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systems is developed. This condition is an integrability test that is based on a derived flag. The result is
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Resumo— Uma condição necessária e suficiente para existência de realizações próprias no espaço de estados
para uma classe de sistemas não lineares é desenvolvida. Esta condição é um teste de integrabilidade que é
baseada em um “flag derivado”. O resultado é generalizada para sistemas impĺıcitos
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1 Introduction

In previous works, some sufficient conditions for
the existence of proper realizations of nonlinear
implicit system have been presented (Pereira da
Silva and Batista, 2004; Batista, 2006). In this
paper, the results of these previous works are gen-
eralized in order to get, under mild assumptions,
necessary and sufficient conditions of the existence
of a proper realization on nonlinear explicit and
implicit system.

Our approach will follows the infinite dimen-
sional geometric setting introduced in control the-
ory by (Fliess et al., 1993; Pomet, 1995; Fliess
et al., 1999) in combination with the ideas pre-
sented in (Pereira da Silva and Corrêa Filho, 2001;
Pereira da Silva and Batista, 2004).

We will use the standard notations of differen-
tial geometry in the finite and infinite dimensional
case. A brief overview of the infinite dimensional
approach of (Fliess et al., 1999) is presented in
Appendix A. Some notations and definitions of
Appendix A are used along the paper (e. g. the
definition of system as a diffiety, and the defini-
tion of state representation as a local coordinate
system).

The field of real numbers will be denoted
by IR. The set of real matrices of n rows and
m columns is denoted by IRn×m. The matrix
MT stands for the transpose of M . The set of
natural numbers {1, . . . , k} will be denoted by
⌊k⌉. For simplicity, we abuse notation, letting
(z1, z2) stand for the column vector (zT

1 , zT
2 )T ,

where z1 and z2 are also column vectors. Let
x = (x1, . . . , xn) be a vector of functions (or a
collection of functions). Then {dx} stands for
the set {dx1, . . . , dxn}. The time derivative of a
function d

dt
u will be denoted by u̇ (or u(0)) and

the k-fold time derivative of u will be denoted by
u(k). If u = (u1, . . . , um) is a set of functions then

u(k) = (u
(k)
1 , . . . , u

(k)
m ) and ū stands for the set of

functions {u(k) : k ∈ IN}.
The problem of realization of input/output

nonlinear differential equations was extensively
studied in the literature (van der Schaft, 1987;
Glad, 1988; Crouch and Lamnabhi-Lagarrigue,
1988; van der Schaft, 1989; Liu and Moog, 1994;
Delaleau and Respondek, 1995; Moog et al., 2002).
A comparison between all these works can been
found in (Kotta and Mullari, 2003). The works
(van der Schaft, 1987; Glad, 1988; Crouch and
Lamnabhi-Lagarrigue, 1988; van der Schaft, 1989;
Liu and Moog, 1994; Moog et al., 2002) consider
the problem of giving proper realizations of in-
put/output equations of the form

y(n) = φ(y, ẏ, . . . , y(n−1), u, u̇, . . . , u(s)) (1)

where the highest derivative of y appears linearly.
Let S be a nonlinear system of the form

ẋ(t) = f(t, x(t), u(t), . . . , u(α)) (2)

A proper realization of this system is an equiv-
alent system of the form

ż(t) = f(t, z(t), u(t)) (3)

where z is a new state for the system with dim z =
dimx obtained by a generalized state transforma-
tion z = z(t, x, u, . . . , u(γ)). The necessary and
sufficient conditions of the existence of proper re-
alizations of (2) are given in (Delaleau and Re-
spondek, 1995).

Recall that in the behavioral approach of
(Willems, 1992) the input and the output are not
chosen a priori. The same point of view is shared
by the approach of (Fliess et al., 1999), and this



fact is in accordance of what is found in physical
systems. For instance, take an electrical trans-
former and consider the voltage of the primary
circuit as the input and the voltage of the sec-
ondary circuit as the output. In the same way,
one may consider the voltage of the secondary cir-
cuit as the input and the voltage of the primary
circuit as the output. Another interesting example
is the a DC motor, represented by the following
model

Li(1) + Ri + Kθ(1) = E (4a)

Jθ(2) + Bθ(1) = Ki − τ (4b)

where θ is the shaft angle, i is the current in the
motor (or in the load), L is is the inductance, E is
the external voltage, R is the resistance of the mo-
tor, τ is the external torque (or the load torque),
J is the inertia of the shaft, and K is the mo-
tor constant. When the input is the voltage E,
the disturbance input is load torque τ , and the
output is the shaft angle θ, the device is working
as a motor and one may give the following state
equations

d

dt
i = −(R/L)i − (K/L)θ(1) + E

d

dt
θ(0) = θ(1)

d

dt
θ(1) = −(K/J)i − (B/J)θ(1)

− (1/J)τ

y = θ(0)

with state x = (i, θ(0), θ(1)) input u = (E, τ) and
output y = θ(0). If one considers that the device is
working as a generator, one may take the external
torque τ as an input, the current i on the load as a
disturbance input and the voltage E as an output,
which produces the following state equations

d

dt
θ(0) = θ(1)

d

dt
θ(1) = −(K/J)i − (B/J)θ(1)

− (1/J)τ

y = Kθ(1) + Ri + Li(1)

with state x = (θ(0), θ(1)) input u = (τ, i) and out-
put y = E. Note that the dimension of the states
of the two state representations are different, and
the second state representation is not proper (with
respect to the output).

The equations (4) are the same for the motor
and the generator, since they represent the model
of the same physical system, but one may choose
a different set of inputs and outputs, giving rise to
different state equations. Motivated by this exam-
ple, one may state the following problem. Given a
system (2), when there exist a proper realization

ż(t) = f(t, z(t), v(t)) (5)

with a given input v? Now, v is a new input for
the system, and so, the new state z has not nec-
essarily the same dimension of the state x, as in
the example of the DC motor.

Now consider the following implicit system1:

F (t, ẇ(t), w(t)) = 0 (6)

Given a system (6), when there exists an equiva-
lent system (5) with a given input v? Note that
the transformation of a system of the form (6) into
the form (1) or (2) may be very difficult, since it
may be necessary to apply the implicit function
theorem several times. Hence, it is interesting to
answer this question without rendering the system
explicit.

The aim of this paper is to give necessary and
sufficient conditions for the solution of these prob-
lems. It must be pointed out that the statement
of the problems are not precise. They are given
here in order to motivate the paper and will be
stated in a precise manner later.

2 Explicit systems

Without loss of generality2, consider a system S
defined by

ẋ(t) = f(t, x(t), u(t)) (7)

where f is smooth with respect to its arguments.
In this paper, a system means a diffiety S de-
fined in the sense of the appendix (see also (Fliess
et al., 1999)). Let v = (v1, . . . , vm) be a set of
functions defined on the diffiety S. Note that each
vi may be a function of x, u(0), u(1), . . .. As stated
in the appendix, a state representation (x, u) is
a local coordinate system {t, x, (u(k) : k ∈ IN)}.
Hence, to say that there exists a local classical
realization with input v is to assure that there ex-
ists a set of functions z = (z1, . . . , zp) such that
{t, z, (v(k) : k ∈ IN)} is a local coordinate system
and the corresponding state equations are of the
form (5). Now we may state the following result

Theorem 1 Consider the system S defined by
(7). Then system (7) admits a local proper re-
alization with input v if and only if there exists
non-negative integers δ and γ, such that, for the
codistribution Γ0 defined on the diffiety S by

Γ0 = span
{

dt, dx, du(0), . . . , du(γ), dv(0), . . . , dv(δ)
}

and for the codistributions

Γk = span {ω ∈ Γk−1 | ω̇ ∈ Γk−1} (8)

we have
(i) Γk is nonsingular for k = 0, . . . , δ + 1, and

1It is easy to show that this class of systems include
input-output equations. Furthermore, it will be shown that
is not important whether an input u of the implicit system
is chosen a priori or not. The input v may be part of the
system variables w or not.

2If (7) were not proper, i. e. , if the system is of
the form (2), one may extend the state by taking x̃ =
(x, u(0), . . . , u(α−1)) and ũ = u(α).



dim Γk−1 − dim Γk = dim v for k = 1, . . . , δ + 1.
(ii) Γk is involutive for k = 0, . . . , δ + 1.
(iii) Γ0 = Γ1 ⊕ span

{
dv(δ)

}
.

(iv) The set {dv(k)} is locally linearly independent
for k = 0, . . . , δ.

The proof of necessity of Theorem 1 relies
on the next Lemma, whose proof can is an easy
adaptation of the results of (Liu and Moog, 1994;
Batista, 2006):

Lemma 2 Let S be a system defined by (5) and
let δ ∈ IN . Let Γ0 = span

{
dt, dz, dv, . . . , dv(δ)

}

and let Γk = span {ω ∈ Γk−1 | ω̇ ∈ Γk−1}. Then
Γk = span

{
dt, dz, dv, . . . , dv(δ−k)

}
and Γδ+1 =

span {dt, dz}.

The proof of sufficiency is based on the fol-
lowing result whose proof is ommited3:

Lemma 3 Let (x, u) be a local state represen-
tation of a system S, and let z = (z1, . . . , zp)
and v = (v1, . . . , vm) be sets of functions de-
fined on the diffiety S such that the set S =
{dt, dz, dv, . . . , dv(α)} is (locally) linearly indepen-
dent and span {dx, du} ⊂ S. Then (z, v) is also a
local state representation of S.

Proof: (of Theorem 1)
Necessity. Let (z, v) be a local classic state rep-
resentation of system S defined by (7) with state
equations 5. Since {t, z, (v(k) : k ∈ IN)}
is a local coordinate system of the diffi-
ety S, then x = x(t, z, v(0), . . . , v(α)) and
u = u(t, z, v(0), . . . , v(β)) for α, β big enough.
Hence, du(k) ∈ span

{
dt, dz, dv(0), . . . , dv(β+k)

}

for all k ∈ IN . In the same way, one may
write z = z(t, x, u(0), . . . , u(r)) for some
r ∈ IN . Now take δ = max{α, β + r}
and γ = r. By construction, it follows
that span {dz} ⊂ span

{
dt, dx, . . . , du(γ)

}
.

Hence, span
{
dt, dx, du, . . . , du(γ)

}
⊂

span
{
dt, dz, dv, . . . , dv(δ)

}
. In particular,

one shows that, for γ and δ constructed above,
Γ0 = span

{
dt, dz, dv, . . . , dv(δ)

}
. The proof of

necessity then follows from Lemma 2.
Sufficiency. It will be shown first that

span
{

dv, . . . , dv(δ−k)
}
⊂ Γk, k = 0, . . . , δ (9a)

and that

Γk = Γk+1 ⊕ span
{

dv(δ−k)
}

, k = 0, . . . , δ (9b)

The condition (9a) is a straightforward conse-
quence of the definition of (8). The equation
(9b) will be shown by induction. By the as-
sumptions of theorem 1, (9b) holds for k =
0. Assume that it holds for some k, with
0 < k < δ. By absurd, assume that Γk+2 ∩

3A similar result can be found in (Pomet, 1995).

span
{
dv(δ−k−1)

}
6= {0}. Since dim Γk+1 and

span
{
dv(δ−k−1)

}
are nonsingular, then Γk+2 ∩

span
{
dv(δ−k−1)

}
is a nonsigular smooth codistri-

bution. Let ω =
∑dim v

i=1 αidv
(δ−k−1)
i be a smooth

one form in Γk+2 ∩ span
{
dv(δ−k−1)

}
, where some

αi is not the null function. It follows that,

ω̇ =
∑dim v

i=1 [α̇idv
(δ−k−1)
i + αidv

(δ−k)
i ] ∈ Γk+1.

By (9a), one concludes that
∑dim v

i=1 αidv
(δ−k)
i ∈

Γk+1 ∩ span
{
dv(δ−k)

}
. This last condition con-

tradicts the induction hypothesis. Now, by (i),
one shows (9b). Now, let ω = dt. Since ω̇ = 0, it
follows that dt ∈ Γk, k = 0, . . . δ+1. In particular,
span {dt} ∈ Γδ+1. From the involutivity and non-
singularity of Γδ+1, and from Frobenius theorem,
there exists (locally) a set of functions {z1, . . . , zp}
such that Γδ+1 = span {dt, dz}. By (9b), it is
clear that the set S = {dt, dz, dv, . . . , dv(δ)} is (lo-
cally) linearly independent and Γ0 = span {S}.
So, by Lemma 3, it follows that (z, v) is a lo-
cal state representation for the system. By (9b)
for k = δ, and from (8), one concludes that
dżj ∈ span {dt, dz, dv}, and so this local state rep-
resentation is classic.

2

3 Implicit systems

3.1 Regular implicit systems

Now let ∆ be an implicit system of the form (6).
Let x = (x1, x2), where x1 = w and x2 = ẇ,
and let u = ẅ. It is clear that the system (6) is
equivalent to the semi-implicit system

ẋ1(t) = x2(t)

ẋ2(t) = u(t)

y(t) = F (x1, x2) = 0

which is in the form

ẋ(t) = f(x(t), u(t)) (10a)

y(t) = h(x(t), u(t)) = 0 (10b)

where f(x, u) = (x2, u)T and h(x, u) = F (x1, x2).
Hence, without loss of generality, it will be as-
sumed that the given implicit system ∆ is in the
form (10). Consider also that all the functions
defining (10) are analytic. It must be pointed out
that u is not the input of the implicit system, since
the relation y(k) ≡ 0 may induce differential rela-
tions among the components of u. For instance,
in the example of the DC motor working as a gen-
erator, if one adds the constraint y = RLi−E = 0
corresponding to an ohmic load RL, it is clear
that (τ, i) is no longer an input for the system.
In fact, y = 0 induce the differential relation
Kθ(1) +Li(1)−RLi = 0 between the components4

4The definition of state representation given in the ap-
pendix considers that {t, x, u, u̇ . . .} is a local coordinate
system, and so the variables t, x, u, u̇ . . . may not be linked
by any relation.



of x = (θ(0), θ(1)) and u = (τ, i). This explains
why x and u are called respectively pseudo-input
and pseudo state of (10).

The explicit system given by (10a) will be de-
noted by S. Consider the system S with Cartan
field d

dt
and output5 y = h(x, u), in the framework

of (Fliess et al., 1999) as defined in the last para-
graph of the appendix. Then y(k) stands for the

function dk

dtk y defined on S, which may depend on

x, u(0), u(1), . . ..
We may construct the following codistribu-

tions defined on the explicit system S defined by
(10a)

{
Yk = span

{
dx, dy, . . . , dy(k)

}

Yk = span
{
dy, . . . , dy(k)

} for k ∈ IN .

(11)
Let

∆̃ = {ξ ∈ S | y(k)|ξ = 0, k ∈ IN} (12)

(Prop. 1 shows that ∆ is a immersed submanifold
of S).

Definition 1 The implicit system ∆ is said to be
regular the codistributions Yk and Yk are nonsin-
gular for k = 0, . . . , n for every point ξ ∈ ∆̃, where
n = dim x.

The following theorem is a consequence of the
properties of the dynamic extension algorithm.

Theorem 4 (Pereira da Silva and Corrêa Filho,
2001, Theo. 4.3) Let S be the explicit system given
by (10a) with output y. Around a point ξ such that
the codistributions (11) are nonsingular for k =
0, 1, . . . , n, where n = dimx. Choose sets of func-
tions xb ⊂ x and ub ⊂ u such that span {dxb} ⊕
Yn = span {dx} + Yn, span {dxb, dub} ⊕ Yn =
span {dx, du} + Yn. Then there exists a classic
state representation x̃ = (xa, xb), ũ = (ua, ub) of
S of the form

ẋa = fa(t, xa, ua) (13a)

ẋb = fb(t, xa, xb, ua, ub) (13b)

in a way that Y = span
{
dt, (dy(k) : k ∈ IN)

}
=

span
{

dt, dxa, (du
(j)
a : j ∈ IN)

}
. This state repre-

sentation is adapted to the output subsystem Y , i.
e., (13a) are local (classical) state equations for Y .
Furthermore, xb and ub are such that span {dxb}⊕
Y = span {dx} + Y and span {dxb, dub} ⊕ Y =
span {dx, du}+Y and the set of functions {xa, ua}
can be locally chosen as a subset of {y(k) : k ∈ IN}.

Remark 1 A state represen-
tation ((xa, xb), (va, vb)) such
thatY = span

{
dt, (dy(k) : k ∈ IN)

}
=

5We regard y = h(x, u) as an output instead of being a
constraint.

span
{

dt, dxa, (du
(j)
a : j ∈ IN)

}
with state equa-

tions (13) is said to be adapted to the output
subsystem Y .

Definition 2 Consider a implicit system ∆ de-
fined by (10) and let S be the explicit system de-
fined by (10a). An equivalent system is a diffi-
ety ∆̃ such that there exists a Lie-Bäcklund im-
mersion ι : Γ̃ → S with the property that, for
every solution ξ(t) of S respecting the restriction
(10b), there exists a solution ν(t) of ∆̃ such that
ξ(t) = ι ◦ ν(t).

It can be shown that a regular implicit sys-
tem defined by (10a)–(10b) is equivalent to an
immersed system in the explicit system S defined
by (10a). This result is the Proposition 1 bellow,
whose proof is based on the last theorem.

Proposition 1 (Pereira da Silva and Cor-
rêa Filho, 2001; Pereira da Silva and Watan-
abe, 2002) Let ∆ be the implicit system (10). Let
S be the system associated to (10a). Let ∆̃ be
the subset of S defined by (12). Then the subset
∆̃ ⊂ S has a canonical structure of immersed (em-
bedded) submanifold of S such that the canonical
insertion ι : ∆̃ → S is a Lie-Bäcklund immer-
sion. Furthermore ∆̃ admits a local classical state
representation around every point ξ ∈ Γ and ∆̃ is
equivalent to ∆.

The idea of the proof of Proposition 1 is to
consider the local state representation of the last
theorem. It is shown that, {t, xa, xb, Ua, Ub} and
{t, xb, Ub} are respectively local coordinates for
S and Γ and, in these coordinates ι(t, xb, Ub) =

(t, 0, xb, 0, Ub) where Ua = {u
(j)
a : j ∈ IN} and

Ub = {u
(j)
b : j ∈ IN}.

It must be pointed out that the local state
equations of Γ are given by ẋb = fb(t, 0, xb, 0, ub).

3.2 Proper realizations of implicit systems

Definition 3 A (proper) realization of an im-
plicit system ∆̃ given by (10) is a (proper) state
representation (z, v) of an equivalent6 system ∆̃.
It is said to be adapted to subsystem Y is the exists
a local state representation of of S ((xa, z), (ua, v))
adapted to the output subsystem Y .

Consider a regular implicit system (10). Let
v = (v1, . . . , vs) be a set of functions defined on
the diffiety S associated7 to (10a). The set v is the
candidate for an input of the implicit system. The
following theorem gives necessary and sufficient
conditions solving the second problem stated in
the introduction.

6Equivalent in the sense of definition 2.
7The components of v may depend on x, u, u(1), . . .



Theorem 5 Consider the explicit system (10a).
Let Y be the codistribution, defined on S, given by
Y = span

{
dt, (dy(k) : k ∈ IN)

}
Then the implicit

system (10) admits a local proper realization with
input v adapted8 to the output subsystem Y , if and
only if there exist non-negative integers δ and γ,
such that, for the codistribution Γ̃0, defined on S
by

Γ̃0 = span
{

dx, du(0), . . . , du(γ), dv(0), . . . , dv(δ)
}

+Y

and for Γ̃k = span
{

ω ∈ Γ̃k−1 | ω̇ ∈ Γ̃k−1

}
, we

have
(i) Γ̃k/Y is finite dimensional and nonsingular for

k = 0, . . . , δ + 1, and dim Γ̃k−1

Y
− dim Γ̃k

Y
= dim v

for k = 1, . . . , δ.
(ii) Γ̃k is involutive for k = 0, . . . , δ + 1.

(iii) Γ̃0

Y
= Γ̃1

Y
⊕V (δ), where V (δ) =

span{dv(δ)}+Y

Y
.

(iv) The set {dv mod Y, . . . , dv(δ) mod Y} is lo-
cally linearly independent.

The proof of the last theorem mixes the results of
section 2 with the ones of section 3.1, and is omit-
ted because of the space limitations. The next
version of theorem 5 is more suitable for compu-
tations (see Example 2).

