion of time (Fliess
et al. 1999, Fliess et al. 1997)) and a Lie-Bicklund
immersion ¢ © I' — S such that every solution
a(t) of S such that y(o(t)) is identically zero is
of the form o = 1o ~(t), where v(1) is a solu-
tion of I'. Furthermore I' 1s flat with flat output
{trot,...,p_p ot}

Based on Theorem 1, a sufficient condition for
flatness of constrained under-actuated robots is
easily obtained in this paper. It 1s shown shown
that a robot with n degrees of freedom, r holo-
nomic constraints and only [ active joints, where
l > n —r, is generically flat. A possible choice
of flat output is the position along the constraint
surface and r — n + [ contact forces, showing that
the problem of simultaneous tracking of these out-
puts is solvable. Some computer simulations are
also presented for an academic example.

The paper is organized as follows. An ap-
plication of the results of (Pereira da Silva
& Corréa Filho 19984, Pereira da Silva &
Corréa Filho 19988) to robotics is presented in
section 2. A flatness based control of this (under-
actuated) robot is studied in detail in the aca-
demic example of section 3.

2 Control of constrained under-actuated
robots

A representation of the system (1.1a)-(1.1b) in the
form (1.2a)-(1.2b) is given by

() = (o )+
0

+(amguer )+ (i )7 09
0=di(q), i=1,....r (2.4)

where the unconstrained system (2.3) has input
u = (A7), state # = (¢,¢") and output y =
¢ = (¢1,...,6,). Now suppose that the robot
is under-actuated, 7. e., we have only [ actuators,
where [ > n—r. In other words we have that 7;, =
...Ti,_, = 0 for convenient integers %1, ...,%. Let
P be formed by convenient columns of the identity
matrix in a way that

r=Pr (2.5)

where 7 i1s the [-vector of the torques applied by
the actuators.

Non-orthogonality assumption. Let ¢ €
IR™ and assume that

dimIm [J((;S)T(qo) P] =n.



In other words, we can complete the matriz P with
columns of the matriz (J¢)T in order to construct
a nonstngular matriz i an open set containing qo.

Roughly speaking, this means that no vector
of the tangent space of the constrained surface is
is orthogonal to the directions of the torque ac-
tuation (represented by the columns of P). Note
that this assumption can be always satisfied if one
can choose what are the [ active joints). Let R(q)
be a matrix formed by convenient columns of the
identity matrix such that

[(Jo)"R P] (2.6)

is locally nonsingular around ¢g. Let R be a ma-
trix formed by the columns of the identity not
present in K. Then we can write

A= RA+ RA (2.7)

where A and X are formed respectively by n—1[ and
r —n+1 components of A, conveniently reordered.
Now we can rewrite the unconstrained robot equa-

tion (2.3) by extension of the state!, obtaining
a state representation with input (A, X\, 7) and
state (A, ¢, (") given by

q e
( ‘jf) ) = ( M~=2(q)[-H(q,9)) + (J§)TRN] )+

A 0
+ (
Now choose a set of functions ¥ = (¥1,...,%Yn_r)

in a way that the Jacobian matrix (J¢TJ1/)T)T is
nonsingular?.

7

~ O O

0 0

Proposition 1 The unconstrained robol equa-
tions (2.8) are (locally) state-feedback linearizable

~

and (X, ¢,¢) is a (local) flat output this system.

Proof. Considering the output ((/),1/},X) for the
unconstrained system (2.8), we will show that its
decoupling matrix is always nonsingular and the
sum of their characteristic numbers gives the di-
mension of the state. Then the result will fol-
low from (Isidori 1995, Lemma 5.2.1, p. 230).
For this note that, for & = (¢,v), & = (J&)qg
and so & = (J€)§ + Fq,q), where F(q,q) is a
vector with n components given by F; = ¢7'H;q

2¢ .
and H; = %ﬂgg) is the Hessian matrix of ¢;,

1This extension of the state is equivalent to the addition
of integrators in series of the input components of A

2Note that, in this case, the restrictions of the functions
¥,, 5 =1,...,r to the constraint surface form a local chart
of this surface.

0 0 N
M-YJ$)TR M-'P )( by )(2.8)

J€4{1,...n}. A simple computation gives

5\ 5Xe)
¥ 7

where

0
o= ( Fy(a,a) + JoM=1 ()~ H(g,) + (i) T B )
Fy(q,4V) + JYyM =1 (g)[-H

( A ) ( I 0 . 0 )
A=| 4y |=| 0 JeM~Y(J$)TR JeM~'P
Ay 0 JYM~YJ$)TR JyM~'P
(2.11)
The non-orthogonality assumption implies that
—1 TH —1
vom=ua R Pl= (NS0 T )
i1s a nonsingular matrix. So the decoupling ma-
trix A is also nonsingular. Since the the sum of
characteristic numbers gives the dimension of the
state, the result follows. a

The following theorem means that one can eas-
ily control simultaneously the position of the con-
strained under-actuacted robot (2.3)-(2.4)-(2.5)
along the constrained surface and r —n+1 contact
forces.

Theorem 2 Under the non-orthogonality as-
sumption, 1. e., the local nonsingularity of matriz
(2.6)), the constrained under-actuated robot (2.3)—

(2.4)(2.5) is locally flat with flat output (1/),X)

Proof. By Proposition 1, the unconstrained robot
is locally flat with flat output (¢, v, A). Restrict-
ing to a open set V around the operation point,
the application of Theorem 1 leads to the desired
result. ad

Flatness-based control. Now we show how
to develop a control system for tracking simulta-
neously the position of the robot (2.3)-(2.4)-(2.5)
along the constrained surface and r —n+1 contact
forces. N

For, let (1) = (¢ref(t), Arep ()
trajectory. Let e(t) = ¢(?)
defined by (see equations (2.9)-(2.10)—(2.11))

/A\ref o~
0 = g, N5+
“A1E = Age + Pres (1) !
e
+ A(q,q<1>>( Tf)
2
(2.12)

where A; are symmetric positive definite matri-
ces for ¢ = 0,1. By the nonsingularity and the
structure of A, it is easy to see that the last equa-
tion define a unique vector of functions 7 that de-

pends only on ¢, q, $res (1), tres (), hres (). Note



also that (2.9)-(2.10)—(2.11) for (b(t) = 0 implies
that
0 = Fy(JO)MIH+ (Jo)M~Y(Jp)T Pr+
_ S oa A
o= oy () )
(2.13)
Since J¢ has full row rank and M is positive defi-
nite then (J¢)T M ~1(J¢) is nonsingular, showing
that the choice of 7(¢) determines unique vectors
of functions A and A. Note that (2.12) and the
last equation implies that A = A,z (%).
By (2.9), the application of 7(¢) previously de-
fined on the constrained robot implies that

and so e(t) converges asymptotically to zero,

showing that the tracking problem is solved in this

way.
Remark.

Recall that 7 defined by (2.12)
depends Only on Qaq(l)a1/)7‘efa1/)refa’l/)refa/\ref~
Hence, there ts no need to measure the contact
forces for implementing this control law. An
adaptation of this control law for taking into
account the contact force errors might be done in
this context.

When the model of the robot or the real shape
of the constraint surface are not precisely known,
such a method may produce bad results. Note that
small errors in the constraint map ¢ may produce
big deviations in the expected value of J¢. The
chotice of the functions ¥ should be made in a way
to have, locally, a nonsingular Jacobian matriz
[(JO)T(J¥)TT1Y. In many cases one may choose
more than one local flat output “p” and switch the
corresponding control law according the operation
point.

3 Example

We now present an academic example. Con-
sider the two link robot arm of figure 1 (Gras &
Nijmeijer 1989) . The constraint surface is rep-
resented by the horizontal dashed line. The two
dark disks represents unit masses and we can ap-
ply control torques to each degree of freedom cor-
responding to #; and #5. The contact force is rep-
resented by the vector A and the two arm lengths
are equal to one meter. The corresponding model
of the unconstrained robot is given by (2.3)-(2.4).
Note that ¢ = (81, 02)7 is the vector of angular dis-
placements, 7 = (71, 79)7 is the vector of torques,

and H(q,q¢™") = C(q,¢V) + K(q), where

[ 34+ 2cosfy 1+ cosbs
M(q) = ( 1+ cos By 1 )

-0 (29 + 6 )sin @
(1Y — 2(201 + 02 2
Claa™) ( 62 sin 0 )

.« { 2gsinf; + gsin(f; + 02)
K(q) = ( gsin(fy + 02)

and g is the gravity constant. Consider constraint
function

0=¢(q) =cosby +cos(fy +0:)— L (3.15)

corresponding to restrict the trajectory of the end-
point of the second arm to the dashed line of fig-
ure 1. Note that L is the vertical distance of the
dashed line from the top of figure 1. We can choose
¢ = sin(fy) + sin(f; + 02), corresponding to the
position along the constraint (the dashed line in
Figure 1). Note that the coordinates (¢, —¢) are
the cartesian coordinates (z,y) for the figure 1.

Figure 1: Two link robot arm.

A control system using the previous develop-
ment was constructed and some computer simula-
tions are presented for the full-actuated case (see
figures 2 to 5) and for the under-actuated case
(see figures 6 to 9). For all plotted curves, the
horizontal axis represents time in seconds.

In the first case we have [ = n, 7 = 7. Further-
more, A and R are absent, P = I, R = 1. A flat
output is given by (¢, A). So the position along
the constrained surface and the contact force can
be easily controlled. Note that there is a singular
point of the Jacobian matrix [(J¢)T (Jv)T]T for
#>; = 0 that must be avoided.

In the second case we have that [ = 1, 7 =
71, A = A. Furthermore, A and R are absent,
P =11 0]7, R = 1. A flat output is given by
1. Hence, in this case only the position along the
constrained surface may be controlled. In addi-
tion to the singularity of the first case, the matrix

[(J¢)TR P]is singular for 6; = —05.

4 Conclusions

The example of the constrained robot illustrates
how one can design a flatness-based control for
simultaneous tracking of position and contact
forces.



The measurement of the angular positions and
velocities of the robot joints are needed to imple-
ment the flatness based control law. The feedback
law here obtained is not of standard nature. The
control of contact forces A can be regarded as a
feedforward control, since the equation (2.13) es-
tablishes an explicit and instantaneous determi-
nation of A(¢) by the choice of 7(¢). This explains
why the measurement of the contact force is not
needed, which may be an advantage or not, de-
pending on the context.

The model of the robot could be improved by
taking into account the friction that occurs along
the constraint surface. In this case the model lacks
smoothness, but similar results could be obtained.
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Figure 2: Reference position 1r.f(¢) (continuous line)
and tracking error e(t) (dashed line) in meters — full-
actuated case.

Figure 3: Angular positions §; (continuous line) and
6> (dashed line) in radians — full-actuated case.

Figure 4: Control torques 71 and = in N x m —
full-actuated case.

Figure 5: Contact force A(¢) in N — full-actuated
case.

Figure 6: Reference position 1r.£(¢) (continuous line)
and tracking error e(t) (dashed line) in meters —
under-actuated case.

Figure 7: Angular positions 6; (continuous line) and
6> (dashed line) in radians — underactuated case.

Figure 8: Control torques 71 and m in N x m —
underactuated case.

Figure 9: Contact force A(¢) in N — underactuated
case.



