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Abstract. In this paper, the Dynamic Extension Algorithm (DEA) is studied in the context of
an infinite dimensional geometric differential approach recently introduced in control theory. Some
known properties of the DEA are revisited in this setting. These properties are also generalized
for nonaffine and time-varying nonlinear systems. To illustrate the usefulness of these results, we
develop some characterizations of flatness of nonlinear systems and we establish the uniqueness of
the notion of differential dimension for connected smooth systems that admits state representations
around every point.
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1. Introduction. The input-output decoupling problem consists in finding feed-
back such that for the closed loop system each output component is affected by one and
only one input component. Its solution by regular dynamic state feedback has been
widely studied for nonlinear systems by ([60, 13, 16, 14, 44, 17, 26, 39, 42]. A weaker
version of this problem is the block input-output decoupling problem ([43, 15, 17]).
A related problem to input-output decoupling is input-output linearization of non-
linear systems. This problem consists in finding a feedback in such a way that the
input-output behavior of the closed loop system is linear ([36, 56, 35, 10]). For the
disturbance decoupling problem one is interested in finding feedback which render
the output insensible to the disturbance variables. As the input-output decoupling
problem, it has been widely considered in the context of regular dynamic state feed-
back ([16, 30, 54, 31, 7, 47, 52, 48, 4]).

The “Structure Algorithm” was introduced for linear systems in [59] for study-
ing the inversion of linear systems. Motivated by the study of the left-inversion and
the problem input-output decoupling , this algorithm was extended for nonlinear sys-
tems in [29, 61, 40]. The “Dynamic Extension Algorithm” [13, 14, 44] was motivated
for studying the right-inversion of nonlinear systems and was shown to be useful for
solving the nonlinear input-output decoupling problem. An interpretation of both
algorithms in an algebraic framework was introduced in [15], showing that they are
essentially a tool for computing a basis of some spaces. In [11, 12], based on the differ-
ential algebraic approach of [17], it is show that these algorithms are strongly related
to the notion of quasi-static state feedback, a class of feedback that is rich enough
in order to solve most of the nonlinear synthesis problems (input-output decoupling,
input-output linearization and disturbance decoupling).

The notion of differential flatness, introduced by Fliess et al [18, 20], corresponds
to a complete and finite parametrization of all solutions of a control system by a
differentially independent family of functions. Feedback linearization, strongly related
to the notion of differential flatness, is an important structural problem in control
systems theory. This problem was completely solved in static-state feedback case
[37, 32] but necessary and sufficient conditions for feedback linearizability by dynamic
state feedback are not yet known (see [8, 57, 9, 25, 62, 64, 58, 3, 55, 63, 28, 66]).

∗This work was partially supported by Conselho Nacional de Desenvolvimento Cientifico e Tec-
nologico (CNPq) under grant 300492/95-2..
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The aim of this paper is to establish the interpretations of [15] and [11] in the
context of the infinite dimensional geometric setting of [19, 53, 21, 22, 23]. We do not
study any control synthesis problem here. Nevertheless, this algorithm is instrumental
for studying several important problems in control theory. From this point of view
this paper establishes a tool for future works based on the geometric approach of
[19, 53, 23] (see for instance [51, 49, 50]). These interpretations are generalized for non-
linear time-varying systems. To illustrate the usefulness of these results, we develop
some characterizations of flatness of nonlinear systems. These characterizations are
instrumental for developing necessary and sufficient conditions of flatness of nonlinear
systems (see [49, 50]).

The paper is organized as follows. In section 2 the notation and some mathemati-
cal background is presented. The infinite dimensional differential geometric approach
of [19, 53] is briefly summarized in section 3. The Dynamic Extension Algorithm is
presented in section 4. The geometric interpretation of this algorithm is discussed in
section 5. The extensions for time-varying systems are discussed in section 6. Some
applications of these results for nonlinear system theory is presented in section 7.
The analytic case of the geometric interpretation of DEA is developed in section 8.
Finally, some conclusions are stated in section 9.

