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Abstract

This paper considers explicit systems with an output η = (z, y), where
z and y are subvectors of η. One may be interested in controlling the
output z independently of the behavior of y. Following this idea, the
problem of relative-decoupling is introduced. The Relative Dynamic Ex-
tension Algorithm (RDEA) is presented, and it is shown that it computes
some geometric invariants, namely, the relative structure at infinity of
z, which governs the solvability of the relative-decoupling problem. A
generalization of the notion of zero dynamics arises and, when this zero
dynamics is absent, the output z is said to be a relatively flat output. It
is shown that the dimension of the state of the generalized zero dynamics
can be easily computed from the (generalized) structure at infinity. In
particular, this furnishes a test for verifying if z is a relatively flat out-
put. When one adds the constraint y ≡ 0, then the system becomes a
Differential Algebraic System (DAE). In this context, relative-decoupling
and relative-flatness of the explicit system implies respectively, decoupling
and flatness of the corresponding DAE. In particular, the RDEA may be
used for computing dynamic feedback for decoupling and/or linearizing
implicit systems.
Keywords. Structure at infinity; nonlinear control systems; implicit sys-
tems; DAEs; differential geometric approach; diffieties; decoupling; flat-
ness; feedback linearization.
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1 Introduction

The aim of this paper is the generalization of the concept of the structure at
infinity for a class of nonlinear systems, introducing the relative structure at
infinity. The approach considered here is mainly based on the approach of
(Fliess et al., 1999) and on the results of (Pereira da Silva and Corrêa Filho,
2001; Pereira da Silva and Watanabe, 2002). This work is strongly related to
some ideas of (Fliess et al., 1995; Liu and Čelikovský, 1997).

In order to motivate the problems that are studied in this work, consider the
following example.

Example 1 Let S be an explicit system with state x(t) ∈ IR6, input u(t) ∈ IR4

and output (z(t), y(t)) with z(t), y(t) ∈ IR2 given by:

ẋ1(t) = u1(t) + u3(t) ẋ2(t) = x3(t)u1(t) + u4(t)
ẋ3(t) = u2(t) ẋ4(t) = u3(t)
ẋ5(t) = x6(t)u3(t) ẋ6(t) = u4

z1(t) = x1(t) z2(t) = x2(t)
y1(t) = x4(t)− t y2(t) = x5(t)

Assume that one wants to control the components of z independently of the
components of y. It seems reasonable to use the Dynamic Extension Algorithm
(DEA)1 for the output y, in order to decompose the input in two subvectors such
that, the first one controls the components of y, and the remaining components
may be used to control z. Computing the step 1 of this algorithm, one gets,
ẏ1 = u3 − 1 = ȳ

(1)
1 and ẏ2 = x6u3 = x6(1 + ȳ

(1)
1 ), which gives the static

feedback u3 = 1 + ȳ
(1)
1 and the dynamic extension ˙̄y(1)

1 = ȳ
(2)
1 . The second step

furnishes y
(2)
2 = u4(1 + ȳ

(1)
1 ) + x6ȳ

(2)
1 ), which gives the static feedback u4 =

1

1+ȳ
(1)
1

(−x6ȳ
(2)
1 + ȳ

(2)
2 ) and the dynamic extension ˙̄y(2)

1 = ȳ
(3)
1 and ˙̄y(2)

2 = ȳ
(3)
2 .

This gives the closed loop system (for simplicity the dynamic extensions are
omitted)

ẋ1(t) = u1(t) + φ1 ẋ2(t) = x3(t)u1(t) + φ2

ẋ3(t) = u2(t) ẋ4(t) = u3(t)
ẋ5(t) = x6(t)φ1 ẋ6(t) = φ2

where φ1 = 1 + ȳ
(1)
1 and φ2 = 1

1+ȳ
(1)
1

(−x6ȳ
(2)
1 + ȳ

(2)
2 ). Now note that the inputs

u1 and u2 can be used to control z independently of y. Differentiating z1 and
z2 once, one obtains ż1 = u1 + φ1 = v̄1 and ż2 = x3u1 + φ2. Consider the static
feedback u1 = −φ1 + v̄1 and the dynamic extension ˙̄v1 = v̄

(1)
1 . Differentiation

of ż2 gives z
(2)
2 = u2(−φ1 + v̄1) + x3(v̄

(1)
1 − φ̇1) + φ̇2 = v̄2. Defining the static

feedback u2 = 1
−φ1+v̄1

(−x3(v̄
(1)
1 − φ̇1)− φ̇2+ v̄2), one obtains, in closed loop with

the composite dynamic feedback, z
(2)
1 = v̄

(1)
1 and z

(2)
2 = v̄2. Disregarding the

singularity v̄1 = φ1, it seems that the components z1 and z2 can be decoupled
1This important algorithm is recalled in Section 2.2.
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independently of the behavior of y(t). The procedure above is the idea of the
Relative Dynamic Extension Algorithm (RDEA) and the results of the paper
will give a precise meaning and a geometric interpretation for this procedure.
Adding the constraint y ≡ 0, it will be shown that the corresponding feedback
solves both the decoupling problem and the dynamic linearization problem for
the corresponding implicit system.

The paper is organized as follows. Section 2 presents some preliminary
results and the class of systems considered in this work. Section 3 introduces the
RDEA and its geometric properties. Section 4 considers the relative-decoupling
problem. Section 5 characterizes relatively flat outputs. In Section 6 we study
the assertion: “relative-decoupling and relative-flatness implies decoupling and
flatness of implicit systems, respectively.” In Section 8 we state some conclusions
and some auxiliary results are proved in the appendices.

2 Preliminaries and notation

The field of real numbers will be denoted by IR. The matrix (or vector) MT

stands for the transpose of M . The set of natural numbers 0, 1, 2, . . . is denoted
by IN and the subset {1, . . . , k} ⊂ IN will be denoted by bke. We will use the
standard notations of differential geometry in the finite and infinite dimensional
case. A brief overview of the infinite dimensional approach of (Fliess et al., 1999)
is presented in Section 2.1. Some notations and definitions of Section 2.1 are
used along the paper (e. g. the definition of system S as a diffiety, and the
definition of state representation as a local coordinate system). The cardinal of
a set Z is denoted by card Z.

For simplicity, we abuse notation, letting (z1, z2) stand for the column vector
(zT

1 , zT
2 )T , where z1 and z2 are also column vectors. Let x = (x1, . . . , xn) be

a vector of functions (or a collection of functions). Then {dx} stands for the
set {dx1, . . . , dxn}. In the same vein, if xi = (xi

1, . . . , x
i
pi

) for i = 1, 2, . . .,
are sets of functions, then {dx1, dx2, . . .} stands for the set {dx1

1, . . . , dx1
p1

,
dx2

1, . . . , dx2
p2

, . . .}.

2.1 Diffieties and Systems

The aim of this Section is to introduce a brief overview of the approach of
(Fliess et al., 1999). The presentation will follow the lines of (Pereira da Silva
and Corrêa Filho, 2001).

IRA-Manifolds. Let A be a countable set. Denote by IRA the set of func-
tions from A to IR. One may define the coordinate function xi : IRA → IR
by xi(ξ) = ξ(i), i ∈ A. This set can be endowed with the Fréchet topology
(see (Fliess et al., 1999)). A function φ : IRA → IR is smooth if we locally
have φ = ψ(xi1 , . . . , xis), where ψ : IRs → IR is a smooth function. Only the
dependence on a finite number of coordinates is allowed.

From this notion of smoothness, one can easily introduce the notions of
vector fields and differential forms on IRA and smooth mappings from IRA to
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IRB . The notion of IRA-manifold can be also established easily as in the finitely
dimensional case.

Given an IRA-manifold P, C∞(P) denotes the set of smooth maps from P
to IR. Let Q be an IRB-manifold and let φ : P → Q be a smooth mapping.
The corresponding tangent and cotangent mapping will be denoted respectively
by φ∗ : TpP → Tφ(p)Q and φ∗ : T ∗φ(p)Q → T ∗pP. The inverse function, implicit
function and rank theorems do not hold in this context and the notions of
immersions and submersions are defined based on adapted coordinate systems
(Fliess et al., 1999; Zharinov, 1992).

Diffieties. A diffiety M is a IRA manifold equipped with a distribution
∆ of finite dimension r, called Cartan distribution. A section of the Cartan
distribution is called a Cartan field. An ordinary diffiety is a diffiety for which
dim∆ = 1 and a Cartan field ∂M is distinguished and called the Cartan field.
In this paper we will only consider ordinary Diffieties that will be called simply
by Diffieties.

A Lie-Bäcklund mapping φ : M 7→ N between Diffieties is a smooth mapping
that is compatible with the Cartan fields, i. e., φ∗∂M = ∂N ◦φ. A Lie-Bäcklund
immersion (respectively, submersion) is a Lie-Bäcklund mapping that is an im-
mersion (resp., submersion). A Lie-Bäcklund isomorphism between two diffieties
is a diffeomorphism that is a Lie-Bäcklund mapping. Context permitting, we
will denote the Cartan field of an ordinary diffiety M simply by d

dt . Given a
smooth object φ defined on M (a smooth function, field or form), then φ̇ stands
for L d

dt
φ and Ln

d
dt

φ = φ(n), n ∈ IN .
Systems. The set of real numbers IR have a trivial structure of diffiety with

the Cartan field d
dt given by the operation of derivation of smooth functions.

A system is a triple (S, IR, τ) where S is a diffiety equipped with Cartan field
∂S and τ : S 7→ IR is a Lie-Bäcklund submersion called time-function. The
global coordinate function t of IR represents time, that is chosen once and for
all. A Lie-Bäcklund mapping between two systems (S, IR, τ) and (S′, IR, τ ′) is
a time-respecting Lie-Bäcklund mapping φ : S 7→ S′, i. e., τ = τ ′ ◦ φ. Context
permitting, the system (S, IR, τ) is denoted simply by S.

State Representation and Outputs. A local state representation (x, u)
of a system (S, IR, τ) is a local coordinate system, ψ = {t, x, U} defined on an
open set W , where t = τ |W , x = {xi, i ∈ bne}, U = {u(k)

j | j ∈ bme, k ∈ IN}, and
u(k+1) = L d

dt
u(k), k ∈ IN . The set of functions x = (x1, . . . , xn) is called state

and u = (u1, . . . , um) is called input. As a consequence of the last definition, in
these coordinates the Cartan field is locally written by

d

dt
=

∂

∂t
+

n∑

i=1

fi
∂

∂xi
+

∑

k∈IN,
j∈bme

u
(k+1)
j

∂

∂u
(k)
j

(1)

A state representation of a system S is completely determined by the choice of
the state x and the input u and will be denoted by (x, u). An output y of a
system S is a set of functions defined on S. The state representation (x, u) is
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said to be classic if the functions fi depend only on (t, x, u) for i = 1, . . . , n.
The output y is said to be classic if y depends only on (t, x, u).

Flatness. A system is (locally) flat if there exists a (local) state represen-
tation (x, u) with x = ∅. In this case, the Cartan field is locally given by:

d

dt
=

∂

∂t
+

∑

k∈IN,
j∈bme

y
(k+1)
j

∂

∂y
(k)
j

, (2)

a particular case of (1) in which y = u is called flat output.
Differential Dimension. The number of components of the input of a

(local) state representation (x, u) of a system S is called (local) differential
dimension. The local differential dimension of a connected system is a global
invariant called simply differential dimension (Fliess et al., 1993; Pereira da
Silva, 2000).

Because a flat output y is also an input, the number of components y always
coincides with the (local) differential dimension of the system(Fliess et al., 1993;
Pereira da Silva, 2000).

System associated to differential equations. Now assume that a control
system is given by a set of equations

ṫ = 1
ẋi = fi(t, x, u, . . . , u(αi)), i ∈ bne
yj = ηj(x, u, . . . , u(βj)), j ∈ bpe

(3)

One can associate to these equations a diffiety S of global coordinates ψ =
{t, x, U}, with U as defined above, and Cartan field d

dt given by (1). In partic-
ular, in this work, a system (3) is always interpreted as a manifold S in this
way.

Endogenous feedback. In this Section we introduce a simplified notion of
endogenous feedback based on coordinate changes. This definition is convenient
for our purposes, but it is not suitable for studying feedback equivalence (see
(Fliess et al., 1999) for a notion of endogenous feedback that is an equivalence
relation between systems).

Two local state representations (x, u) and (z, v) of S induce a local coordinate
change map called endogenous feedback. If we have span {dt, dx} = span {dt, dz}
and span {dt, dx, du} = span {dt, dz, dv}, then we locally have diffeomorphisms
(t, x) 7→ (t, z) and (t, x, u) 7→ (t, z, v) called static-state feedback. The extension
of state by integrators is another particular example of endogenous feedback.
For instance, putting integrators in series with the first k inputs of the state
representation (x, u) one obtains a new state z = (x, u1, . . . , uk) and a new
input v = (u̇1, . . . , u̇k, uk+1, . . . , um). Note that the local coordinate functions
of S related to these state representations in this case are the same, but they
are joined together in a different way, giving rise to (x, u) and (z, v), which are
related by an endogenous feedback.

Subsystems. A (local) subsystem Sa of a system S is a pair (Sa, π), where
Sa is a system with a time notion τa and Cartan field ∂a, and π is a Lie-
Bäcklund submersion π : U ⊂ S → Sa between the open subset U ⊂ S and Sa.
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A local state representation x = (xa, xb), u = (ua, ub) is said to be adapted to
a subsystem Sa if we locally have

ẋa = fa(t, xa, ua) (4a)
ẋb = fb(t, xa, xb, ua, ub) (4b)

and (xa, ua) is a local state representation of Sa with state equations2 (4a).
Under mild assumptions, it is shown in (Pereira da Silva and Corrêa Filho, 2001)
that a subsystem always possesses adapted state representation.

Output Subsystem. Given a system S with output y, a (local) output
subsystem is a subsystem Y with corresponding submersion π : U ⊂ S → Y
such that π∗T ∗Y = span {dt, (dy(k) : k ∈ IN)}.

2.2 Dynamic extension algorithm

The Dynamic Extension Algorithm (DEA), well known algorithm in nonlinear
control theory, is essentially a tool for computing system right-inverses and the
output rank (Fliess, 1989; Descusse and Moog, 1987; Nijmeijer and Respon-
dek, 1988; Pereira da Silva, 1996; Delaleau and Pereira da Silva, 1998b). The
DEA has an intrinsic interpretation (Di Benedetto et al., 1989; Delaleau and
Pereira da Silva, 1998a). Recall that the dynamic extension algorithm is a se-
quence of applications of regular static-state feedbacks and extensions of the
state by integrators. According to the ideas of the end of Section 2.1, this
algorithm can be regarded as the choice of a new local state representation
of system S. Now we state a slightly different version of DEA that is useful
for our purposes. Let S be the system (14) with Cartan field d

dt defined by
(1), classical state representation (x, u) and classical output y. Assume that
y(0) = y = a0(t, x) + b0(t, x)u and denote x−1 = x, u−1 = u, f−1(t, x) = f(t, x),
g−1(t, x) = g(t, x). The step k of this algorithm (k = 0, 1, . . .) is described
below:

Algorithm 1 (DEA) Step k. In the step k − 1 we have constructed state
equations

ẋk−1 = fk−1(t, xk−1) + gk−1(t, xk−1)uk−1 (5)
y(k) = ak(t, xk−1) + bk(t, xk−1)uk−1 (6)

where xk−1 = (x, v̄0, . . . , v̄k−1). Assume that (t̄, x̄k−1) is a regular point for the
matrix bk(t, xk−1) and let σk be the rank of bk around (t̄, x̄k−1). There exists a
partition3 y(k) = (ȳ(k)

k , ŷ
(k)
k ) of y(k) such that dim ȳ

(k)
k = σk and we may define

a (locally) regular static-state feedback

uk−1 = αk(t, xk−1) + βk(t, xk−1)vk (7)

2Here we abuse notation and we do not distinguish xa (functions defined on Sa) from xa◦π
(functions defined on S). The same remark applies to ua.

3Including possibly a reordering of its elements.
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where vk = (v̄k, v̂k) is such that

ȳ
(k)
k = v̄k

ŷ
(k)
k = ŷ

(k)
k (t, xk−1, v̄k)

(8)

Add the dynamic extension:
ūk = ˙̄vk

ûk = v̂k
(9)

and define uk = (ūk, ûk). This defines a new set of state equations:

ẋk = fk(t, xk) + gk(t, xk)uk (10)

where xk = (xk−1, ȳ
(k)
k ) and uk = (ȳ(k+1)

k , ûk). By construction we have y(k) =
y(k)(t, xk). Hence we may compute

y(k+1) = ∂y(k)

∂t + ∂y(k)

∂xk
(fk + gkuk)

= ak+1(t, xk) + bk+1(t, xk)uk

(11)

The following lemma summarizes the main geometric properties of the DEA
for time-varying nonlinear systems.

Lemma 1 (Pereira da Silva and Corrêa Filho, 2001) Let S be the system (14)
with Cartan field d

dt defined by (1), classical state representation (x, u) and
classical output y. Let Vk be the open and dense set of regular points of the
codistributions Yi and Yi for i = 0, . . . , k defined on (15a) and (15b). Let
ξ ∈ Vk. In the kth step of the dynamic extension algorithm, one may construct
a new local classical state representation (xk, uk) of the system S with state
xk = (x, ȳ

(0)
0 , . . . , ȳ

(k)
k ), input uk = (ẏ

(k)
k , ûk) and output y(k+1) = hk(t, xk, uk)

defined in an open neighborhood Uk of ξ, such that

1. span {dt, dxk} = span
{
dt, dx, dy, . . . , dy(k)

}
= Yk.

2. span {dt, dxk, duk} = span
{
dt, dx, dy, . . . , dy(k+1), du

}
= Yk+span {du}.

3. It is always possible to choose ȳ
(k+1)
k+1 in a way that ȳ

(k+1)
k ⊂ ȳ

(k+1)
k+1 .

4. It is always possible to choose ûk+1 ⊂ ûk.

5. Let ξ ∈ Vn. Let Sk be the greater open neighborhood of ξ such that
the dimensions of Yj ,Yj j ∈ {0, . . . , k} are constant inside Sk. The se-
quence σk = dim(Yk|ξ)−dim(Yk−1|ξ) is nondecreasing, the sequence ρk =
dim(Yk|ξ)− dim(Yk−1|ξ) is nonincreasing, and both sequences converge to
the same integer ρ, called the output rank at ξ, for some k∗ ≤ n = dim x.

6. Sk = Sk∗ for k ≥ k∗.

7. Yk ∩ span {dx}|ν = Yk∗−1 ∩ span {dx}|ν for every ν ∈ Sk∗ and k ≥ k∗.
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8. For k ≥ k∗, one may choose ȳk = ȳk∗ around every point in Uk∗ . Fur-
thermore, Yk+k∗ = Yk+k∗−1 + span

{
dȳ

(k∗+1)
k∗

}
for k ≥ k∗.

Proof. See (Pereira da Silva and Watanabe, 2002; Pereira da Silva, 2000).
2

Remark 1 Note that dimYk = 1 + dim xk = 1 + n +
∑k

i=0 σi, dim ȳk = σk,
dim uk = m and dim ûk = m− σk, where n = dim x, and m = dim u.

Remark 2 In the step k∗ of the dynamic extension algorithm one obtains a
state representation (xk∗ , uk∗) with input uk∗ = (ȳ(k∗+1)

k∗ , ûk∗). Note that the
dynamic extension (9) is completely unnecessary in the step k∗. Without do-
ing it, after the procedure (8), one obtains a state representation (xk∗−1, vk∗)
where vk∗ = (ȳ(k∗)

k∗ , v̂k∗). Recall that ûk∗ = v̂k∗ and xk∗ = (xk∗−1, ȳ
(k∗)
k∗ ).

Hence, similar properties to the ones of Lemma 1 holds for the state rep-
resentation (xk∗−1, vk∗). By construction we have span {dt, dxk∗−1, dvk∗} =
span {dt, dxk∗−1, duk∗−1}. By part 2 of Lemma 1, both codistributions coincide
with Yk∗−1 + span {du}.
Remark 3 In the step 0 of the DEA one has constructed

u = α0(t, x) + β1
0(t, x)ȳ(0)

0︸ ︷︷ ︸
η0(t,x0)

+β2
0(t, x)û0

In the subsequent steps, one constructs

ûk−1 = α̂k(t, xk−1) + β̂1
k(t, xk−1)ȳ

(k)
k︸ ︷︷ ︸

ηk(t,xk)

+β̂2
0(t, xk−1)ûk

If one executes the DEA as in remark 2 one may show that

u = γ(t, xk∗−1) + δ(t, xk∗−1)ȳ
(k∗)
k∗ + ε(t, xk∗−1)ûk∗ (12)

2.3 Regular DAE’s

This section is devoted to establishing the class of systems considered in this
work. In this paper we consider a semi-implicit DAE, i. e., a system Γ of the
form

ẋ(t) = f(t, x(t)) + g(t, x(t))u(t) (13a)
y(t) = a(t, x(t)) + b(t, x(t))u(t) = 0 (13b)
z(t) = φ(x(t)) + ψ(x(t))u(t) (13c)

where x(t) ∈ IRn is the pseudo-state of the system, u(t) ∈ IRm is the pseudo-
input4, z(t) ∈ IRp is the output and yi(t), i = 1, . . . , r are the constraints.

4Note that u is not a differentially independent input for Γ, since the constraints y ≡ 0
induce differential relations linking the components of u. For the same reasons, x is not
necessarily a state of Γ.
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One can associate to Γ an explicit system S with outputs y and z given by

ẋ(t) = f(t, x(t)) + g(t, x(t))u(t) (14a)
y(t) = a(t, x(t)) + b(t, x(t))u(t) (14b)
z(t) = φ(x(t)) + ψ(x(t))u(t) (14c)

Throughout this paper we denote by S the explicit system with output5 y de-
fined by (14), in the framework of (Fliess et al., 1999) (see Section 2.1). Then y(k)

stands for the function dk

dtk y defined on S, which may depend t, x, u(0), u(1), . . ..

Definition 1 In the sequel we shall consider the following sequences of codis-
tributions defined on S

Y−1 = span {dt, dx} , Yk = span
{

dt, dx, dy, . . . , dy(k)
}

, k ∈ IN (15a)

Y−1 = span {dt} , Yk = span
{

dt, dy, . . . , dy(k)
}

, k ∈ IN (15b)

Y−1 = {0}, Yk = span
{

dy, . . . , dy(k)
}

, k ∈ IN (15c)

Z−1 = {0}, Zk = span
{

dz, . . . , dz(k)
}

, k ∈ IN (15d)

Let ξ ∈ S be a regular point of the codistributions Yk and Yk for k = 0, . . . , n,
where n = dim x(t). According to (Di Benedetto et al., 1989) (see also (Delaleau
and Pereira da Silva, 1998a; Pereira da Silva, 2000; Pereira da Silva and Watan-
abe, 2002)), the sequence of integers {σ0, . . . , σn}, where σk = dimYk|ξ−Yk−1|ξ
is called the algebraic structure at infinity at ξ. It can be shown that the se-
quence σk is nondecreasing and converges for k∗ ≤ n to the integer ρ(y) = σk∗ =
max{σ0, . . . , σn}. One calls ρ(y) by output rank at ξ (Fliess, 1989) and k∗ by
the convergence index 6. Note that the dynamic extension algorithm is a tool
for computing the algebraic structure at infinity and it constructs a dynamic
feedback that may furnish a solution for various synthesis problems.

By the results of (Pereira da Silva and Corrêa Filho, 2001; Pereira da Silva
and Watanabe, 2002), one may identify the semi-implicit system Γ given by (13)
with the subset of S defined by (see also Prop. 1 of Section 6).

Γ = {ξ ∈ S | y(k) = 0, k ∈ IN} (16)

Definition 2 Let S be the explicit system defined by (14) and consider the
codistributions defined by (15). A point ξ ∈ S is said to be regular if

(i) The codistributions Yk, Yk and Yk, defined on S by (15) are nonsingular
around ξ for k = 0, . . . , n.

(ii) The codistributions Lk = Yk∗+k + Zk and Lk = Yk∗+k + Zk are non-
singular around ξ for k = 0, . . . , n, where k∗ is the convergence index of
output y of system S around ξ..

5We regard y as an output instead of being a constraint.
6In (Pereira da Silva and Watanabe, 2002) it is shown that k∗ is the differential index of

the DAE (13).
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The semi-implicit system Γ given by (13) is said to be regular if every point ξ
of Γ ⊂ S, is regular, where Γ ⊂ S is defined by (16).

3 Relative Dynamic Extension Algorithm

The following algorithm is instrumental for studying relative-flatness and relative-
decoupling:

Algorithm 2 (RDEA)
Preparation Process. Execute k∗ steps of the dynamic extension algorithm for
the explicit system S with output y, as described in remark 2, obtaining the state
representation (x̃−1, ũ−1), where x̃−1 = xk∗−1, ũ−1 = (ω0, µ−1), ω0 = ω = ȳ

(k∗)
k∗

and µ−1 = ûk∗ , with state equations given by

˙̃x−1 = f−1(t, x̃−1) + ḡ−1(t, x̃−1)ω0 + ĝ−1(t, x̃−1)µ−1 (17a)
z(0) = a0(t, x̃−1) + b0(t, x̃−1)ω0 + c0(t, x̃−1)µ−1 (17b)

Note that equation (17b) is obtained by substitution of (12) in (14c).
Then execute the steps k = 0, 1, 2, . . . :

Step k. In step k − 1 we have constructed a state representation

˙̃xk−1 = fk−1(t, x̃k−1) + ḡk−1(t, x̃k−1)ωk + ĝk−1(t, x̃k−1)µk−1 (18a)
z(k) = ak(t, x̃k−1) + bk(t, x̃k−1)ωk + ck(t, x̃k−1)µk−1 (18b)

where x̃k−1 = (x̃−1, ω0, ω1, . . . , ωk−1, z̄
(0)
0 , . . . , z̄

(k−1)
k−1 ). Let σ̃k = rank ck(t, x̃k−1)

and assume that this rank is locally constant around some (t, x̃k−1). Up to a
reordering of the components of z, we may assume that the first σ̃k rows of
ck(t, x̃k−1) are locally independent. Then there exists a partition z = (z̄k, ẑk),
where dim z̄k = σ̃k, and a regular static-state feedback with new input (ωk, vk)
defined by (see appendix A):

µk−1 = ᾱk(t, x̃k−1) + α̂k(t, x̃k−1)ωk + βk(t, x̃k−1)vk

where vk = (v̄k, v̂k) is such that7

z̄
(k)
k = v̄k

ẑ
(k)
k = ẑ

(k)
k (t, x̃k−1, ωk, v̄k)

(19)

Add the following dynamic extension

ω̇k = ωk+1

˙̄vk = µ̄k
(20)

and let µ̂k = v̂k. Hence, one has constructed a new state representation (x̃k, ũk),
with x̃k = (x̃k−1, ωk, z̄

(k)
k ), ũk = (ωk+1, µk), µk = (z̄(k+1)

k , µ̂k) and output z(k)

7We stress that βk(t, exk−1) is locally nonsingular.
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given by:

˙̃xk = fk(t, x̃k) + ḡk(t, x̃k)ωk+1 + ĝk(t, x̃k)µk (21a)
z(k) = φk(t, x̃k) (21b)

Compute

z(k+1) = ak+1(t, x̃k) + bk+1(t, x̃k)ωk+1 + ck+1(t, x̃k)µk (21c)

The following result summarizes the main geometric properties of the Rela-
tive Dynamic Extension Algorithm for time-varying nonlinear systems.

Lemma 2 Let S be the system given by (13a) with classical state representation
(x, u) and classical output y. Let Vk ⊂ S be the open and dense set of regular
points of the codistributions Yi, Yi, for i = 0, . . . , n and of Lj , Lj for j ∈
{0, . . . , k}, where Lk = Yk∗+k + Zk and Lk = Yk∗+k + Zk for k = −1, 0, 1, 2, . . .
(see (15)). Assume that the output rank of the explicit system S is given by ρ(y).
Let ω = y

(k∗)
k∗ . In the kth step of the relative dynamic extension algorithm,

one may construct around ξ ∈ Vk, a new local classical state representation
(x̃k, ũk) of the system S with state x̃k = (x̃k−1, ω

(k), z̄
(k)
k ) =(x̃−1, ω, . . . , ω(k),

z̄
(1)
1 , . . . , z̄

(k)
k ), input ũk = (ω(k+1), µk), where µk = (z(k+1)

k , µ̂k), and output
z(k) = φk(t, x̃k) defined in an open neighborhood Uk of ξ, such that

1. span {dx̃k} = Lk, k = −1, 0, 1, 2, . . ..

2. span {dx̃k, dũk} = Lk+1 + span {du} , k = −1, 0, 1, 2, . . ..

3. It is always possible to choose z̄
(k+1)
k+1 in a way that z̄

(k+1)
k ⊂ z̄

(k+1)
k+1

4. When z̄
(k+1)
k ⊂ z̄

(k+1)
k+1 , it is always possible to choose µ̂k+1 ⊂ µ̂k.

5. Let ξ ∈ Vn. The sequence σ̃k = dim(Lk|ξ)) − dim(Lk−1|ξ) − ρ(y) is non-
decreasing, the sequence ρ̃k = dim(Lk|ξ) − dim(Lk−1|ξ) − ρ(y) is nonin-
creasing, and both sequences converge to the same integer ρ̃(z), called the
relative output rank at ξ, for some k̃∗ ≤ n = dim x.

6. Let Sk ⊂ Vn be the open neighborhood of a given ξ ∈ Vn, such that the
dimensions of Lj , Lj j ∈ {0, . . . , k} are constant inside Sk. We have
Sk = Sek∗ for k ≥ k̃∗.

7. Lk ∩ span {dx}|ν = Lek∗−1 ∩ span {dx}
∣∣∣
ν

for every ν ∈ Sek∗ and k ≥ k̃∗.

8. For k ≥ k̃∗, one may choose z̄k = z̄ek∗ in Uek∗ . Furthermore, Lk+1 =

Lk + span
{

dω(k+1), dz̄
(k+1)
k

}
for k ≥ k̃∗.

9. Let Y = span
{
dt, dy(k)|k ∈ IN

}
. Then σ̃k = dim Lk+Y

Lk−1+Y . In particular

we have ρ̃(z) = dim Ln+Y
Ln−1+Y = dim Lek∗+Y

Lek∗−1+Y
.
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Proof. The proof is deffered to the appendix B. 2

The last theorem motivates the following definition.

Definition 3 Let S be an explicit system with outputs y and z given by (14).
Assume that the codistributions defined by (15) are nonsingular around ξ ∈ S.
Let ρ(y) be the output rank of S. The sequence of integers {σ̃0, . . . , σ̃n}, where
σ̃k = dimLk − dimLk−1 − ρ(y), computed around ξ ∈ S is called local relative
structure at infinity (of output z) at ξ with respect to the output subsystem Y .
The integer ρ̃(z) = σ̃n is called relative output rank.

4 Relative-decoupling

In this Section we define and solve the problem of relative-decoupling. We show
that this problem is solvable if and only if the relative output rank ρ̃(z) is equal
to the number of components of z.

4.1 System decompositions

Now we introduce some notions of system decompositions that are useful for
studying decoupling in our setting.

In (Pereira da Silva and Corrêa Filho, 2001, Theo. 4.3), given a classic state
representation (x, u) and a classic output y of S, then the nonsingularity8 of
codistributions (15a) and (15b) for k = 0, . . . , n, where n = dim x, assures the
existence and uniqueness9 of a local output subsystem Y .

Recall now that an output of a system S in the sense of Section 2.1 is any set
of functions defined on S. In particular, the input of a system is also an output.
Hence one may introduce the following notion of input-output subsystem.

Definition 4 Given a system S with (local) state representation (x, u) and out-
put y. Consider the output w = (y, u). The input-output subsystem is the
output subsystem10 W corresponding to the output w.

A notion of decomposition of systems by a subsystem was introduced in
(Pereira da Silva and Corrêa Filho, 2001). The next definition generalizes this
concept.

Definition 5 (i-decomposition and decomposition of systems) Let S be a system
and let F = {Si, i ∈ bhe} be a family of subsystems with local coordinates
respectively (t, xi), i ∈ bhe. The system S is said to be (locally) incompletely
decomposed, or simply i-decomposed by F if there exists a (local) coordinate
system (t, x1, . . . , xh, xh+1) defined in U ⊂ S and a family of Lie-Bäcklund
submersions {πi : U → Si, i ∈ bhe} such that the local expression of πi in these
coordinates is given by πi(t, x1, . . . , xh, xh+1) = (t, xi), i = 1, . . . , h. The system
S is (locally) decomposed by F if it is i-decomposed by F and xh+1 = ∅.

8In particular the existence of Y is generically assured.
9The uniqueness is implied by the existence.

10By (Pereira da Silva and Corrêa Filho, 2001, Theo. 4.3), this subsystem exists (generically)
and is unique.
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4.2 Relative-decoupling

In this section we introduce and solve the Relative-Decoupling Problem (RDP).

Definition 6 (RDP) Let S be a system with output (y, z), where z = (z1, . . . , zp).
Let Y be the (local) output subsystem corresponding to the output y. A (local)
state representation (x, u), where u = (u1, . . . , um) of S is said to be (locally)
relatively decoupled with respect to Y if system S is (locally) i-decomposed by
the family F = {Y, S1, . . . , Sp} where Si is the input-output subsystem corre-
sponding to input ui and output zi, i = 1, . . . , p and the output rank ρ(zi) of
subsystem Si is one.

Remark 4 The definition above is invariant with respect to the choice of the
state, i. e., if (x, u) is relatively decoupled w.r.t. Y , then (x̄, u) is also relatively
decoupled w.r.t. Y .

Since our definition of endogenous feedback is stated in Section 2.1 as the
relation between two state representations, we may state and solve the relative-
decoupling problem in the following way:

Theorem 1 Given a system S with (local) state representation (x, u) and out-
put (y, z), the RDP is the problem of finding an endogenous feedback, i. e., a
new state representation (x̄, ū), in a way that the output z is relatively decoupled
with respect to output subsystem Y . Then the RDP is solvable around a regular
point ξ ∈ S (see Def. 2) if and only if the relative output rank ρ̃(z) is equal to
the number of components of z.

For the proof of this theorem we need the following lemma

Lemma 3 Let ξ be a regular point of system S. If ρ̃(z) = card z then:

(i) The RDEA constructs around ξ a (local) state representation (x̄, ū),
where x̄ = (x̂, η, z, . . . , z(ek∗)), ū = (ωek∗+1, z

(ek∗+1), µ̂ek∗) such that span {dt,

dη, (dω
(j)
ek∗+1

: j ∈ IN)} = span
{
dt, (dy(k) : k ∈ IN

}
= Y.

(ii) dimLek∗ = dim Yk∗−1 + (ρ(y) + ρ̃(z))(k̃∗ + 1) + dim Lek∗
Lek∗

(iii) System S is i-decomposed by F = {Y, Z}, where Y is a local output
subsystem related to the output y and Z is a flat subsystem, with flat output
z. In particular, system S has the strucuture of Figure 1.

(iv) The RDEA constructs in the step k̃∗ a (local) solution of the relative
decoupling problem.

Proof. See appendix C. 2

Proof. (of Theorem 1) The sufficiency is a consequence of part (iv) of
Lemma 3. Now assume that the relative-decoupling problem is solvable. By
definition, if T ∗Y = Y = span

{
dt, (dy(j) : j ∈ IN)

}
, it is easy to see from the
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definition 6 that dim Zk+1+Y
Zk+Y = card z = p. From this, one may show easily that

dim Lk+1
Lk

= dim Zk+1+Yk+1+k∗
Zk+Yk+k∗

= dim Yk+1+k∗
Yk+k∗

+ dim Zk+1
Zk

= ρ(y) + p, k ∈ IN . By
part 5 of Lemma 2, it follows that ρ̃(z) = card z = p. 2

Remark 5 The state of the zero dynamics11 S/(Y ∪ Z) of Figure 1 is x̂.

Y

Z

S/(Y ∪ Z)

System S

--

-
y

-
z

Figure 1: Structure of a system S for which the output z is relatively decoupled
with respect to subsystem Y . The subsystem Z is flat with flat output z.

5 Relative-flatness and relatively flat outputs

In (Pereira da Silva and Corrêa Filho, 2001) the notion of relative-flatness with
respect to a subsystem Sa is introduced. Using our previous definitions, we may
translate this definition into the following form:

Definition 7 A system S is said to be (locally) relatively flat with respect to a
subsystem Sa if there exists a flat subsystem Z such that S is (locally) decom-
posed by the family F = {Sa, Z}. A flat output z of Z is said to be a relatively
flat output of S (with respect to Sa).

The following result is a characterization of relatively flat outputs with re-
spect to output subsystems:

Theorem 2 Let S be a system (14) with state representation (x, u) and output
(y, z) and assume that ξ ∈ S is a regular point of S (see Definition 2). Assume
that the system S is well formed, i. e., span {dt, dx, du} = span {dt, dx, dẋ}12.
Let Y be the local output subsystem corresponding to the output y13. The fol-
lowing affirmations are equivalent:

11Note that S/(Y ∪ Z) is only a notation suggesting a quotient, but it does not have any
precise meaning. Using Kähler differentials it is possible to translate part of the present results
to the differential algebraic approach of (Fliess, 1989). In this setting, the zero dynamics may
be interpreted as a quotient field.

12This is equivalent to say that g(x) of (14) has independent columns (Rudolph, 1995).
Note that, if the system is not well formed one my apply the Theorem 2 to system S with
state (x, u) and input u̇, which is well formed.

13The output subsystem Y exists and is unique according to (Pereira da Silva and
Corrêa Filho, 2001, Theorem 4.3).
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(i) The system S is relatively flat around ξ with respect to subsystem Y and
the output z is a (local) relatively flat output around ξ.

(ii) Around ξ we have ρ̃(z) = card z and span {dx} ⊂ Lek∗−1.

(iii) Around ξ we have ρ̃(z) = card z and n − dim Yk∗−1 +
∑k∗−1

i=0 σi −
ρ̃(z)(k̃∗ + 1) +

∑ek∗
j=0 σ̃j = 0.

Remark 6 Let z be a flat output of system Z. Remember that card z coincides
with the differential dimension of Z (see Section 2.1). It follows easily from part
(ii) of Lemma 2 and part (ii) of Theorem 2 that, for a relatively flat output z
with respect to Y we must have card z = ρ̃(z) = card u− ρ(y) = m− ρ(y).

Proof.
(i) ⇒ (ii). Note first that, by similar arguments to the ones of the proof (of
necessity) of Theorem 1, one shows easily that

If z is a relatively flat output, then ρ̃(z) = card z. (22)

By definition, (i) implies that span
{
dt, (dy(k) : k ∈ IN)

}
+span {dt, (dz(k) : k ∈

IN)} = T ∗S inside an open neighborhood U of ξ. In particular, for every ν ∈ U ,
there must exist some k such that Lk|ν ⊃ span {dx} |ν . By part 7 of Lemma 2 it
follows that around an open neighborhood of ξ we must have Lek∗ ⊃ span {dx},
showing (ii).
(ii) ⇒ (i). Since ρ̃(z) = card z, by lema 3, S is i-decomposed by F = {Y, Z}
where Y is the output subsystem and Z is a flat subsystem with flat output
z. To show (i) it is enough to show that T ∗S = span

{
dt, (dy(k) : k ∈ IN)

}
+

span
{
dt, (dz(k) : k ∈ IN)

}
. Since span {dx} ⊂ Lek∗ , then span

{
dt, dx(k) : k ∈ IN

}

⊂ span
{
dt, (dy(k) : k ∈ IN)

}
+ span

{
dt, (dz(k) : k ∈ IN)

}
. Note now that, the

condition span {dt, dx, dẋ} = span {dt, dx, du} implies, by derivation, that we
have span

{
dt, dx(k) : k ∈ IN

}
= T ∗S, completing the proof of (ii)⇒(i).

(ii)⇔(iii). By Lemma 1 (see also remark 2) and Lemma 2 , it follows easily
that

dimLk∗ = n +
k∗−1∑

i=0

σi +
ek∗∑

j=0

(ρ(y) + σ̃j) (23)

By Lemma 2 we have that span {dx} ⊂ Lek∗−1 is equivalent to span {dx} ⊂ Lek∗ ,
which is in turn equivalent to saying that

(
span {dx} ⊂ Lek∗−1

)
⇔

(
dim

Lek∗
Lek∗

= 0
)

(24)

By (23), (24) and part (ii) of Lemma 3, then the equivalence between (ii) and
(iii) folows. 2

Remark 7 Note that condition (iii) is equivalent to saying that the zero dy-
namics of Figure 1 is absent (see the remark after Lemma 3).
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6 DAEs

In this section we consider DAEs of the form (13). We show that the relative-
decoupling and relative-flatness for system (14) implies respectively decoupling
and flatness for system (13). We shall consider regular DAEs (see Definition 2).
The following result is instrumental.

Theorem 3 (Pereira da Silva and Corrêa Filho, 2001, Theo. 4.3) Let S be
the system given by (14a)–(14b) with output y. Around a point ξ such that the
codistributions (15a)–(15b) are nonsingular for k = 0, 1, . . . , n, where n = dim x,
there exists a classic state representation x̃ = (xa, xb), ũ = (ua, ub) of S of the
form

ẋa = fa(t, xa, ua) (25a)
ẋb = fb(t, xa, xb, ua, ub) (25b)

in a way that Y = span
{
dt, (dy(k) : k ∈ IN)

}
= span

{
dt, dxa, (du

(j)
a : j ∈ IN)

}
.

This state representation is adapted to the output subsystem Y , i. e., (25a) are
local (classical) state equations for Y . Furthermore, span {xb}+Y = span {x}+
Y, span {xb, ub}+Y = span {x, u}+Y and the set of functions {xa, ua} can be
locally chosen as a subset of {y(k) : k ∈ IN}.

It can be shown that a regular DAE defined by (13a)–(13b) can be regarded
as an immersed system in the explicit system S defined by (14). This result is
the Proposition 1 bellow, whose proof is based on the last theorem.

Proposition 1 (Pereira da Silva and Corrêa Filho, 2001; Pereira da Silva and
Watanabe, 2002) Let S be the system associated to (14). Let Γ be the subset of
S defined by Γ = {ξ ∈ S | y(k)(ξ) = 0, k ∈ IN}. Suppose that Γ is nonempty
and every ξ ∈ Γ is a regular point of the codistributions Yk, Yk,Yk, k = 0, . . . , n
(see (15a)-(15b)). Then the subset Γ ⊂ S has a canonical structure of immersed
(embedded) submanifold of S such that the canonical insertion is a Lie-Bäcklund
immersion. Furthermore Γ admits a local classical state representation around
every point ξ ∈ Γ.

The idea of the proof of Proposition 1 is to consider the local state repre-
sentation of the last theorem. It is shown that, {t, xa, xb, Ua, Ub} and {t, xb, Ub}
are respectively local coordinates for S and Γ and, in these coordinates14

ι(t, xb, Ub) = (t, 0, xb, 0, Ub) (26)

where Ua = {u(j)
a : j ∈ IN} and Ub = {u(j)

b : j ∈ IN}.
By construction it is easy to verify that ι∗ω ∈ span {dt} for a 1-form ω

defined on S if and only if ω ∈ Y = span {dt, dxa, dUa}. The construction of
the state xb and the input ub of Γ is canonical in the sense that

ι∗span {dt, dx} = span {dt, d(xb ◦ ι)} (27)
ι∗span {dt, dx, du} = span {dt, d(xb ◦ ι), d(ub ◦ ι)} (28)

14Abusing notation, we let xb and ub stand respectively for xb ◦ ι and ub ◦ ι.
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Furthermore, the local state equations of Γ are given by ẋb = fb(t, 0, xb, 0, ub).

6.1 Relative-decoupling and DAEs

Let Γ be a regular implicit system defined by (13). Then the following result
holds:

Theorem 4 Let ι : Γ → S and (x̃, ũ) be respectively the Lie-Bäcklund immer-
sion and the state representation of the proof of Proposition 1, where x̃ = (xa, xb)
and ũ = (ua, ub). Let z̃ = z ◦ ι, x̃b = xb ◦ ι and ũb = ub ◦ ι. Then (x̃b, ũb) is a
classic local state representation for Γ, and z̃ is a classic output. Furthermore,
the relative structure at infinity of the output z of S with respect to output sub-
system Y coincides with the structure at infinity of Γ with output z considering
the state representation (x̃b, ũb). In particular the relative output rank ρ̃(z) of
system (14) coincides with the output rank ρ(z) of the DAE (13).

Remark 8 By the results of (Fliess, 1989; Di Benedetto et al., 1989; Delaleau
and Pereira da Silva, 1998b) it is clear that the dynamic input-ouput decoupling
problem for a regular DAE defined by (13) is solvable if and only if ρ̃(z) = card z.
It is now easy to verify that the Relative Dynamic Extension Algorithm, when
specialized to y ≡ 0 furnishes a decoupling feedback law for the DAE. In fact,
y ≡ 0 implies ωk ≡ 0, which simplifies a lot the RDEA. With this specialization,
the RDEA becomes the DEA for system (13).

Proof. (of Theorem 4) The fact that (x̃b, ũb) is a local state representation
of Γ is a consequence of discussion above. To show that the sequence σ̃k is the
structure at infinity of the system Γ we must show that σ̃k = dim eZk

eZk−1
where

Z̃k = span
{
dt, dx̃b, dz̃, . . . , dz̃(k)

}
.

Now note that, since Y = span
{
dt, (dy(k) : k ∈ IN)

}
= span {dt, dxa, dUa},

from (26) we have that

ι∗dt = dt, ι∗(Y) = ι∗span {dt, dxa, dUa} = span {dt} (29)

ι∗dxb = dx̃b, ι∗dUb = dŨb (30)

From this and from (27), we have

ι∗Lk = span
{

ι∗dt, ι∗dx, ι∗dy, . . . , ι∗dy(k∗+k), ι∗dz, . . . , ι∗dz(k)
}

= Z̃k (31)

Let γ ∈ Γ such that ι(γ) = ξ. Let T = span {dt} |γ ⊂ T ∗γ Γ. Let πT : T ∗γ Γ →
T∗γ Γ

T and πY : T ∗ξ S → T∗ξ S

Y|ξ be the canonical projections. It is not difficult to

verify from (29) that the map Ξ : T∗ξ S

Y|ξ → T∗γ Γ

T defined by Ξ ◦ πY = πT ◦ ι∗ is
an isomorphism. In particular it follows from part 9 of Lemma 2 that σ̃k =
dim Lk+Y

Lk−1+Y = dim Lk+Y
Y − dim Lk−1+Y

Y = dim Ξ
(Lk+Y

Y
) − dim Ξ

(
Lk−1+Y

Y
)

=

dim ι∗Lk

T − dim ι∗Lk−1
T = dim eZk

T − dim
eZk−1
T = dim eZk

eZk−1
. 2
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6.2 Relative-flatness and DAEs

In (Pereira da Silva and Corrêa Filho, 2001) it is shown that relative-flatness
of (14) with respect to Y implies flatness of a regular DAE Γ defined by (13).
Furthermore, it is shown there that the relatively flat output z of S with respect
to Y is the flat output of Γ. In particular, the following result holds:

Corollary 1 If one of the equivalent conditions of Theorem 2 holds for system
(14), then z is a local flat output of the regular DAE (13).

7 Examples

Reconsider now the system S of example 1, given in the introduction. It is easy
to verify that the regularity conditions of Definition 2 hold for every point of
the system with the exception of the singularities v̄1 6= φ1. The computations
Relative Dynamic Extension Algorithm have already been done in the intro-
duction. For the preparation process, one gets σ0 = 0, σ1 = 1, σ2 = 2, and so
k∗ = 2. For the algorithm itself, one obtains σ̃0 = 0, σ̃1 = 0, σ̃2 = 2 and so
k̃∗ = 2. In particular, from Theorem 1, the problem of relative-decoupling with
respect to subsystem Y is solvable. As the condition (iii) of Theorem 2 holds (it
is easy to show that dim Y1 = 4), it follows that z is a relatively flat output with
respect to subsystem Y . From Theorem 4 it follows that the implicit system
Γ obtained by adding the constraint y = 0 can be decoupled by dynamic state
feedback. From Corollary 1 it follows that Γ is flat with flat output z. It is also
easy to show by direct computation, that the relative structure at infinity of S ,
with respect to subsystem Y , coincides with the structure at infinity of Γ (with
ouput z for both systems).

Example 2 Consider now a planar mechanical system that is formed by two
punctual unitary masses of coordinates x1(t), x2(t) ∈ IR2, that are connected by
an ideal bar of lenght L(t). Assume that, on the first mass, one can apply a
control force of module u1(x1 − x2), with u1(t) ∈ IR (in other words, this force
is in the direction defined by the bar). On the second mass, one can apply a
control force U = (u2, u3)T ∈ IR2. One is interested in controlling the position
z1 = (x1 + x2)/2 of the center of mass of the two bodies and a variable defined
by z2 = hT (x1 − x2), which gives the information of the angle between the bar
and a fixed direction h ∈ IR2. Denoting the Lagrange multiplier associated to
the constraint ‖x1 − x2‖2 − L(t)2 = 0 by u4, the following model can be easily
obtained:

ẍ1 = (x1 − x2)u1 + 2(x1 − x2)u4

ẍ2 = U − 2(x1 − x2)u4

y(t) = ‖x1 − x2‖2 − L2(t) = 0
z1 = (x1 + x2)/2
z2 = hT (x1 − x2)
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The state of the (nonconstrained) model is (x1, x2, ẋ1, ẋ2), but there is no need to
write state equations, since the RDEA works only with derivatives. Computing
the preparation process of RDEA, one gets σ0 = 0, σ1 = 0, σ2 = 2, ȳ

(2)
2 =

ÿ = −(2L̇2 + 2LL̈) + 2‖ẋ1 − ẋ2‖2 + 2yu1 + 8(y + L2)u4 − 2(x1 − x2)T U and
the feedback u4 = [2‖ẋ1 − ẋ2‖2 + 2(x1 − x2)T U + 2L̇2 + 2LL̈ + ȳ

(2)
2 ]/(8y +

8L2). Computing the RDEA, one gets σ̃0 = 0, σ̃1 = 0, σ̃2 = 3 and z(2) =
z̄
(2)
2 = a(L, L̇, L̈, x1, x2, ẋ1, ẋ2, ȳ

(2)
2 ) + c(x1, x2, ẋ1, ẋ2)ū, where ū = (u1u2u3)T .

The matrix c, when multiplied by a triangular matrix R, gives a triangular
matrix F , and these matrices are given by

c =
(

(x1 − x2)/2 I2/2
hT (x1 − x2)/2 −hT [I2 + (x1 − x2)(x1 − x2)T ]/2

)

R =
(

1 0
−(x1 − x2)/2 I2

)

F =
(

0 I2/2
−hT (x1 − x2)[1 + (y + L2)/2] −hT [I2 + (x1 − x2)(x1 − x2)T ]/2

)

where I2 is the identity matrix of dimension two. It follows that c is nonsingular
iff y 6= −L2 and h is not orthogonal to the bar. The feedback ū = −c−1a + c−1v̄
produces z(2) = v̄ in closed loop, and so it is a solution of the relative-decoupling
problem. Note that n = 8, k∗ = k̃∗ = 2, dim z = ρ̃(z) = 3 and dim Yk∗−1 = 2.
Hence, from Theorem 2 part (iii), z is a relatively flat output. In particular,
from Theorem 4 and Corollary 1, when the constraint y(t) = 0 is added, the
given feedback is a decoupling and linearizing feedback law for the corresponding
DAE.

8 Conclusions

The results of this paper may be useful for studying flatness and the dynamic
decoupling problem for implicit systems. It is important to point out that our
results show effective ways for computing the output rank and control laws
for dynamic feedback linearization and/or decoupling of an implicit system Γ,
without the need to transform Γ into an explicit system. In fact, note that
the relative dynamic extension algorithm for affine systems relies only on sums,
multiplications and matrix inversions.
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A Computation of the static-feedback of the kth
step of RDEA

Let
z̄
(k)
k = ā(t, xk−1) + b̄(t, x̃k−1)ωk + c̄(t, x̃k−1)µk−1

ẑ
(k)
k = â(t, x̃k−1) + b̂(t, x̃k−1)ωk + ĉ(t, x̃k−1)µk−1

Up to a reordering of the components of z, we may assume that rank c =
rank c̄ = σ̃k is locally constant. Up to a reordering of the components of µk−1,
we may suppose that c̄ = [c̄11 c̄12],where c̄11 is locally nonsingular. Then define
locally

βk(t, x̃k−1) =
(

c̄11 c̄12

0 I

)−1

=
(

c̄−1
11 −c̄−1

11 c̄12

0 I

)

ᾱk(t, x̃k−1) + α̂k(t, x̃k−1)ωk = βk

( −ā− b̄ωk

0

)

and let
µk−1 = ᾱk(t, x̃k−1) + α̂k(t, x̃k−1)ωk + βk(t, x̃k−1)vk

Then it is easy to verify this choice of (ᾱk, α̂k, βk) is such that (19) holds.

B Proof of Lemma 2

Proof. Along this proof, we shall write ω = ω0. By (20), it is clear that
ωk = ω(k) for k = 0, 1, . . .. The following remark is instrumental for the proof:

Remark 9 Assume that (x̃k−1, ũk−1) is a state representation around ξ. Then
by definition, Ψ = {t, x̃k−1, (ω

(j)
k , µ

(j)
k−1 : j ∈ IN)} is a local coordinate chart

around ξ. In particular, the differentials of the functions of Ψ are locally inde-
pendent.

We give first a geometric description of the RDEA. Let (x̃−1, ũ−1) be the state
representation of system S with output z(0) defined by (17). In step k − 1 of
this algorithm (k = 0, 1, 2, . . .) one has constructed a classical (local) state rep-
resentation (x̃k−1, ũk−1), where ũk−1 = (ωk, µk−1), with output z(k) defined on
an open neighborhood Uk−1 of ξ ∈ S. Assume that span

{
dt, dx̃k−1, dωk, dz(k)

}
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is nonsingular around ξ15. Note that we can give the following geometric de-
scription of the step k of RDEA:

• (S1) By remark 9, the set {dt, dx̃k−1, dωk} is locally independent. Choose
z̄k (possibly among the components of z) by completing {dt, dx̃k−1, dωk}
into a basis {dt, dx̃k−1, dωk, dz̄

(k)
k } for span

{
dt, dx̃k−1, dωk, dz(k)

}
.

• (S2) Now choose µ̂k (possibly among the components of µ̃k−1) by com-
pleting {dt, dx̃k−1, dωk, dz̄

(k)
k } into a basis {dt, dx̃k−1, dωk, dz̄

(k)
k , dµ̂k} of

span {dt, dx̃k−1, dũk−1}. According to the Section 2.1, this defines a lo-
cal state feedback with new input16 (ωk, vk), where vk = (z̄(k)

k , µ̂k). By
construction, this state feedback has the property (19).

• (S3) Define the new state representation (x̃k, ũk) by taking x̃k = (x̃k−1, ωk,

z̄
(k)
k ), and ũk = (ω̇k, µk), where µk = (z(k+1)

k , µ̂k). This is an extension of
the state of the form (20).

Note that, (see the end of Section 2.1), we have that (S1), (S2) and (S3)
produce a new local state representation (x̃k, ũk) of system S defined in an
open neighborhood Uk ⊂ Uk−1 of ξ. Note that the steps (S1)-(S2)-(S3) describe
the procedure of the step k of RDEA, that could be performed, at least theo-
retically, for nonaffine systems17. In particular our geometric interpretation of
Lemma 1 holds for nonaffine systems, if one considers that (S1)-(S2)-(S3) are
the procedure of step k.

(1 and 2). We show first that the state representation (x̃k, ũk) is classical,
i. e., span

{
d ˙̃xk

}
⊂ span {dt, dx̃k, dũk}. This property holds for (x̃−1, ũ−1). By

induction, assume that it holds for (x̃k−1, ũk−1). Then from (S1),(S2) and
(S3) we have span

{
d ˙̃xk

}
⊂ span

{
dt, dx̃k−1, d ˙̃xk−1, dωk, dω̇k, dz̄

(k)
k , dz̄

(k+1)
k

}

⊂ span
{

dt, dx̃k−1, dωk, dω̇k, dz̄
(k)
k , dz̄

(k+1)
k , dµk

}
= span {dt, dx̃k−1, dũk−1, dωk,

dω̇k, dz̄
(k)
k , dz̄

(k+1)
k } ⊂ span {dt, dx̃k, dũk}. By (S1), (S2), (S3) notice that

dẑ
(k+1)
k ∈ span{dt, dx̃k−1, d ˙̃xk−1, dωk, dω̇k, dz̄

(k)
k , d ˙̄z(k)

k } ⊂ span{dt, dx̃k−1, dũk−1,

dωk, dω̇k, dz̄
(k)
k , d ˙̄z(k)

k }, and so, span{dz(k+1)} ⊂ span {dt, dx̃k, dũk}.
We show now 1 and 2 by induction. Since x̃−1 = xk∗−1, by part 1 of

Lemma 1 it follows that span {dt, dx̃−1} = Yk∗ = L−1. By remark 2 and
from parts 1 and 8 of Lemma 1, it follows that span {dt, dx̃−1, dũ−1} = Yk∗ +
span {du} = L0 + span {du}, where this last equality follows from the fact
that Z0 = span {dz} ⊂ span {dt, dx, du} ⊂ Yk∗ . Hence, one sees that 1 and
2 are satisfied for k = 0. Assume that, in the step k − 1 we have a lo-
cal state representation (x̃k−1, ũk−1) satisfying 1 and 2. Choose a partition

15It is easy to show that this is equivalent to the fact that the matrix ck(t, exk−1) of (6) has
constant rank around ξ.

16In fact, by construction we have that {dt, dexk−1, deuk−1} and {dt, dexk−1, dωk, dvk} are
both local basis of the same codistribution.

17In this case the computations are much more difficult since one may apply the inverse
function theorem to compute the feedback.
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z(k) = (z̄(k)
k , ẑ

(k)
k ) in a way that (S1) is satisfied and construct µ̂k satisfying

(S2). By 1 for k − 1 and (S1) and from the fact that ωk = ω(k), it follows that
span{dt, dx̃k} = span{dt, dx̃k−1, dω(k), dz̄

(k)
k } = span{dt, dx̃k−1, dω(k), dz

(k)
k } =

Lk−1 + span
{
dω(k), dz(k)

}
. From the fact that ω0 = ω = ȳ

(k∗)
k∗ , by (15) and

part 8 of Lemma 1, it follows that Lk−1 + span
{
dω(k), dz(k)

}
= Lk, showing 1

for k.
We show now that if 2 holds for k − 1, then span{dt, dx̃k, dũk} = Lk+1 +

span {du}, completing the induction. By (S1),(S2) and (S3) and from the fact
that span

{
dz̄

(k+1)
k

}
⊂ span

{
dz(k)

} ⊂ span {dt, dx̃k, dũk}, it follows that

span {dt, dx̃k, dũk} = span {dt, dx̃k−1, dω(k), dz̄
(k)
k , dµk}+

span {dω(k+1), dz̄
(k+1)
k }

= span {dt, dx̃k−1, dũk−1}+ span
{

dω(k+1), dz
(k+1)
k

}

By the induction hypothesis, we have span {dt, dx̃k, dũk} = Lk + span {du} +
span

{
dω(k+1), dz

(k+1)
k

}
. By part 8 of Lemma 1 and the fact that ω = ȳ

(k∗)
k∗ ,

this shows 2 for k.

(3, 5, 6, 7). Note now that, since {dt, dx̃k} = {dt, dx̃k−1, dωk, dz̄
(k)
k } is a

basis of Lk and {dt, dx̃k−1} is a basis of Lk−1, it follows that

{dωk} is independent mod Lk−1. (32a)

In particular, {dωk} is also independent mod Lk−1. Since ω = ȳ
(k∗)
k∗ and

card ωk = card ω = ρ(y), by remark 1, we see that

dimLk − dimLk−1 ≥ ρ(y) (32b)
dim Lk − dim Lk−1 ≥ ρ(y) (32c)

We show first that

dim Lk(ν)− dim Lk−1(ν) ≥ dim Lk+1(ν)− dim Lk(ν) for every ν ∈ Sk (33)

In fact, if the 1-forms {η1, . . . , ηs} ⊂ Lk are linearly dependent mod Lk−1, i.
e., if α0dt+

∑s
i=1 αiηi+

∑r
i=1

∑k∗+k−1
j=0 βijdy

(j)
i +

∑p
i=1

∑k−1
j=0 γijdz

(j)
i = 0, then

differentiation in time gives α̇0dt+
∑s

i=1(α̇iηi+αiη̇i)+
∑r

i=1

∑k∗+k−1
j=0 (β̇ijdy

(j)
i +

βijdy
(j+1)
i )+

∑p
i=1

∑k−1
j=0 (γ̇ijdz

(j)
i + γijdz

(j+1)
i ) = 0. In other words, the 1-forms

η̇1, . . . , η̇s are linearly dependent mod Lk. Let ξ ∈ Sk. From the nonsingularity
of Lj ,Lj , j = 0, . . . , k in Sk, if dimLk − dim Lk−1 = l + ρ(y) in ξ ∈ Sk, then by
(32a) we may choose a partition z = (z̄T , ẑT ) such that z̄ has l components and
we locally have Lk = span

{
dω(k), dz̄(k)

}
+ Lk−1. Let ẑj be any component of

ẑ for j ∈ bp − le. By construction we have that {dẑ
(k)
j , dω(k), dz̄(k)} is linearly

dependent mod Lk−1 for every j ∈ bp− le. From the remark above it follows
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that the set {dẑ
(k+1)
j , dω(k+1), dz̄(k+1)} is (locally) dependent mod Lk for every

j ∈ bp− le, showing (33). In particular the sequence ρ̃k is nonincreasing.
We show now that

dimLk(ν)− dimLk−1(ν) ≤ dimLk+1(ν)− dimLk(ν) for every ν ∈ Sk (34)

Assume that (x̃k, ũk) is a state representation constructed around a neigh-
borhood Uk of a point ξ ∈ Sk and satisfying (S1), (S2), 1 and 2. Since
(dω̇k, d ˙̄z(k)

k ) ⊂ ũk, by remark 9 it follows that the components of {dω̇k, d ˙̄z(k)
k }

are independent mod Lk. Hence z̄
(k+1)
k+1 may be chosen satisfying 3, showing 3

and (34). In particular, σ̃k+1 ≥ σ̃k.
To show the convergence of sequences ρ̃k and σ̃k for some k∗ ≤ n, assume

that ν ∈ Sk. Denote span{dx} by X. Then Lk = X + Lk and thus

dimLk(ν) = dim X(ν) + dimLk(ν)− dim(Lk(ν) ∩X(ν)). (35)

Denote for k ∈ IN :

sk(ν) = dimLk(ν)− dimLk−1(ν)− ρ(y)
pk(ν) = dim Lk(ν)− dim Lk−1(ν)− ρ(y)

Note that ρ̃k = pk(ν) and σ̃k = sk(ν) are constant for every ν ∈ Sk. From (35)
we also have

sk(ν) = pk(ν)− dim(Lk(ν) ∩X(ν)) + dim(Lk−1(ν) ∩X(ν)). (36)

We show now that

if there exists k̃∗ and some ν ∈ Sek∗ such that sek∗(ν) = pek∗(ν) = ρ̃,
then sek∗+1(ζ) = pek∗+1(ζ) = ρ̃ for every ζ ∈ Sek∗ .

