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RESUMO - O problema de linearizacao parcial (PLP)
é tratado neste artigo. Neste problema, desejamos decom-
por um sistema nao controlavel em um subsistema linear
controlavel e um subsistema autonomo, que faz o papel
de subsistema nao controlavel. Para a classe de sistemas
parcialmente linearizaveis, mostramos que a influéncia do
subsistema nao controlavel pode ser sempre eliminada via
realimentagdo de estado. No caso mais geral (em que o PLP
nao é mnecessariamente solivel), mostramos uma decom-
posi¢do em parte controlavel /ndo controldvel diretamente
relacionada com as integrais primeiras.

ABSTRACT - We define and solve the Partial Lineariza-
tion Problem by static state feedback (PLP). Our notion
of linearization is weaker than the one found in the liter-
ature. In fact, we want to transform a given system, via
static-state feedback and coordinate change, into a control-
lable linear system that is affected by a autonomous system,
which plays the role of its noncontrollable part.

For the class of nonlinear systems which is PLP solvable, we
show that the influence of the noncontrollable part in the
linear part can be always removed by a convenient static
state feedback. We construct another decomposition that
holds for a general (time-varying) nonlinear noncontrollable
systems consisting in a controllable subsystem and a non-
controllable one that is generated by a set of conservation
laws.

Key words: nonlinear systems, time-varying systems,
static-state feedback, feedback linearization, controllability,
canonical forms, linear systems.
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1 Introduction and Motivation

It is well known that, from the “input-to-state” point of
view, a linear control system can be decomposed, after
a convenient coordinates change, into two interconnected
subsystems, namely the noncontrollable and the control-
lable subsystems (Kailath, 1980), (Wonham, 1985), (Fliess,
1990) (see also (Isidori, 1989), (Nijmeijer and van der
Schaft, 1990) for nonlinear systems). The noncontrollable
subsystem is completely autonomous, 7. e., 1t is not affected
either by the input or by the controllable subsystem. The
situation can be illustrated by the structure of figure 1.
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Figura 1 - Structure of a noncontrollable system.

Consider now the class of linear time-invariant systems
with the state evolving on the linear space AX'. Then the
controllable and the noncontrollable subsystems that ap-
pear in this decomposition have, in some sense, an intrinsic
meaning' .In fact, the controllable subsystem is the “restric-

1Tt is important to stress that the noncontrollable subsystem in the
state space approach corresponds to a choice of a subspace X such that
the direct sum of X with the controllable space is the entire space.
This choice is not unique, but is unique up to an isomorphism. In the
approach of (Fliess, 1990), the noncontrollable space is represented by
the torsion submodule, being intrinsic. The controllable subsystem is
in this case nonunique, but unique up to an isomorphism.



tion” of the system to the controllable subspace R and the
noncontrollable one is the “quotient” subsystem induced in
the quotient space %, which is not affected by the input
(Wonham, 1985). However, the influence of the noncon-
trollable subsystem on the controllable one can be changed
a lot by a similarity transformation that preserves the con-
trollable subspace (i.e. , it transforms a basis for the con-
trollable subspace into another basis for the controllable
subspace). In fact, consider the following example.

Example 1 (Pereira da Silva, 1996b) Consider the linear
system with state x(t) = (z1(t), z2(t), z3(t))Y € R3 and
input u(t) € IR given by

2i(t) = wo(t) + ws(t)
ia(t) = ws(t)+ ull)
l‘3(t) = —21‘3(t>

Let 2t = (z1,22)7 and 2% = x3. Then the last equation can
be rewritten as

2.'1 = 1‘11121+A1222+Blu (11&)
2.'2 = 1‘12222 (11b)
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where A1 =

b= (?)

It is easy to see that the subsystem (1.1a) is the controllable
subsystem of the given system and (1.1b) is the noncontrol-
lable one. The matriz Ay» represents the influence of the
noncontrollable subsystem on the controllable subsystem.

Now let & = x1, & = ®1 = w9 + x3 and & = x3. Set
& = (&1,62,8). Then, & = Tx, where T is a nonsingular
matrix and we can write

él = &
52 = —€3 —+ u (12)
& = =23

In particular we see that the influence of the noncontrollable
subsystem on the controllable one can be canceled by the
reqular state feedback v = &3 + v.

In (Pereira da Silva, 1996b) it is shown that the procedure
of the example 1 can be done for an arbitrary noncontrol-
lable linear system, i.e. , they have all the structure de-
picted in figure 2. This linear result is not explicitly stated
in the literature, but it is not difficult to verify that this is
a consequence of theorem 4.1 of (Morse, 1973) in the case

of ¢'=0.

In this paper we will generalize these results, showing that
“essentially linear” systems have a similar structure. Our
results are closely related to the ones of (Marino et al., 1985)
and (Marino, 1986) for nonlinear affine systems (see propo-
sition 10 of (Marino et al., 1985) and consider that A = p,
i. e., the subvector #s is absent). However, our approach is
completely different. Furthermore, we are interested in the
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Figura 2 - Structure of noncontrollable linear systems.

connections of these results with the ones of (Morse, 1973),
(Pereira da Silva, 1996b) about canonical forms for linear
systems, which are not made clear in (Marino et al., 1985).

To state precisely what we mean by “essentially linear”,
let us consider the Problem of ezact linearization of non-
linear systems, which has attracted a lot of attention over
the last two decades. This problem was completely solved
in its static-state feedback version (see (Jakubczyk and Re-
spondek, 1980), (Hunt et al., 1983)) but it remains open
in the dynamic feedback case (Charlet et al., 1989), (Shad-
wick, 1990), (Charlet et al., 1991). Closed related to this
problem is the notion of flatness (see (Fliess et al., 1995b),
(Fliess et al., 1995a)). It is important to point out the use-
fulness of the techniques of exterior calculus (Briant et al.,
1991) for the problem of exact linearization (see (Shadwick,
1990), (Gardner and Shadwick, 1992), (Sluis, 1992), (Mar-
tin and Rouchon, 1993), (Murray, 1993), (Tilbury et al.,
1995), (Shadwick and Sluis, 1993), (Aranda-Bricaire et al.,
1995), (van Nieuwstadt et al., 1994)).

In the usual terminology, “exact linearization” means that
we want to transform the system, via state-feedback and
coordinate change, into a completely controllable linear sys-
tem. In this paper we shall consider a weaker form of
this problem, which allows the transformation of the sys-
tem into a controllable linear system that is affected by an
autonomous? nonlinear system. We will show that the nec-
essary and sufficient conditions to solve this problem are
the same as the ones given in (Sluis, 1992), (Shadwick and
Sluis, 1993) apart from the assumption of considering the
system to be maximally nonholonomic (i.e. , strongly con-
trollable). Under these conditions, we will show that the
influence of the noncontrollable subsystem on the “exact
linearized” subsystem can be always removed by a conve-
nient static state feedback. The techniques of the proof
of the last result are different from the ones in (Shadwick
and Sluis, 1993), (Sluis, 1992) since we do not use Goursat
canonical forms. Furthermore, similar techniques may be
useful to study the structure of implicit nonlinear systems

(Pereira da Silva, 1996¢).

It is known (see (Fliess et al., 1993)) that a system is con-
trollable if and only if it does not admit conservation laws.
We construct a decomposition for (time varying) nonlinear
noncontrollable systems consisting in a controllable subsys-
tem (in the sense that it does not contain any conservation

21t is not reasonable to expect that the noncontrollable subsystem
of a nonlinear system can be exactly linearized since it is not affected
by the input and thus it is feedback-invariant.



law) and a subsystem with state variables w = (wy, ..., w;)
formed by conservation laws. Furthermore, any conserva-
tion law of the system is a function of wq, ..., w;.

The paper is organized as follows. In section 2 we present
the notations and some introductory remarks about differ-
ential geometry. In section 3 we consider some decomposi-
tions of linear systems. In section 4, we give some geometric
definitions of feedbacks and we state the Partial Lineariza-
tion Problem (PLP). In section 5, the PLP is solved for
non-linear time-varying systems. In section 6 we present
some remarks about the time-invariant case. Finally, in
section 7 we consider a decomposition that holds for gen-
eral noncontrollable nonlinear systems.

2 Mathematical background and notations

The field of real numbers will be denoted by IR. The set
of real matrices of n rows and m columns is denoted by
R?*™ . The matrix M7 stands for the transpose of M.
The set of natural numbers {1,..., k} will be denoted by

k).

We will use the standard notations of differential geometry
and exterior algebra (Warner, 1971), (Briant et al., 1991).
Given a smooth manifold P of dimension §, C*°(P) denotes
the set of smooth maps from P to IR. Let Q be a smooth
manifold of dimension v and let ¢ : P — Q be a smooth
mapping. The corresponding tangent and cotangent map-
ping will be denoted respectively by ¢. : T, P — Ty, Q
and ¢* : T;(p)Q — T,P. Given a field f and a 1-form w on
P, we denote w(f) by (f,w). The set of smooth k-forms on
P will be denoted by Ax(P) and A(P) = UpewAr(P).

Given two forms 7 and £ in A(P), then n A & denotes their
wedge multiplication. The exterior derivative of n € A(P)
will be denoted by dn. Note that the graded algebra A(P),
as well as their homogeneous elements Ay (P) of degree k,
have a structure of C*°(P)-module.

A smooth codistribution J is a C°°(P)-submodule J C
A1(P). Let p € P be a regular point of J and take a local
basis {n1,...,9r} where {m(q),...,n(q)} are IR-linearly
independent covectors for all ¢ in some open neighborhood
U of p. Denoting two different local basis around p by col-
umn vectors 5 and 7, it is easy to verify that, for some open
neighborhood V of p, 7 = Mn where M is a matrix with
elements in C'°°(P) such that M(q) is nonsingular for all
qevV.

It is worth recalling that one may regard the exterior differ-
entiation operator d as a map d : A1(P) — A2(P). Associ-
ated to a codistribution is the submodule S(J) C A2(P) de-
fined by S(J) = spanceepy {n A& [ n € A(P) and £ € J }.
Ax(P)

The quotient module plays an important role for

S(T)
us and this will be clear very soon. By simplicity, we
denote the elements of 1\52((}3)) by (¢ mod J), instead of
(¢ mod S(J)). Note that (¢ mod J) = (6 mod J) if and
only if = 6+ > a1 A& for convenient 1-forms n; € J
and & € Az(P). Given a smooth codistribution J, define

themapd:JH%%lbycin:dnmodJ. It is easy to

show that ci(ozlm + agne) = ozlci(m) + ozzci(nz). In other
words, d is a morphism of C'°(P)-modules. The kernel of

the morphism d : J — 1\52((}3)) is a C°°(P)-submodule of J

and so is a smooth codistribution, which is denoted by .J.
It follows that

J = spangee(py{w € J|dw mod J = 0}. (2.1)

Note that, by the Frobénius theorem, a nonsingular codis-
tribution J is integrable if and only if it is involutive, ¢.e. |

J=J.

Let p be a nonsingular point of a codistribution J and let
the pointwise linearly independent one forms {n:,... g}
be a basis for J in an open neighborhood U of p. Let
N1,y 0k, Mkt1, - - -, s} be a basis for T*U for some open
neighborhood U of p. Note that

B={nnAnjliel[s], i<j<Lo}

is a basis for A5(U) (as a C°°(U)-module). So we can locally
write :

k b b b
dnp =2 > alminni+ D> > Biminn (p € [k])
i=1 j=i41 i=k+1j=i+1
(2.2)

f and Bf] are convenient smooth functions and

]
equation (2.2) corresponds to the expression of dn, in this
basis. Note also that

where «

B={mAnmodJ|ic{k+1,.. .6}, i<j<é} (2.3)

is a basis for % Hence, for each p € |k] we can repre-

sent cinp in this basis by column vectors 37 for p=1,...,k
with elements obtained from the functions Bf] of equation

(2.2). We can also construct a matrix 3 = [8} ... 3] formed
by the column vectors 37, for p = 1,..., k. Note that g is

a matrix with C7?_, rows and k columns that represents

the morphism d : J — ASQ((JU)), ie  ifw= Zle a;n; € J,

then dw when represented in the basis (2.3) is given by the
column vector Ja, where a = (ai,...,a;)?. In particular,
w € J = kerd if and only if

Ba =0. (2.4)

Giving a submodule S of A(P) and p € P, S(p) denotes the
IR-linear subspace of A,(P) giving by span i {{(p)|¢ € S}.
In particular, if J is a codistribution, J(p) denotes the sub-
space of TP giving by span i {w(p)lw € J}.

For every p € P, let J()(p) be the subspace of TP given
by

J(l)(P) = spanp{w(p) | w € J, such that

dw(p) mod J(p) = 0}. (2.5)

where dw(p) mod J(p) denotes the canonical projection of
dw(p) in S?j—%. In other words, dw(p) mod J(p) = 0 if
and only if dw(p) = me“e n; A& |p for convenient 1-forms
n; € J and € € Ax(P).

It 1s now clear that, if the rank of 3 is locally constant
around some p € P, then p is a nonsingular point of J(1)



and dim J(M)(q) is equal to dimker 3(q) for ¢ in some open
neighborhood of p. Note also that .J is involutive if and
only if 3 =0.

The rank of the matrix 5(¢) in a point ¢ € U does not
depend on the particular basis n = {m,...,ns} for T*U
chosen, since a different choice of basis, say 7, will produce
a matrix 3 = ABB where A(p), B(p) are nonsingular for
p in an open neighborhood of ¢. So the matrix g is “an
intrinsic” object.

It is easy to show from equation (2.4) that, if ¢ is a regular
point of J() then, for any p in an open neighborhood V'

of ¢, we have J(1) = gpan {w(p)|w € j} In other words,

apart from singular points of J(!), the equations (2.1) and
(2.5) define the same codistribution.

The following useful result is known as “Cartan Lemma”
((Warner, 1971), p.80 ex. 16). Let wy,...,w, € A1(P) be
independent pointwise. Assume that there exist one forms
M, ...,1, such that Z:Il n; A w; = 0. Then there exist
functions a;; € C™(P), with a;; = aj;, such that n; =
Z; Laijw; (i =1,...,r). The same result is also valid
pointwise, .e. , Y i_, 7 Aw; |, = 0 implies that 7;(p) =

Z Lawi(p) (i=1,...,

r) for convenient a;; = a;; € IR.

3 Linear Systems

We open this section by showing that we can always con-
struct a decomposition of linear control system in the con-
trollable and noncontrollable subsystems in such a way that
the influence of the noncontrollable subsystem in the con-
trollable subsystem can be canceled by a convenient static-
state feedback. This result can be deduced from theorem
4.1 of (Morse, 1973) when C' = 0. However, it seems inter-
esting to give an elementary proof of this fact.

Theorem 1 (Pereira da Silva, 1996b) Given a linear sys-
tem (A, B) which is not completely controllable, there ex-
1sts a similarity transformation T and a regular static-state
feedback uw = Fx + Guv, where G is a nonsingular square
matriz, such that

“YA+ BT = (AO“ AOZZ) (3.1a)
T-'BG = (%) (3.1b)

where the pair (All,él) is controllable and is in the
Brunovsky canonical form (Brunovsky, 1970).

Proof. Let B = {ri,...,r;} be a basis® for R =
Im [B AB.. .A”_lB] and complete this basis to a basis
By = {ri,...,7,...,21,...,&p—p} for the entire state
space X. It is well known that, when written in the ba-
sis By, the pair (A, B) is of the form (1.1a)-(1.1b) and
the pair (AH, Bl) is controllable. Up to an application of

3Recall that R is feedback invariant (Wonham, 1985).

a convenient regular static-state feedback, we can assume
that this pair 1s in the Brunovsky canonical form ¢.e. |, the
equations of the system in a new basis are of the form (see

(Brunovsky, 1970)) :

4= oz a2 jelm—1]  (32a)
’é/i, = Ozmzm-l_l =+ v; (32b)
Z.'m+1 = fizzzm-l_l (32(3)

T
where i € |m], z = ((zl)T, .. .,(zm)T,(zm‘l'l)T) Is the

state vector, z' = (z},..., th)T € R ie |m], zmt €
RO=F) v = (v1,...,0,)7 is the input, and oz§ € Rix(n=k)
J € | ks ] are convenient row vectors.

Let &} = 24 and set €§+1 = 5]2 for ¢ € [m] and j € |k; — 1].
Denote the vectors (€1, .. .,ffh)T by & for i € |m] and set
gmtl = ;m+L Then using (3.2a) and (3.2¢) it is easy to
verify that

&=z + 82" e k] (3.3)
for convenient row vectors 6]2 € R**("=%) and i € [m]. By
the definition of the 5]2 s, from (3.3) with j = x; and from
(3.2b) and (3.2¢), we can write for ¢ € [m] :

€ = &, ielm—1] (3.42)
= it gy, (3.4b)
it = Ayt (3.4c)

for convenient row vectors ¢ € R'*(»=%) and i € |m].

Let T € IR™ "™ be the square matrix such that & =
T T as
Tz where £ = ((f Yo, (€M), (€Mt ) and z =

nT m\T m+1\T T
((z Yo (2™ (2™ ) From (3.3) and from the
fact that £+ = 2™+ it is clear that the matrix 7 is block
triangular and the blocks of the diagonal are identity matri-
ces of adequate dimension. In particular, 7" is nonsingular.
The proof may be completed by noting from equation (3.4b)
that the static state feedback v; = —v*¢™*! + v, i € [m],
where v = (v1, ..., vm)T is the new input, furnishes a closed

loop system with state £ and ouput v of the form (3.1a)-
(3.1b). ]

The theorem 1 may be restated using the terminology of the
geometric approach of (Wonham, 1985), in the following
form :

Corollary 1 (Pereira da Silva, 1996b) Let (A, B) be a
noncontrollable linear system and denote its state space by
X. Let R =ImB +ImAB + ...+ ImA" 'B. Then there
exists an (A, B)-invariant subspace R such that ¥ = ROR.

Remark 1 In the module-theoretic approach of Fliess
(Fliess, 1990), (Fliess, 1994), a time-invariant linear sys-
tem is by definition a R[%]-module A. Since A is a prin-
cipal tdeal domain, it can be decomposed as a direct sum
A= LT where L is a free module and T s a torsion



module. The submodule L plays the role of its controllable
subsystem and T the noncontrollable one. The direct sum
of this decomposition means that L and T are completely
ndependent from each other. So this can be considered
as a very elegant version of the theorem 1 under endoge-
nous feedback transformations (Fliess et al., 1995b), (Fliess
et al., 1992). However, some extra work, already done in
the proof of theorem 1, is necessary to show that the same
result is valid when one considers only the class of regular
static-state feedback transformations.

Remark 2 A system is controllable if and only if it does
not have conservation laws® (see (Fliess et al., 1993)).
Note that every noncontrollable nonlinear system of the
form (1.1a)-(1.1b) have conservation laws of the form w? =

e~ At 2 Iy fact, since e_A”tfizz = fizze_‘&”t note that
dw? = 0. Note also that the transformation w = T(t)z

dat
wt I 0 21
w? - 0 o= Azt P

such that :
can be constdered as a time-varying similarity transforma-
tion. We can write

u';l = finwl + 1‘1126A22tw2 + Blu (35&)
W o= 0 (3.5b)

We will show that a general nonlinear system can be always
decomposed in similar way.

4 The Partial Linearization Problem

A (time varying) nonlinear system is a set of differential
equations of the form®

i = 1
z; (1) Filt, (), .. zn(t),u®)), i€ |n]

where f; : IR x X x U — IR are smooth functions of the
state x(t) = (21(2), ..., #a(t)) € X and the input u(t) =
(u1(t),...,um(?)) € U = IR™ for i € |n]. For simplicity,
we shall consider that the state x(t) = (1(t),...,2za(1))
evolves in® an open subset X' of IR".

(4.1)

Let M = Rx X and N = IR x X x U be smooth manifolds
with canonical coordinates given respectively by (¢,#) and

(t,z,u). Let f be the Cartan field on A given by
5 +Zfz'(t,l‘,u)x— (4.2)

By definition, {dt, f} = 1. Now, let # : N +— M be
the canonical projection. Using the coordinates (¢, z,u)
for N and (¢,z) for M we have w(t,z,u) = (¢t,z). Let

%A conservation law here means a first integral.

5Since our aim here is to develop a canonical form under a class
of transformations, we do not care about the functional space of the
input u(-).

6Since we will develop local results, one may consider that z(t)
evolves on a smooth manifold without any problem.

p : (—€,¢) — N be a smooth curve on A'. Denote, as
usual”, (7 o p(t)).(d/dt) by 7(p(t)). Notice that the equa-
tions (4.1) corresponds to the differential equation given by
7(p(t)) = 7. f(p), where p € N, when written with the
same choice of coordinates for A" and M above.

Definition 1 A (time varying) state transformation is «
new local chart of M = IR x X of the form (t,z). A (lo-
cal) static state feedback transformation, or (local) feed-
back transformation for short, is a new local chart of
N = Rx X xU of the form (t, z,v) where (t,z) is a (local)

state transformation.

Note that the last definition is a notion of regular feed-
back, since (locally) there exists smooth maps u = «(t, z, v)
and v = B(t,z,u). The differential equation #(p(t)) =
7. f(p(t)), written in the coordinates (¢,z,v) for NV and
(t,z) for M is called the closed loop system. For instance,
when z = 2, we have that the the closed loop system is
given by the equations

t = 1
z;(1) Filt,z1(t), .. zn (@), at, z(t), v(t)), i€ |n]
(4.3)
We stress that our notion of state feedback corresponds to
a change of coordinates of A. Hence the Cartan field f
and all the notions related to f are feedback-invariant by
definition. It is important to point out that our notions
of state transformation and static-state feedback are time-
varying and local around some operation point (¢g, zg, tg).
In particular, these definitions are also local in time.

We are now able to state our version of the the problem of
exact linearization :

Definition 2 (Partial Linearization Problem — PLP) Giv-
mg a nonlinear system, the PLP is the problem of finding
a local feedback transformation (t, (w,z), v) in a such «a
way that the closed loop system, locally around an opera-
tion point (o, xo, ug) be of the form :

= 1

Allw(t) + Bl U(t) + Bzy(t)
Azz(t, Z(t))

Alz(t, Z(t))

w(t
Z(t
y(t
where (w(t),z(t)) € R, v(t) € R™, y(t) € R*, A1 By
and Bs are real matrices of convenient dimensions®, the

pair (A11, B1) is controllable and Ayo and Asa are smooth
mappings depending ont and z.

(4.4)

S e e kel
|

Note that the equation 2(¢) = Asa(t, 2(¢)) plays the role of a
(perhaps nonlinear) noncontrollable subsystem. The vector
y(t) can be considered as an output of the noncontrollable
subsystem and as an input for the linear subsystem.

TSee def. 1.41, p. 35 of (Warner, 1971).

8 There is no loss of generality, by choosing s = n, if one considers
B> equal to the indentity matrix.



5 Solution of the PLP — time varying sys-
tems

It is well known from the literature that the derived flag is
a geometric invariant of a nonlinear system that is closed
related to the exact linearization problem. The derived flag
is a sequence of smooth codistributions on A that can be
defined in the following way”.

1Y = gpan {f}* (5.1a)
1 = 1Y Agpan {dt, dz} (5.1b)
[(i)(p) = span {w(p) c I(i_1)|w c 7141 and

dw(p) mod I(i_l)(p) = 0} i>1. (5.1¢)

Note that equation (5.1¢) corresponds to the successive ap-
plications of (2.5) with J = I~ and J() = 1) Note also
that (=1 is of dimension n + m, since is has codimension
1 and the manifold A is of dimension n + m + 1. Further-
more it is clear that for any function 6 in C*(A), then the
l-form w = (df — L6dt) is in I=1 . Hence it is easy to
verify that

=Y = span{(da; — fi(t,z,u)dt), duj : i € [n],j €
[m]}
10 = span {(dz; — fi(t,x,u)dt) : i € [n]}

Notice that I(®) coincides with the definition of the Pfaf-
fian system derived from a given nonlinear system (Gard-
ner and Shadwick, 1992), (Sluis, 1992), (Tilbury et al.,
1995). We stress that, by definition, 7(:+D < 10) Tf
the codistributions I*) are all nonsingular for ¥ € IN,
then there exists some N, called the holonomy index, such
that /(N) = J(N+1) " The codistribution I™V) is called the
bottom derived system and it is easy to show that V)
is the maximal involutive codistribution contained in I(®).
If I™V) = 0, the system is said to be mazimally nonholo-
nomic. In this paper we will consider the case where IV) is
non trivial, 7.e. , the system is not controllable!? (Aranda-
Bricaire et al., 1995), (Tilbury et al., 1995).

The system is said to be well formed if all the inputs affect
the system independently, i.e. , that % has rank m where f
is the column vector of functions f; of (4.1), that represents
the Cartan field written in coordinates. It is easy to show
that this 1s equivalent to say that

span {dt, dz;, df; - i € |n]} = span {dt} + I'=Y  (5.2)
or equivalently!!

1O 4 1100 = =1 (5.3)

9Here we give a geometric definition that is slightly different from

the one given in the literature. Note that span {f}J‘ denotes the
kernel of the morphism of C'°° (A')-modules a : T*A — C°°(N) such

that a(w) = (f,w), and hence 1s a codistribution.

10Since (M) is involutive, locally around its regular points it is
spanned by exact covector fields {df; : « = 1,...,k}. Since, IN) ¢
=10 = span{f}J‘ we have (d6;,f) = 0 for ¢ = 1,...,k. Hence
9.1' = (db;, f) = 0 and so the system cannot be strongly controllable
because 1t possesses a nontrivial conservation law (Fliess et al., 1993).

11 The equation obtained from (5.3) by summing, in both sides, the
codistribution span {dt} is easily seen to be equivalent to the equation

(5.2). After that, one obtains (5.3) by observing that LfI(_l) c 1(=1
and I~V Aspan {dt} = {0} (seelemma 1, part (ii) in the Appendix).

If we assume that the matrix B; in the equation (4.4)
has full column rank m, it follows easily that (4.4) is well
formed. So we shall assume, without loss of generality that
the system is well formed, since 1t is a necessary condition
to solve the PLP.

We can assume that, after some feedback transformation,
the pair (A1, B1) in the equation (4.4) is given in a
Brunovsky canonical form, i.e. , this system can be rewrit-

ten in the form!?
=1
wéu = wé,z’k + ‘%,z’k(t’ z)
Wy = Wi+ ok, (1 2) (5.4)
e = e+ 00T 2)
z= .Azz(t, Z)

where k € |N] and i, € |s5_p| for some integer N for

which ch\le sg_, = m and the integers s5_, > 0. Com-
puting the derived flag for the system (5.4) is a tedious but
straightforward work and it is easy to verify that

span {dt} + TN+ = span {dt,dz} , r>0
span {dt} + =" {dt, dz, dwi o | ke r],

ik € [sy_yl,j € lr—k+11},
0<7°§N

In particular the codistributions span {I(k), dt} are nonsin-
gular and involutive for all ¥ € IN. These are in fact the
necessary and sufficient conditions for the solution of the

PLP.

Theorem 2 The PLP is locally solvable around an op-
eration point (tg, xg,ug) if and only if the codistributions
span {I(k), dt} are nonsingular and involutive for allk € IN
in some open neighborhood of (1o, o, ug).

To prove the theorem 2 we need some auxiliary results that
are presented in the following proposition. For convenience,
their proofs are deferred to the Appendix.

Proposition 1 Under the conditions of the theorem 2, we
have :

(i) For allk € IN there exists a set of pointwise independent
covector fields {w1, ..., wy, } where w; = (df; — L;6;dt),
with 0; € C®(N), such that we locally have I*) =
span {wi, ..., W, }-

(i1) If w is of the form (d0 — L#0dt) for a function 6 €
C(N), then w € TR+ if and only if Lyw € I*). In
particular %) o 7+ 4 ij(k+1)’

(iii) Let {w1,...,w,} C I*=YD be a set of 1-forms such
that w; = (d0; — L¢0;dt), where 0; € C*°(N). Assume

12 The choice of the notation used to represent the Brunovsky canon-
ical form here is compatible with the one of the proof of theorem 2.



that the set {wi(p),...,wr(p)} is linearly independent'®
mod I®)(p). Then {Lywi(p),...,Lyws(p)} C T1+=2)(p)
is linearly independent mod I*=1(p).

Proof. (Of theorem 2 ) We need only to prove the suffi-
clency.

Let N € IN be the smallest integer such that 7(¥) = [(k+1)
for all & > N. Since span {I(N),dt} is involutive, by
the Frobenius theorem there exists a set of functions z =
(z1,...,21) C C*(N) such that {dzy,...,dz,di} is a basis
for span {I(N), dt}. By proposition 1 part (i) we have that
the set

By = {dZZ — szidt | 1€ I_l—|}

is a basis for IV). By proposition 1 part (i), note that
Li(dzi — Lyzdt) € IW) = TW+D - Then, dL;z €
span {I(N), dt} and we can (locally) write

G = Abo(t, 21, ..., 1)

i, defined on an open
neighborhood of (tg, g, up). By proposition 1 part (i), we
can complete the set By to a basis By_1 for TV=1) of the
form

for convenient smooth functions

By_1 = {(dzZ — szidt), (déul — Lfglyildt” 1€ I_l—|,
i1 € [sn-1l}

By proposition 1 parts (ii) and (iii) it is clear that the set

{(dzZ — szidt), (déul — Lfglyildt), (degl,il — L%Hlyildt”
i€ ], € [sy-al}

is in 7V=2) and is linearly independent. So, by proposition
1 part (i), the last set may be completed to a basis

BN_2 = {(dzZ - szidt), (déul — Lfglyildt),
(dL ;01 — L3015,dt), (dbs,;, — Ly03,,dt)]
ie|l], i € [sn=1],i2 € [sv=2]}

for IN=2)_ Continuing in this way, we will construct in the
r-th step a basis for IV=") of the form

BN—r = {(dzZ - szidt), (dLif_lgkyik — L?Hkyzkdt”
i€ (k€ [, ix € lsnmil g € lr— k+11)
In particular, it follows for » = N that dimI®) = [ +
SN (N —k+1)sy_g. Note that L;(df — L;0dt) € 1=V
for any smooth function 8. Hence, from the equation (5.3),
we conclude that

- = span{ By, (dLjy_k'I'lHkyik — Ljy—k'l'z@kyikdt),
ke [NTix € [snv-rl}
(5.6)
where By is a basis for (%) of the form (5.5) forr = N. On
the other hand the set

{(dLjCV_k-Hgkyik — Ljy_k-l_zgkyikdt),k € I_N—|,Zk € I_SN—k—|}

13 The linear independence of the set {w1 (p), . . . ,wr(p)} mod I (p)
for some p € N means that (22—1 a;wi(p) + w(p))| =0forw € I(®)
- r
and o; € IR implies that w(p) = 0 and o; = 0.

must be independent mod I(®), otherwise, by proposition
1 part (iii) the set

{(dL;V_kgkylk — L?I—k-l—l@kyikdt),k € I_N—|,Zk € I_SN—k—|}

which is a subset of By, would be dependent mod IV,
We conclude that the set on the left hand side of equation
(5.6) is a basis for (=), In particular we have dim I-1) =
dim 19 + ch\;l sy—p Since dim I = n and dim I(=1) =
n + m, we conclude that ch\;l sy—r = m. Now define the
set of m (input) functions

v = {Uk,ik | Vi ip = L?I—k-l—l@kyik ke I_N—|,Zk € I_SN—k—|}
and the set of (state) functions (w, z), where

w = {wi = L?t_lgk,ik ke I_N-|,

)2

iy € sn—k],j €N —k+1]}

and z = (z1,...,21). By construction of By (see eq. (5.5)
for r = N) it is clear that the functions (¢, (w, z)) form a
new local chart for M and the functions (¢, (w, z),v) form
a new local chart for A'. So, these local charts define a
regular static-state feedback transformation and in these
coordinates the system (4.1) reads :

i=1
w%zk = wl%,ik
Wiy = Wi .
" ke N i € [snk]
wé\ji_kk-l_l = Uk
ZI'I.AQQ(t,Z)
(5.7)
Od

Note that, if the PLP is solvable, the equation (5.7) means
that the influence of the noncontrollable subsystem (repre-
sented by the functions (bi’ik(t, z) in equation (5.4) or the
map Aja2(t, z) in the equation (4.4)) can be removed by a
convenient choice of a static-state feedback transformation.

Example 2 Consider the equations of spacecraft attitude
control (Nijmeijer and van der Schaft, 1990), (Crouch,
1984) :

A = AS(w) :
Jw = —S(w)Jw+u (5.9)

where A(t) is a 3 x 3 matriz with row vectors given by a; =
(a;,,aiy,ai5) i € {1,2,3}, J is the inertia matriz, which
is symmetric and positive definite, w = (wl,wz,W3)T is
the angular velocity, u € IR® is the input (control torques),
and S(w) is the skew-symmetric matriz

0 — w3 w2
S(w) = w3 0 —
— W w1 0

Note that £(AAT) = AAT + AAT = AS(w)AT +
AS(m)T AT = 0. Hence, if the initial condition A(tg)

is an orthogonal matriz (this is true for the real problem



of attitude control), then A(t) will be orthogonal for all
t > tg. Let us consider the equations (5.8) — (5.9) from
a formal point of view, i.e. , we will not assume that the
initial condition A(tg) is orthogonal. So the state vector
is (a1,,...,as,, ™1, w2, @3), being of dimension 12. Let
nij = aia; T i€ {1,2,3},j€{1,...,i}. Note that 1 = 0.

Calculating the derived flag for this system one obtains

19 = span {(da;, — a;,dt), (dw; — w;dt)]i, j € {1,2,3}}
1M = span {(da;, — a;,dt)| i,j € {1,2,3}}
I® = gpan {dni; |1€{1,2,3},€{l,... i}}

73

Generically (for every point for which A is nonsingular),
we have dim 19 = 12, dim IV = 9, dim I®) = 6. Fur-
thermore we see that the distributions span {I(k),dt} are
spanned by exact covector fields and hence are involutive.
From the proof of theorem 1, equation (5.7) and from the
fact that dim I = dim I(Y) + chvz_l’“(]\f —k+ U)sy_p we
see that s1 = 3 and s2 = 0 and so, around any point such
that A is a nonsingular matriz, this system has a canonical
form given by

1

=
w
w

7ij

Remark 3 '* Erample 2 may be considered using the dif-
ferential algebraic approach of Fliess (Fliess, 1989). In fact
letk = IR be the ground field and consider the system (5.8)-
(5.9) denoted by K /k. Denote by L the subfield of K formed
by the elements that are differentially algebraic over k. The
elementsn = {n;;, (1 =1,2,3, j=1,...,40)} are in L. Fur-
thermore, 1 is a (nondifferential) transcendence basis for
L /k. Since L is not algebraic over k, it is clear that the
system K [k is not flat (Fliess et al., 1992), (Fliess et al.,
1995b). However if we take k = k(n) as a new ground
field, then IC/E 15 a flat system. In fact, from the equation
AAT = it is easy to show that we can choose three ele-
ments «y, oo, ag of the matriz A in a such way that all the
other elements can be determined from n and oy (this is a
stmple problem of Fuclidian Geometry since the matriz n
contains the information of the lenghts and angles between
the row vectors of A). After that, it is easy to show that
a1, a9, as 1s a flat output of the system K/R.

i€ {1,2,3) (5.10)
0 cie{l,2,3}, e {l,...,i)

N.MN.H
[

6 Solution of the PLP — time-invariant sys-
tems

For time invariant systems, i.e. , systems of the form (4.1)
for which the functions f; do not depend® on ¢, then it is
easy to show that, if the PLP is solvable, the state transfor-
mation and the state feedback that solve the PLP are also

14 The subject of this remark is based in a conversation between
Michel Fliess, Michel Petitot and me in the Laboratoire des Signaux
et Systémes CNRS — Gif-sur-Yvette, France in 1995.

Blet 7: RX X xU — X x U be the canonical projection. Then
f is time invariant if and only if f is 7-related with some field f on

X xU.

time invariant (and in particular are not local in time). This
means that there ts no gain in generality of secking time-
varying solutions for time-invariant systems. Although this
i1s not surprising, let us sketch the proof of this fact as a
corollary of our previous results.

Examining the proof of theorem 2, it is easy to see that it
suffices to show that the functions #; of proposition 1 part
(i) are such that df; € span {dz}. In fact we only have to
prove the following result :

Proposition 2 Assume that the system (4.1) is time-
wmvariant. Then, under the conditions of the theorem 2,
for all k € IN there exists a set of pointwise independent
covector flelds {wi,... ,wy, } where w; = (df; — Ly6;dt),
0; € C(N), span {db;} C span {dz} and we locally have
I®) = span {wy, ..., wp, }

Proof. Assume that this is true for k, e , I") =
span {df; — Ly6;dt | i € |ri]}, and df; € span{dz}. As
dL;6; € span {dz,du}, in order to compute a basis B =
{wi|i=1,... 741} for I*+D we must solve the equa-
tion (2.4) in the case where the components of 3 are time
invariant. Hence we can construct a basis B in such a way
that

x
W; = Zalj(dﬁj - Lfgjdt) (61)

ji=1
where a;; are time invariant smooth functions, t.e. , da;; €

span {dx, du}.

Now define the canonical insertion ¢4 : X xU — IRxX xU =
N such that y(z,u) = (t,z,u). As the “pull back”
¢ 0 AN) — A(X X U) is a map that commutes with
the exterior derivation d (see proposition 2.23 of (Warner,
1971)), it follows that it maps involutive codistributions
into involutive codistributions. By construction, for all
§ € X xU we have that |, () : T;:(@N = TE (X x U)
is a linear mapping with ker:[, ) = span{dt}|,. So,
by lemma 1 part (ii) it is easy to show that ¢ maps
(~I(k+1) + span {dt}) into a nonsingular codistribution. Let
T+ = (141 Lspan {dt}). Tt follows that T(5+1) is in-
tegrable. Since we have a basis for I(*+1) of the form (6.1)
with da;; € span {dz,du} and d6; € span {dz}, it follows
that I(*+1) < gpan {dz} and I(:+1) is time invariant, i.e.
T+ = i, (I*+D 4 span {dt}) = ¢ (I*+1) 4 span {dt})
for all ¢1,t2 € IR. By the Frobénius theorem, there exists
smooth functions 4;, (¢ = 1,...7441) such that we locally
have I(*+1) = span {d’yl, .. ~ad'~Yrk+1}~ Let 7: RxX xU —
X x U be the canonical projection. Let v, = 7"9; =4, o 7.
Then it is easy to show that {d'yi, oY s dt} is a local
basis for (I#*+1) 4-span {dt}). The application of the idea of
the proof of proposition 1 part (i) shows the desired result
for k + 1 and this finishes the proof. a

7 Controllability and conservation laws

As claimed in the remark 2 of section 3, a reasonable def-
inition of controllability is to say that a system does not
possess any conservation law (Fliess et al., 1993).



Assume that a system is given in the form of its
state representation (4.1). A conservation law is a
function ¢(t, 2, u,a,...,u®)) such that %q/) = % +
Sy 2L fit e u) + Y Y LEul+) = 0 for any
admissible trajectory of the systeml. Assuming that the
inputs are differentially independent, which is a quite nat-
ural asumption (Fliess et al., 1993), (Fliess, 1989) it is not
difficult to show that there is no conservation law depend-
ing on the input u or on its derivatives of any order. Hence,
any conservation law of a system in the form (4.1) is a func-
tion ¢(¢,z), depending only on time and state. The next
proposition shows that the codistribution I™¥) is spanned
by the differentials of the conservation laws.

Proposition 3 Consider a system (4.1) for which TN) of
section 5 1s well defined and is nonsingular. Then, the func-
tion ¢ is a conservation law for the system 4.1 if and only

if dg is in IV,

Proof. Since IN)  1(=1) = gpan {f}J', then if d¢ € I
we see that ¢ = (d¢, f) = 0. Now assume ¢ = Lo = 0
Then by proposition 2 part (iii) it follows easily that d¢ =
d¢ — Lydt is such that d¢ is in IU) for j = 0,1,2,.... In
particular d¢ € ™). As I(V) ig integrable, it follows that
it 1s spanned by the differentials of the conservation laws.
O

Proposition 4 Consider a system (4.1) for which TN) of
section § is well defined and is nonsingular. Then there
exists a local state transformation (¢, (21, z?)) in a way that
the system written in these coordinates reads

t = 1
() = gl A1), 220, () (1.1)
2 = 0

Furthermore there is no conservation law depending on z'.

In other words, for each initial condition 23 = z%(tg), the
system
t =1
(1) g(t, 21 (), =, u(t))

15 controllable.

(7.2)

Proof. By the last proposition, there exists a set 22 =
{z3,...,z7} of conservation laws in a way that I =
span {dz%, cey dzlz} We can complete, by choosing a con-
venient subset ' = {x;,,...,®; _,} of the state functions,
the set {dt, dz%} to a basis {dt, dz%, dz'} of span {dt,dz}. Tt
is clear that (, 21, 2%) is a local state transformation having
the claimed properties. a

Remark 4 Applying the proposition 4 to any autonomous
system £(t) = A2 (¢, £(1)), one can always find a state-
transformation (1, z) such that the corresponding equations
are of the form z = 0 In fact, it is easy to see that, in this
case 1) = I%) qre involutive and nonsingular for all k €

IN . Applying this tdeas to the noncontrollable subsystem
of (5.7), if the PLP is solvable, we obtain a canonical form
given by

i=1

w%zk = wl%,ik

Wi — Wiy )

k€N, ix € |sn—k]
wif\ji_kk-l—l = Uk
z =
(7.3)
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8 Appendix - auxiliary results and proofs

Lemma 1 For any integer k > —1 and p € N, we



(i) (I®) +span {dt}) |p NIY(p) C I8 (p).
(i) 10(p) 1 span {dr}], = {0)

Proof. (i) Let w(p) € (I'®) + span {dt})|pﬁ[<‘1)(p). Then
w = w(p) + Bdt|, where @ € I*) and 8 € C=(N). Then
(w, Hlp = (@, )|y +5(dt, f)|,. Since (dt, f) = L and I*) C
I = gpan {f}J', it follows that B(p) = 0 and hence
w(p) = w(p) € I")(p).

(ii) Let w(p) € T™) N span {dt}. Hence w(p) = B(p)dt. So
{w, Nlp = Bp) = 0. =

Proof of proposition 1.

Part  (i). By the Frobénius theorem we see that
span {I(k), dt} is spanned by some linearly independent 1-
forms {d¢,dfy,...,d0,, }, where §; € C(N) are conve-
nient functions. Note that w; = (df; — Ls6;dt) € =1,
From lemma 1, it follows that w; € 1), Since I*) ¢ [(=1)
and TC=Y Aspan {dt} = {0} we see that dim I*) = ;. To
complete the proof of (i) it suffices to show that the set
{wi,...wg} is linearly independent pointwise. In fact, as-
sume that Z:il a;(d; — L;0;dt) = 0 in some p € N'. This
implies that the set {dt,d#f, ..., df,, } is linearly dependent
at this point.

Part (ii). We show first that we have

dw(p) mod I(k)(p) = - wa/\dt|p mod I(k)(p) (8.1)

for all p € N. For, by (i), note that w = > %, a;(df; —
L;0;dt) for convenient functions oy, 6; € C*°(N). So,

dw(p) mod I'®)(p) = [0k doy A (db; — L;6;dt)—
aidLgf; A di]|, mod I*)(p)

Note that da; A (d6; — Lfﬁidt)|p mod I(k)(p) = (. Hence,
dw(p) mod I™)(p) = S0 —a;dL;0; A dt|p mod T*¥)(p).
Now observe that
Lf(.d Adt = Lf [Z:il Ozl(dgl — Lfgldt)] A dt
= [Z:il Lfozi(dﬁi — Lfgldt)] A di+
(D75, ouldLp0; — (Lp0i)d Lyt — (L30;)dt]} A dt.

Since [>_05, Lya;(df; — Ly6;dt)] |, € I*)(p), we see that

> Lyai(df; — Ly0;dt)] Adt| mod I (p) = 0.

i=1 p

As dL;t =d(1) =0 and L?Gidt A dt = 0, we conclude that
(8.1) is true.

Now we will show that

w(p) € I**+D(p) if and only if

Ljw(p) € span { 1) dt} (p) for all p € N. (8.2)

For this, notice that, Ljw A dt|p mod I*)(p) = 0 means
that Ljw Adit|, + ok Aw; |, = 0 for convenient 1-
forms n; and w; = (df; — L;6;dt), as in (i). Since
{dt,w; 1€ {1,...,rp}} is a basis for span {I(k),dt}, from
the Cartan Lemma (see section 2), we conclude that

L;w(p) € span {I(k), dt} (p). Then, (8.2) follows from (8.1)
and equation (2.5) for J = I®) and JO) = [k+1),

If w =df — L;0dt then Ljw € =Y. By (8.2) and from
lemma 1 part (i), it follows that Lyw € I To complete
the proof of (ii) it suffices to note that, by (i), I**+1) has a
basis of this particular form.

(iii) We show first that

The set {Lfwi(p),...,Liw,(p)} C span {I(k_z), dt} (p)
is independent mod span {I(k_l), dt} (p).
(8.3)

For this, assume that there exists w in I*=1) and functions

a; € C°(N) such that, for p € N :

=0

P

(w4 apdt + Z o; Lpw;)

i=1

Hence

r

{lw = (Lrao)wi] + aodt + L (Y~ aiws)}

i=1 i=1

=0

P

Since [w — Si_ (Lray)w](p) € I*=1(p), it follows that
Le(>Ti aiwi)|p € span {I(k_l),dt} (p). Tt follows from
(8.2) that (3i_, aw;)(p) € I*®)(p) and hence the set
{w1,...w,} is not linearly independent mod I*) in p € N/
To conclude the proof, note that (iii) is a straightforward

consequence of lemma 1,the condition (8.3) and from the
fact that L;(df; — L;6;dt) € 71, 0