2. Preliminaries and notation. The field of real numbers will be denoted by
IR. The set of natural numbers {0, 1, 2, . . .} will be denoted by IN . The subset of nat-
ural numbers {1, . . . , k} will be denoted by bke. If H is a finite set then card H stands
for the number of elements of H. We will use the standard notations of differential
geometry in the finite and infinite dimensional case [68, 69]. Let us briefly recall the
main definitions of the infinite dimension setting introduced in control systems theory
[19, 53, 23]. This approach is mainly based on the differential geometry of jets and
prolongations (see for instance [1, 2, 27, 33, 38, 46, 67, 69, 65]) whereas the approach
of [34] and [45] is based on finite dimensional differential geometry [68].

Let A be a countable set. Denote by IRA the set of functions from A to IR. One
may define the coordinate function xi : IRA → IR by xi(ξ) = ξ(i), i ∈ A. This set can
be endowed with the Fréchet topology (i.e., an inverse limit topology, [5, 6, 69]). A
basis of this topology is given by the subsets of the form B = {x ∈ IRA | |xi − δi| <
εi, i ∈ F}, where F is a finite subset of A and δi ∈ IR and εi is a positive real number for
i ∈ A. A function φ : IRA → IR is smooth if φ = ψ(xi1 , . . . , xis), where ψ : IRs → IR is
a smooth function. Only the dependence on a finite number of coordinates is allowed.

From this notion of smoothness, one can easily state the notions of vector fields
and differential forms1 on IRA and smooth mappings from IRA to IRB . The notion of
IRA-manifold can be also established easily as in the finitely dimensional case [69].

Given an IRA-manifold P, C∞(P) denotes the set of smooth maps from P to
IR. Let Q be an IRB-manifold and let φ : P → Q be a smooth mapping. The
corresponding tangent and cotangent mapping will be denoted respectively by φ∗ :
TpP → Tφ(p)Q and φ∗ : T ∗φ(p)Q → T ∗pP.

The map φ is called an immersion if there exists local charts of P and Q such
that, in these coordinates φ(x) = (x, 0). The map φ is called a submersion if there
exists local charts of P and Q such that, in these coordinates, φ(x, y) = x.

In the finite dimensional case, immersion and submersions are locally character-

1We stress that the forms are finite combinations of the form
∑

i
aIi

dxIi
, where Ii is the multi-

index (ji,1, . . . , ji,ri ), the aIi
are smooth functions, dxIi

= dxji,1 ∧ . . .∧ dxji,ri
. On the other hand,

the fields are (possibly) infinite sums of the form
∑

i∈A
ai

∂
∂xi

.
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ized respectively by the injectivity and surjectivity of the tangent mappings. However,
in the infinite dimensional case this is no longer true. Moreover, the inverse function
Theorem and the classical Frobenius Theorem (for distributions) do not hold and a
field does not admit a flow in general [69].

Given a field f and a 1-form ω on P, we denote ω(f) by 〈f, ω〉. The set of smooth
k-forms on P will be denoted by Λk(P) and Λ(P) = ∪k∈INΛk(P).

A smooth codistribution J is a C∞(P)-submodule J ⊂ T ∗P. If J is a codistrib-
ution, then J(p) denotes the subspace of T ∗pP given by spanIR {ω(p)| ω ∈ J}.