(37)

Note that, from (37), a simple induction shows that sk(ζ) = pk(ζ) = ρ̃ for every
k ≥ k̃∗ and ζ ∈ Sek∗ . Furthermore, this last affirmation implies that Sk = Sek∗
for k ≥ k̃∗.

To show (37), assume that pek∗(ν) = sek∗(ν) = ρ̃ for some ν ∈ Sek∗ . From
(36), it follows that −dim(Lek∗(ν) ∩X(ν)) + dim(Lek∗−1(ν) ∩X(ν)) = 0. Since
the dimensions of Lek∗ ∩X and of Lek∗−1 ∩X are constant in Sek∗ , it follows that

pek∗(ζ) = sek∗(ζ) = ρ̃, for every ζ ∈ Sek∗ . (38)

So, for every ζ ∈ Sek∗ , we have − dim(Lek∗(ζ)∩X(ζ))+dim(Lek∗−1(ζ)∩X(ζ)) = 0.
Note from (36) that

sek∗+1(ζ)− pek∗+1(ζ) = − dim(Lek∗+1(ζ) ∩X(ζ)) + dim(Lek∗(ζ) ∩X(ζ)) (39)

for every ζ ∈ Sek∗ . By (33), (34) and (38), it follows that sek∗+1(ζ)−pek∗+1(ζ) ≥ 0.
Since the sequence lk = dim Lk ∩X|ζ is nondecreasing for a fixed ζ ∈ Sek∗ , we
have − dim(Lek∗+1(ζ) ∩X(ζ)) + dim(Lek∗(ζ) ∩X(ζ)) ≤ 0, the only possibility is
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to have both sides of (39) equal to zero for every ζ ∈ Sek∗ . Using (33) and (34)
again, then (37) follows. Note that a simple induction shows that (37) implies
7.

To complete the proof of 5, 6 and 7 it suffices to show the existence of
k̃∗ such that the assumption of (37) holds. Now take ν = ξ and recall that
lk = dim(Lk(ν) ∩ X(ν)) is nondecreasing for k = 0, . . . , n and it is least than
or equal to n = dim X. In particular, there exists some k̃∗ ≤ n such that
dim(Lek∗(ν)∩X(ν)) = dim(Lek∗−1(ν)∩X(ν)). By the definition of Sek∗ given in
6, we have ν = ξ ∈ Sek∗ . From (36) it is clear that sek∗(ν) = pek∗(ν).

(4). Note that, by 2,

Bk = {dt, dx̃k−1, dũk−1} = {dt, dxk−1, dωk, dz̄
(k)
k−1︸ ︷︷ ︸

Hk

, dµ̂k−1}

is a basis of Lk + span {du}. By 1 and (S1), Rk = {dt, dx̃k−1, dωk, dz̄
(k)
k } is

a basis of Lk. By (S2), µ̂k is chosen in a way to complete Rk into a basis of
Lk + span {du}. By 3 we may choose z̄

(k)
k ⊃ z̄

(k)
k−1. With this choice we have

Rk ⊃ Hk. Since one may complete the basis Rk by choosing elements of Bk and
Bk = Hk∪{dµ̂k−1}, it follows easily that µ̂k may be chosen among the elements
of µ̂k−1.

(8). The first part of 8 follows easily from 3, from the fact that card z̄k = σ̃k,
from 5 and from (32a). The second part of 8 follows easily from the equality
card z̄k = σ̃k, from the fact that the components of (dω

(k)
k , dz̄

(k+1)
k ) are inde-

pendent mod Lk and from the fact that σ̃k = ρ̃k = ρ̃ for k ≥ k̃∗.
(9) Recall that, by remark 9 (for k) and from the fact that ωk = ω(k), we

have that the set Ψ = {dt, dx̃k, (dω(k+1+j), dz̄
(k+1+j)
k , µ̂

(j)
k : j ∈ IN)} is (locally)

independent. Let Ωk := {dt, dx̃k, (dω(k+1+j) : j ∈ IN)} ⊂ Ψ. By 1, from the
fact that ω(α) = ȳ

(k∗+α)
k∗ and from part 8 of Lemma 1, it follows that Ωk is a

local basis of Lk + Y. In particular Ωk+1 = {dt, dx̃k+1, (dω(k+2+j) : j ∈ IN)} =
{dt, (dx̃k, dω(k+1), dz̄

(k+1)
k+1 ), (dω(k+2+j) : j ∈ IN)} = Ωk ∪ {dz̄

(k+1)
k+1 } is a local

basis of Lk+1 + Y. Since card z̄
(k+1)
k+1 = σ̃k+1, we have that 9 holds. 2

C Proof of Lemma 3

Proof. (i), (ii) and (iii). If ρ̃(z) = card z, the RDEA will construct in
the step k̃∗ a state representation (x̃ek∗ , ũek∗) of system S with the properties of
Lemma 2. In particular span

{
dx̃ek∗

}
= Lek∗ = Yk∗+ek∗ + Zek∗ .

By part 5 of Lemma 2, since ρ̃k is nondecreasing, it follows that we (locally)
have dim Lk

Lk−1
= dim Yk∗+k+Zk

Yk∗+k−1+Zk−1
= card z + ρ(y). By Lemma 1, we have

dim Yk∗+k

Yk∗+k−1
= ρ(y) for k ∈ IN . Then it is easy to show that dim (Yk∗+k + Zk) =

dim Yk∗+k + dimZk for k ∈ IN . In particular Yk∗+k ∩ Zk = {0} for k ∈ IN .
Now choose a (local) state transformation (t, x̃ek∗) ↔ (t, ξ) such that ξ =
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(x̂, η, z, . . . , z(ek∗)), and

span {dt, dη} = Yk∗+ek∗ (40a)

span
{

dt, dη, dz, . . . , dz(ek∗), dx̂
}

= Lek∗ = Yk∗+ek∗ + Zek∗ (40b)

With this choice, note that

card x̂ = dim
Lek∗
Lek∗

(41)

By (40) and (41) it follows that (iii) holds.
By construction we have, by part 8 of Lemma 1, that span {dt, dη, (dω

(j)
ek∗+1

:

j ∈ IN)} = span
{
dt, (dy(k) : k ∈ IN)

}
= Y. Note first that span {dη} ⊂ Y

and so span {dη̇} ⊂ Y. So it is easy to show that the system Y with lo-
cal coordinates (t, dη, (dω

(j)
ek∗+1

: j ∈ IN) and Cartan field ∂Y = ∂
∂t + ∂

∂η η̇ +
∑

j∈IN
∂

∂ω
(j)
ek∗+1

ω
(j+1)
ek∗+1

is an output subsystem of S with respect to the output

y. The map πY

(
t, x̂, η, (z(j), ω

(j)
ek∗+1

, µ̂
(j)
ek∗+1

: j ∈ IN)
)

=
(
t, η, (ω(j)

ek∗+1
: j ∈ IN)

)

is the corresponding Lie-Bäcklund submersion. Now let Z the subsystem with
local coordinates (t, (z(k) : k ∈ IN)) and Cartan field ∂ = ∂

∂t +
∑

j∈IN
∂

∂z(j) z
(j+1)

and corresponding Lie-Bäcklund submersion π(t, x̂, η, (ω(j)
ek∗+1

, z(j), µ̂
(j)
ek∗+1

: j ∈
IN)) = (t, (z(j) : j ∈ IN)). By construction it is clear that S is i-decomposed
by the family F0 = {Y, Z} and the system has the structure of Figure 1. This
shows (i), (ii) and (iii).

(iv). Now define the family of subsystems Si with local coordinates {t, (z(j)
i :

j ∈ IN)}, Cartan field ∂i = ∂
∂t +

∑
j∈IN

∂
∂z(j) z

(j+1) and corresponding Lie-

Bäcklund submersions πi(t, x̂, η, (ω(j)
ek∗+1

, z(j), µ̂
(j)
ek∗+1

: j ∈ IN)) = (t, (z(j)
i : j ∈

IN)). It is clear that the family of subsystems F = {Y, (Si : i ∈ bpe)} has the
properties of Definition 6. 2
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