Theorem 6 Consider the explicit system (10a).
Let Y be the codistribution, defined on S, given
by Y = span

{
dt, dy(k) : k ∈ IN

}
Let δ, γ ∈ IN and

define the codistribution Γ̃0 by

Γ̃0 = span

{
dx, du(0), . . . , du(γ), dv(0), . . . , dv(δ)

}
+ Y

Then the implicit system (10) admits a local
proper realization with input v adapted to the
output subsystem Y , if and only if there exist
non-negative integers δ and γ, and a smooth
finite dimensional codistribution Γ0 such that
(1) Γ̃0 = Γ0 ⊕ Y.
(2) Let Γk = span {ω ∈ Γk−1 | ω̇ ∈ Γk−1 + Y}.Then
Γk is finite dimensional and nonsingular and
dim Γk−1 − dim Γk = dim v for k = 1, . . . , δ + 1.
(3) Γk ⊕ Y is involutive for k = 0, . . . , δ + 1.
(4) Γ0 ⊕ Y = Γ1 ⊕ span

{
v(δ)

}
⊕ Y.

(5) The set V = {dv, . . . , dv(δ)} is locally linearly
independent and span {V} ∩ Y = 0.

4 Examples

Example 1. Consider the system ẋ1 = x2,
ẋ2 = −x2x3 − x1u and ẋ3 = u. Let v = x3.
Take Γ0 = span {dt, dx1, dx2, dx3, du, dv, dv̇} =
span {dx1, dx2, dv, dv̇}. Simple calculations
give Γ1 = span {dt, dx1, dx2, dv} and Γ2 =
span {dt, dx1, dx2 + x1dv}. Hence, the conditions
of theorem 1 holds. Taking z1 = x1 and z2 =
x2 + x1v, it follows that Γ2 = span {dt, dz1, dz2}

8See Remark 1.

and so (z, v) is a local state representation for the
system, where z = (z1, z2). The corresponding
state equations are given by ż1 = z2 − z1v and
ż2 = 0 (note that the system is not controllable).
Example 2. One may rewrite the last example
in an implicit form, obtaining ẋ1 = x2, ẋ2 = x3

and ẋ3 = u2, ẋ4 = u1 and the constraint y =
x3 + x2x4 + x1u1 = 0. Let v = x4. Take Γ̃0 =
span {dt, dx1, dx2, dx3, dx4, du1, du2, dv, dv̇, dv̈} +
Y = span {dx1, dx2, dx4, du1, du̇1} ⊕ Y. Then,
simple calculations give Γ̃1 = span {dx1, dx2,
dx4, du1} ⊕ Y, Γ̃2 = span {dx1, dx2, dx4} ⊕ Y,
and Γ̃2 = span {dx1, dx2 + x1dx4} ⊕ Y. The as-
sumptions of theorem 5 holds. One may take
z = (z1, z2) where z1 = x1, z2 = x2 + x1x4. Not-
ing that x4 = v, one gets ż1 = x2 = z2 − z1v
and ż2 = ẋ2 + ẋ1v + x1v̇ = x3 + ẋ1v + x1v̇ =
y − x2v − x1u1 + ẋ1v + x1v̇. Since v̇ = ẋ4 = u1, it
follows that ż2 = y. Taking into account the con-
straint y ≡ 0, one gets the same state equations
of the first example.
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A Diffieties and Systems

IRA-Manifolds. Let A be a countable set. De-
note by IRA the set of functions from A to IR. One
may define the coordinate function xi : IRA →
IR by xi(ξ) = ξ(i), i ∈ A. This set can be
endowed with the Fréchet topology (see (Fliess
et al., 1999)). A function φ : IRA → IR is smooth if
it depends on a finite number of coordinates and
is smooth in the usual sense. From this notion
of smoothness, one can easily state the notions
of vector fields and differential forms on IRA and
smooth mappings from IRA to IRB . The notion of
IRA-manifold can be also established easily as in
the finitely dimensional case.

Given an IRA-manifold P, C∞(P) denotes
the set of smooth maps from P to IR. Let Q
be an IRB-manifold and let φ : P → Q be a
smooth mapping. The corresponding tangent and
cotangent mapping will be denoted respectively
by φ∗ : TpP → Tφ(p)Q and φ∗ : T ∗

φ(p)Q → T ∗
p P.

The map φ : P → Q is called an immersion if,
around every ξ ∈ P and φ(ξ) ∈ Q, there exist
local charts of P and Q such that, in these co-
ordinates φ(x) = (x, 0). The map φ is called a
submersion if, around every ξ ∈ P and φ(ξ) ∈ Q,
there exist local charts of P and Q such that, in
these coordinates, φ(x, y) = x.

Diffieties. A diffiety M is a IRA manifold
equipped with a distribution ∆ of finite dimen-
sion r, called Cartan distribution. A section of the
Cartan distribution is called a Cartan field. An
ordinary diffiety is a diffiety for which dim ∆ = 1
and a Cartan field ∂M is distinguished and called
the Cartan field. In this paper we will only con-
sider ordinary Diffieties that will be called simply
by Diffieties.

A Lie-Bäcklund mapping φ : M 7→ N between
Diffieties is a smooth mapping that is compatible

with the Cartan fields, i. e. , φ∗∂M = ∂N ◦ φ.
A Lie-Bäcklund immersion (respectively, submer-
sion) is a Lie-Bäcklund mapping that is an immer-
sion (resp., submersion). A Lie-Bäcklund isomor-
phism between two diffieties is a diffeomorphism
that is a Lie-Bäcklund mapping. Context permit-
ting, we will denote the Cartan field of an ordinary
diffiety M simply by d

dt
. Given a smooth object φ

defined on M (a smooth function, field or form),
then φ̇ stands for L d

dt
φ and Ln

d
dt

φ = φ(n), n ∈ IN .

Systems. The set of real numbers IR have a
trivial structure of diffiety with the Cartan field
d
dt

given by the operation of derivation of smooth
functions. A system is a triple (S, IR, τ) where
S is a diffiety equipped with Cartan field ∂S

and τ : S 7→ IR is a Lie-Bäcklund submersion.
The global coordinate function t of IR represents
time, that is chosen for once and for all. A Lie-
Bäcklund mapping between two systems (S, IR, τ)
and (S′, IR, τ ′) is a time-respecting Lie-Bäcklund
mapping φ : S 7→ S′, i. e. , τ ′ = τ ◦ φ. Context
permitting, the system (S, IR, τ) is denoted simply
by S.

State Space Representation and Out-
puts. A local state representation of a sys-
tem (S, IR, τ) is a local coordinate system, ψ =

{t, x, U} where x = {xi, i ∈ ⌊n⌉}, U = {u
(k)
j |j ∈

⌊m⌉, k ∈ IN} where τ ◦ ψ−1(t, x, U) = t. The set
of functions x = (x1, . . . , xn) is called state and
u = (u1, . . . , um) is called input. In these coordi-
nates the Cartan field is locally written by

d

dt
=

∂

∂t
+

n∑

i=1

fi
∂

∂xi

+
∑

k∈IN,
j∈⌊m⌉

u
(k+1)
j

∂

∂u
(k)
j

(14)

A state representation of a system S is completely
determined by the choice of the state x and the
input u and will be denoted by (x, u). An output
y of a system S is a set of functions defined on S.

System associated to differential equa-

tions. Now assume that a control system is given
by a set of equations

ṫ = 1
ẋi = fi(t, x, u, . . . , u(αi)), i ∈ ⌊n⌉
yj = ηj(x, u, . . . , u(αj)), j ∈ ⌊p⌉

(15)

One can always associate to these equations a diffi-
ety S of global coordinates ψ = {t, x, U} and Car-
tan field given by (14).

Subsystems. A (local) subsystem Sa, of a
system S is a pair (Sa, π), where Sa is a system
with a time notion τa and Cartan field ∂a, and π
is a Lie-Bäcklund submersion π : U ⊂ S → Sa

between the system U ⊂ S and Sa. A local state
representation x = (xa, xb), u = (ua, ub) is said to
be adapted to a subsystem Sa if we locally have

ẋa = fa(t, xa, ub) (16a)

ẋb = fb(t, xa, xb, ua, ub) (16b)

and (xa, ua) is a local state representation of Sa

with state equations (16a).