Remark 2.1. One may accept an alternative definition of a codistribution J as
a map that associates to p ∈ P a subspace of T ∗pP. (i.e., a section of the cotangent
bundle T ∗P). ♠

Assume that a codistribution I is locally generated by η1, . . . , ηk and that Ψ =
{xi| i ∈ A} is a local coordinate system around some open set U ⊂ P. As ηi =∑

finite αijdxi for convenient smooth functions αij , then there must exist some finite
subset A0 ⊂ A such that all the functions αij depend only on {xi| i ∈ A0} and
ηi ∈ span {dxj | j ∈ A0}. Consider the finite dimensional vector space IRA0 and the
canonical submersion π : U → IRA0 such that π ◦Ψ−1(xi| i ∈ A) = (xi| i ∈ A0). It is
clear that the one-forms η̃i =

∑
finite αijdxi on the open neighborhood π(U) ⊂ IRA0 are

such that η̃i = π∗ηi, i ∈ bke. Furthermore, if Ĩ = span {η̃i| i ∈ bke}, then I = π∗Ĩ. In
other words one may apply to (locally) finitely generated codistributions the standard
techniques of differential geometry, for instance the Frobenius Theorem, by “pulling-
back” the results that hold on the finite dimensional case [53].

Proposition 2.1. Let Ω be a codistribution defined on P generated by a finite
set of one forms {ω1, . . . , ωs}. Then the set of regular points of Ω is open and dense
in P.

Proof. For each local coordinate system {xi|i ∈ A} around ξ ∈ P, one may apply
the construction above for each form ωi. For convenient finite A0 ⊂ A, there exists
a surjective submersion π : V ⊂ P → Ṽ ⊂ IRA0 , where V, Ṽ are open neighborhoods
respectively of ξ and π(ξ), and there exist forms ω̃i defined on Ṽ such that ωi =
π∗ω̃i. Let Ω̃ = span {ω̃1, . . . , ω̃s} By construction, Ω = π∗Ω̃. Note also that π∗ is
injective and so it preserves dimensions of codistributions. In particular, dim Ω(ν) =
dim Ω̃(π(ν)) for all ν ∈ V . From a known result of finite dimensional differential
geometry, we have that the set R̃ of regular points of Ω̃ of is open and dense in Ṽ .
Since π is surjective, it follows that the set of regular points of Ω, which is given by
π−1(R), is open and dense on V . Hence the result follows from the fact that, for all
ξ ∈ P, the set of regular points of Ω is dense in some open neighborhood of ξ.

The following Lemma will be useful for showing the uniqueness of the differential
dimension.

Lemma 2.2. Let S be an IRA-manifold and let V be an open connected subset of
S. Then V is pathwise connected, i.e., for every ξ0, ξ1 ∈ S there exists a continuous
map σ : [0, 1] → V such that σ(0) = ξ0 and σ(1) = ξ1.

Proof. Let B be a basic open set (of the basis B of the Fréchet topology) of the
linear vector space IRA. Then B is convex, i.e., the path (t− 1)ζ + tθ is contained in
B for every ζ, θ ∈ B and every t ∈ [0, 1].

Let ξ0 ∈ V be fixed. Let Ṽ be the subset of V of the points ξ1 such that there
exists a continuous map σ : [0, 1] → V such that σ(0) = ξ0 and σ(1) = ξ1. We will
show that Ṽ is open and closed in V, and since V is connected, we must have Ṽ = V .
In fact, let ξ1 ∈ Ṽ and let φ be a local chart around ξ1. Then ξ1 is in the inverse
image φ−1(B) of a basic open set B and so Ṽ contains φ−1(B). In particular it follows
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that Ṽ is open. We show now that Ṽ is closed. Let ξ1 6∈ Ṽ . As an absurd, assume
that every open neighborhood of C ⊂ V of ξ1 contains points that are in Ṽ . Take C
as the inverse image φ−1(B) of a basic open set B. In particular any point of C are
pathwise connected to ξ1. Hence C ∩ Ṽ = ∅. This shows that Ṽ is also open in V .

3. Diffieties and Systems. In this section we recall the main concepts of the
infinite dimensional geometric setting of [19, 53, 22, 21, 23]. We have chosen to present
a simplified exposition. For a more complete and intrinsic presentation the reader may
refer to the cited literature.

3.1. Diffieties. A diffiety M is a IRA-manifold equipped with a distribution ∆
of finite dimension r, called Cartan distribution. A section of the Cartan distribution
is called a Cartan field. An ordinary diffiety is a diffiety for which dim∆ = 1 and
a Cartan field ∂M is distinguished and called the Cartan field. In this paper we will
only consider ordinary diffieties, that will be called simply by diffieties.

A Lie-Bäcklund mapping φ : M → N between diffieties is a smooth mapping that
is compatible with the Cartan fields, i.e., φ∗∂M = ∂N ◦φ. A Lie-Bäcklund immersion
(respectively, submersion) is a Lie-Bäcklund mapping that is an immersion (resp.,
submersion). A Lie-Bäcklund isomorphism between two diffieties is a diffeomorphism
that is a Lie-Bäcklund mapping.

Context permitting, we will denote the Cartan field of an ordinary diffiety M
simply by d

dt . Given a smooth object φ defined on M (a smooth function, field or
form), then L d

dt
(φ) will be denoted by φ̇ and Ln

d
dt

(φ) by φ(n), n ∈ IN . In particular, if
ω is a 1-form ω =

∑
αidxi, then ω̇ =

∑
(α̇idxi + αidẋi).

3.2. Systems. The set of real numbers IR has a trivial diffiety structure with the
Cartan field defined by the operation of differentiation of smooth functions. A system
is a triple (S, IR, τ) where S is a diffiety equipped with Cartan field d

dt , τ : S → IR

is a Lie-Bäcklund submersion and d
dt (τ) = 1. The function τ represents time, that is

chosen once and for all. Context permitting, the system (S, IR, τ) is denoted simply
by S. A Lie-Bäcklund mapping between two systems (S, IR, τ) and (S′, IR, τ ′) is a
time-respecting Lie-Bäcklund mapping φ : S → S′, i.e., τ ′ = τ ◦ φ. The previous
condition means that the notion of time of both systems coincide. This notion of
system is time-varying as it will be explained bellow.

3.3. State Representation. We present a simplified definition of state rep-
resentation that introduces the state and the input and its derivatives as a local
coordinate system (see [19, 22, 21] for a more intrinsic presentation).

A local state representation of a system (S, IR, τ) is a local coordinate system
ψ = {t, x, U} where x = {xi, i ∈ bne}, U = {u(k)

j | j ∈ bme, k ∈ IN}, where u
(k)
j =

L k
d
dt

uj , and τ ◦ ψ−1(t, x, U) = t. The set of functions x = (x1, . . . , xn) is called state
and u = (u1, . . . , um) is called input. In these coordinates the Cartan field is locally
written by

d

dt
=

∂

∂t
+

n∑

i=1

fi
∂

∂xi
+

∑

k∈IN

∑

j∈bme
u

(k+1)
j

∂

∂u
(k)
j

(3.1)

Note that fi may depend on t, x and a finite number of elements of U . In this sense,
the state representation defined here is said to be generalized, since one accepts that
fi may depend on the derivatives of the input. If the functions fi depend only on
{t, x, u} for i ∈ bne, then the state representation is said to be classical. A state
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representation of a system S is completely determined by the choice of the state x
and the input u and will be denoted by S : (x, u) or simply by (x, u), when clear from
the context. A state representation is said to be analytic if the fi are all analytic with
respect to its arguments x and {u(j) | j ∈ IN}2.

For a connected system S that admits local state reprensentation around every
ξ ∈ S, then the dimension of the input is a global invariant called the differential
dimension of S (see Corollary 7.2).

3.4. Output. An output y of a system S is a set y = (y1, . . . , yp) of smooth
functions defined on S. If (x, u) is a state representation of S, then it is clear that

yj = yj(t, x, u, . . . , u(αj)), j ∈ bpe(3.2)

If the yj depend only on {t, x, u} for j ∈ bpe, then the output is said to be classical
with respect to the state representation (x, u). A state representation (x, u) with
output y is said to be analytic if the functions fi and the yj are all analytic with
respect to its arguments x and {u(j) | j ