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Abstract

In this work we consider a class of nonlinear flat systems
evolving on the tangent bundle T'G of a Lie-Group G. For
this class of systems every set of local coordinate functions
is a local flat output. As a consequence, the canonical
projection of TG on (G acts as a global flat output, called
flat information. It i1s shown that a stabilization control
law for such a system induces canonically a control law
for tracking assintotically any desired trajectory on G. It
is show that €(t) = g(t)h=1(t) is a “global” tracking er-
ror information, where h(t) is the desired trajectory on GG
and ¢(t) is the actual position. An application of these
results to attitude control is presented. Based on a robust
(nonlinearizing) global stabilization strategy, a control law
for tracking assintotically a desired trajectory on SO(3) is
designed. Some computer simulations of the closed loop
system are presented.

keywords Nonlinear systems, Lie-Groups, flatness, Lya-
punov stability, tracking, attitude control.

1 Introduction and Motivation

The problem of feedback linearization i1s an important
structural problem in control systems theory. This prob-
lem was completely solved by static-state feedback [13, 12]
but the necessary and sufficient conditions for the solv-
ability of this problem by dynamic state feedback is yet
an open problem (see for instance [2, 23, 3, 28] for some
results about this problem).

The notion of differential flatness, introduced by Fliess
et al [8, 9, 10, 7], is strongly related to the problem of
feedback linearization [23], [11], [27], [16], [20], [30], [24],
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[1], [32].

Roughly speaking, a system is flat if and only if there
exists a differentially independent set of functions y =
(Y1, ..., Ym), called flat output, such that every variable of
the system is a function of the flat output and its deriva-
tives.

In many applications (e.g. [10], [16], [22]) the flat out-
put of a given model has a physical meaning. Hence, the
problem of tracking a desired trajectory of the flat output
1s very important in pratice.

The idea is to compute the input as a function of the
desired output y(t) and its derivatives. Note that flatness
of a system implies dynamic feedback linearizability and
this could be a way to ensure the stabilization. However,
the property of flatness can be used only for tracking a
desired trajectory of the flat output, without having exact
linearization.

In section 2 we will consider a class of nonlinear control
systems evolving on the tangent bundle of a Lie-Group G.
This class of systems will be shown to be flat. For these
systems, the canonical projection of a point of TG on G
plays the role of a “global” flat output, that will be called
flat information. Furthermore, given a state feedback that
stabilizes the system (not necessarily producing exact lin-
earization), then this feedback induces canonically a con-
trol law that assures assintotic tracking of any desired tra-
jectory h(t) € G. We will se that a natural way to consider
the tracking error is to compute €(t) = g(t)h=1(¢) where
g(t) is the actual position on the Lie-Group and h(t) the
trajectory to be tracked.

In section 3 we present an application to attitude control.
In fact the results of section 2 are inspired on the results

of [17].

The idea of considering a tracking error of the form gh~!
for attitude control, at least in the case where h is a fixed



point of G, was presented in [17] as well as a control law for
stabilization based on Fuler theorems. Our stabilization
control law is a little bit different than the ones developed
in [17, 18] and it is intrinsically robust since the closed loop
stability does not depend on the knowledge of the system®.
The Lyapunov based control laws of [19, 18, 34, 35, 31] are
also closed related to ours. Other authors considered the
control synthesis by a exact linearization strategy [5, 6,
25, 21, 26]. We stress that attitude control is a very old
topic in control sciences and our list of citations of related
results might be incomplete.

We will use standard notations of differential geometry
and some elementary properties of Lie-Groups [33]. Given
a matrix M, then M7 stands for its transpose. If G is a
smooth manifold we denote a point of G by ¢ and its
expression in local coordinates by g. Given a smooth map
¢ : G — H between smooth manifolds then ¢.(g) : T,G —
Ty(g)H denotes its tangent mapping.

2 A class of flat systems

In this section we will present a class of nonlinear systems
evolving on the tangent bundle of a Lie-Group. For this
class of systems it 1s shown that the solution of the stabi-
lization problem induces a solution of a tracking problem.

Definition of the class of systems. Let G be a Lie-
Group [33] with identity e. Denote by g1 ¢2 the product of
two elements of G and let L, : G — G be the left trans-
lation given by Ly(h) = gh and R, : G — G be the right
translation given by Ry(h) = hg. Then L, and R, are
both diffeomorphisms of G into G and (Ly)™' = L,-1,
(Ry)™" = Ry-1. A local coordinate system ¢ = g in-
duces a local coordinate system . = (g,g")) of TG.
Given a smooth curve g(t) on G, then ¢(t) € T,G is de-
fined by g*(%)(t) and expressed in local coordinates by

(g(1), 3V (1))
For each fixed ¢ € G, then (Ly).(§) : T:G — Tr,6)G

is an isomorphism of finite dimensional vector spaces. In
particular, taking ¢ = £ ' we see that the tangent bundle
TG may be canonically identified with the trivial bundle
G x T.G. In fact, we can define the diffeomorphism ¢ :
TG — G xT.G by ¢(& ve) = (& (Lg-1)xv¢). Note that
61, v) = (€. (Le)wv).

Let my : G xT.G— G and 7y : G x T,G — T.G be the
canonical projections. Since G x T.G is a trivial bundle
then T(G x T,G) = TG x T(T.G) This means that every
field f on T'G may be canonically written as (f1, f?) where
J1 and f? are given respectively by f! = (m1).f and f% =
(m2)f.

IThe control laws developed in [17, 18] depend on the inverse of
the inertia matrix J.

Denote a point of G x T.G by (g,w). Now consider the

class of nonlinear control systems evolving on TG = G x

T.G of the form

it = Fg).w)
S) = gl wt), u(t)) 1)

where f : G x T,G x U — TG x T(T.G) is a smooth
field controlled by the input u(t) € 4 = IR™. The field
components f! : G x T,G xU — TG and f? : G x T,G x
U — T(T.G) are defined respectively by f' = 7, f and
f? = 75, f. We will assume that :

e (H1) The map f! does not depend on u € U. So
it may be regarded as a map f' : G x T.G — TG.
Furthermore 1t is assumed to be a diffeomorphism
from G x T.G to TG such that 7o fl(g,w) = g,
where 7 : T'G — G is the canonical projection.

e (H2) There exists a smooth map p : G x T(T.G) —
U such that f?(g,w,p(g, (w,v)) = (w,v) for all g €
G,weT.Gand v € T,(T.G).

It is clear that (H1) means that the information of ¢(t) is
the same of (¢(¢),w(?)). The assumption (H2) means that
we can control w(t) freely.

Note that (H1) implies that there exists a map & : TG —
T.G such that

FH(9,8(9,v9)) = v (2:2)
for all (g,vy) € T. By (H2) it follows that for all fixed
(9,w) € G x TG, the map U T (T.G) defined
by P(u) = f*(g,w,u) is a diffeomorphism (with inverse
H(v) = p(g, (w,v))). In particular we must have dimif =
dimT.G.

Local flatness of the class of systems. Let (g,w) be
a local coordinate chart of G x T,G and consider that the
local expression of (2.1) in these coordinates are given by

i = e, e)
S = P, o), u(t))

By (H1), the map ¢ such that ((g,o) = (g, f}(g,»)) is a
dipheomorphism of open subsets of an Euclidean space.
Let g = f1(g,@). Then (g, g") is also a new local co-
ordinate system and @ = &(g,§")). In these coordinates
we have

(2.3)

(1)
q
@8 + Sl F2(3,9)

7
. 2.4
g(1> (2.4)

By (H1) it is clear that %%1|(§ S(3.50)) is nonsingular. By
(H2) it is not difficult to show that we may take the local
state feedback u = p(g,w,0(g,w,v)), where v(t) € U is
the new input and 6 = {%%}_1[—%%15(1) +v]. The closed
loop system will locally read

g

v

7
(1
g()



We conclude that any local set of coordinate functions g
for GG is 1n fact a local flat output of our class of nonlinear
systems.

Flat information. The problem of taking local coor-
dinate functions as a flat output for the system is that
a control law based on this flat output might be defined
only locally. We will show that the canonical projection of
G x T.G on G plays the role of a global flat output in the
sense the canonical projection on GG of a curve on G x T,
determines completely the solution of system (2.1).

Proposition 1 For every smooth curve g(t) on G there
exists a unique smooth curve X(t) on GxT.G and a unique
u(t) €U depending smoothly on E(t) € T(G x T.G) such
that (t) is a solution of system (2.1) with input u(t) and

m(X(1)) = (1)

Proof. Let # : TG — G be the canonical projec-
tion. Since ¢ i1s a map from I C IR to TG such that
7(9(t)) = ¢(t), by (H1) and (2.2) it follows that there
exists a unique smooth curve w : I — T.G given by
w(t) = @(g(t)) on T.G such that fl(g(t),w(t)) = ¢(t).
By (H2) we may define u(t) = p(g(t),w(t)). In this way
we will have f2(g(t),w(t),u(t)) = w(t). By construction,
Y(t) has the claimed properties. a

Remark 1 Given any smooth curve h(t) on G we will

denote S(t) = (h(1),wn(?)).

Assume that we have constructed a (global) assintotic sta-
bilization feedback law such that e is the (unique) equilib-
rium point. Call the closed loop system by S.. Then this
control law induces canonically a solution of the problem
of tracking a desired trajectory on G in a way that the
error dynamics coincides with S,.

Proposition 2 Assume that F': G x T,G — U is a state
feedback such that the closed loop system

FHg(),w(1)

w(t) = LAet),w(), Fg(t),w(1)))

has a (unique) equilibrium point (e,0) € G x TG which is
(globally) assintotically stable. Let h(t) be a smooth curve
on G. Let €(t) = g(t)h=1(t). Denote by X, the curve on
G x T.G obtained from e(t) by proposition 1. Then there
exists a control law u(t) = H(g(t),w(t),e(t), we(t),we(t))

-

VannS
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(2.5)

such that
() = fet)weld))
odlt) = Plet)wdlt) Fet) w20

),
In particular we have limy oo (€(t),we(t)) — (e,0) for all
smooth curves h(t) and all initial conditions g(ty) and

w(to).

Proof. Let ¢ = (g,w) be a local coordinate chart of G x
T.G and let (2.3) be the local expression of (2.1). Let ¢ :
G x G — G defined by ¥(h,g) = gh~'. Since (L, '(g) =
Ly-1(g) = ¢(h,g) is a diffetomorphism, it follows that,
in local coordinates, the Jacobian J1/)(h g) is of the form
JU = (A(h q) (h g)) where B(h,g) is a nonsingular
matrix for every (h,¢) € G x G. So, differentiating €(t)
with respect to time
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Differentiating once more, we obtain

=(1) 7 - - -
e (1) C(h(t),wn (), g(t),w(t)ﬂ-
BYrt + 5] 27
Let w (t) = &(é(t)) as defined by (2.2). In local the coor-

dinates (¢,e1) for TG we may write €(t) = (€(t), e(t))
and &(t) = G(&(t), €1 (1)). Hence
Oty = L) 4 LY (2.8)

Substituting (2.7) in (2.8) we obtain

. - oo oft .,

we(t) = Sl(hawhawhaga ) a (1) a fz( ) (29)
By (H1) and (H2) it is easy to verify that the matrices
% and % are both nonsingular. Hence the matrix
M(h,wn,0n,§,0) = 62?"1) % is nonsingular. it follows
that we may construct u(t) = p(g(t),@(t), @1 (t)) where
wD(t) = M~f2((t),@(t), F(e(t),@(t)) — S1] and g is
the map defined in the assumption (H2). a

Remark 2 Taking h(t) = (ho)~!,Vt € IR, by the last re-
sult we conclude that for this class of systems, global ass-
intotic stabilizability around (e,0) implies assintotic sta-
bilizability around any point (hg,0)

3 An application to attitude con-
trol

The equations of attitude control of a spacecraft modeled

as a rigid body are

Alt) =
Jw

S(w)A(t)

Sw)Jw + T (3.10)

where A(t) € SO(3) is the attitude matrix, J is the sym-
metric positive definite inertia matrix, 7 is the torque pro-
duced by the actuators and S(w) is the matrix such that



S(w)v = v Aw for all w,v € IR? and is given by :

0 W3 —W9
Sw)=| —ws 0w
Wo —W1 0

The columns of A(t) represents the three vectors of an
inertial frame when written a frame of the spacecraft. The
vector w(t) € IR? is the angular velocity of the spacecraft.
Note that this systems evolves on T'SO(3) = SO(3) x IR3,
the tangent space of the Lie Group of orthogonal matrices
of positive determinant.

It is easy to verify that this system is of the class defined
in section 2.

Consider the following problems :

Stabilization Problem. - Given a desired attitude A4 €
SO(3) find a feedback law 7 = ¢(A(t), Ag,w) in a way that
lim; .o A(t) = Ag for any initial condition (A(0),w(0)) €
S0(3) x IR3.

Without loss of generality we shall consider Aq = I. (see
the remark 2.

Tracking Problem. Given a desired smooth attitude
trajectory Aq(t) € SO(3) find a control law

7= G(A(t), Ag(t), Aa(t), Aq(t),w)

in a way that lim;_o[A(f) — Ag(¢)] = 0 for any initial
condition (A(0),w(0)) € SO(3) x IR3.

The well known Euler’s theorem on rotations [17] can
be used to solve this problem by a kind of proportional-
derivative control law. Note that ¢ : SO(3) — S? and
¢ : SO(3) — [0, 7] are respectively the Euler axis and
the Euler angle and S? denotes the unity sphere in IR>.
Remember that the Euler angle —y is the angle that we
have to rotate the body around the axis ¢ in a way that
the three axes the body frame become aligned with the
inertial frame. Note that when these axes are aligned we
have A(t) = I. Tt can be shown [29], [17] that ¢ is the
solution of Ac = ¢ and ¢ € [0, %] can be calculated by
the relation cos¢ = (trace(A) — 1)/2. Then ¢(A) = 0 if
and only if A = I. The map ¢ is continuous. Because of
singularity problems, we define ¢(I) = (1,0,0)%, and

1

sin @

o(A) = q(4)

when ¢ # 0 and ¢ # 7, where ¢ : SO(3) — IR? is defined
by Q(A) = (Clz3 — a32,031 — @13, 012 — 021)T and a;; are
the elements of A. When ¢ = 7, one we define ¢ by
choosing a solution of ec? = (I + A)/2 (note that if ¢
is a solution of this equation then —é is also a solution).
With this definition, it can be shown that the map c is
not continuous in the identity matrix and in the points

of SO(3) such that ¢(A) = m. In all other points this
mapping 1s smooth. On the other hand, the map cp is
continuous on the identity matrix but not on the matrices
A that ¢(A) = 7 (this map changes the sign around these
points).

We will denote the Euler’s axis and angle of an orthogonal
matrix A by (c(A), ¢(A)) or simply (e, p) when it is clear
from the context. We stress that the map d : SO(3) x
SO(3) — [0, 7] such that d(A, B) = ¢(AB~!) is a metric
on SO(3).

Solution of the stabilization problem. Now we will
show that a proportional derivative control assures global
assintotic stabilization.

Theorem 1 The following control law

7= —(ap)e — fw (3.11)
solves the global stabilization problem, where o and B are
positive constants.

Sketch of Proof. One has to study the case when
the trajectory may contain points where ¢ = w. Here
we simplify the presentation, considering only the main
ideas of the proof. Consider the Lyapunov candidate
V 1 SO(3) x IR3 — IR such that V(A4,w) = ¢?/2+ wT Jw.
Computing V along the trajectories of (3.10) and using
proposition the fact that ¢ = w”¢ [17], we obtain :

Vig,w) = —T (S(w)Jw) — Bl

Consider first the case ¢ # 7. Since S(w)Jw = —w A (Jw)
and the last term is orthogonal to w, it follows that

Vig,w) = —fllw|l”

When ¢ = 7, a similar analysis shows that if we assume
that V = 0 implies w = 0.

Let © = S0O(3) x IR3. Tt is easy to verify that the set
Q={zcQ:V(z)=0} C{(Aw)€Q:w=0} does not
contain any nontrivial trajectory. Then by a convenient
extension of LaSalle’s theorem (see [15]) the result follows.
O

Remark 3 [t can be shown (see [14, 4]) that the Lya-
punov function V(p,w) = thap’+ LtkwT Jw + ||cT Jwy|
may be useful to conclude the exponential stability of the
proposed control law by choosing a convenient k > 0.

Solution of tracking problem. Define the tracking er-

ror E(t) € SO(3) by



E(t) = A AL (1) (3.12)

differentiating we obtain
E(t) = S(w)A()AF (1) + A()AZ (2)

Note that there exists some smooth curve wq(t) such that
Aa(t) = S(wq)Aq(t). Since S(wq) is skew symmetric, and
as E(t) = A(t)AL (1), the last equation implies that

E(t) = S(w)E(t) — E(t)S(wa)

now using the fact that S(y)x = —yAx and that E(yAz) =
Ex A Eyfor an orthogonal matrix F and for all =,y € IR?,
it is easy to verify that ES(y) = S(Ey)E for all y € IR3.
So

B(t) = [S() - S(Bwa)]B(@).

Since S(xz 4+ y) = S(x) + S(y), we conclude that E(t) =
S(w—FEwq)E(t). By the uniqueness of wg(t) in the expres-
sion E(t) = S(wg)E(1), it follows that wg(t) = w — Fw,.

Differentiating Jwg we obtain

Jug = S(w)Jw + 17— JS(wg)Fws — JFEw,.

Define
T=-Sw)Jw+ JS(wg)Pws— JEwqs+ Tp (3.13)

where
5 = —(apg)cg — Bwp (3.14)

and «, B are positive constants. By construction we have

E(t) =
Jwg =

S(wr)E(1)

1
S(WE)JWE—I—TE (3 5)

where 7 is given by (3.14). By theorem 1 applyed to the
closed loop system (3.15)-(3.14) it follows that
lim; oo (E(t),wr(t)) = (I,0).

We present now some computer simulations for the track-
ing problem. We have chosen “low” gains o« = 20 and
G = 10. To give an idea of the what is going on with A
we presented the evolution of the Euler angle ¢(A(?)). A
plot of the tracking error angle ¢(F(1)) is also presented
as well as a plot of ||7(2)]]
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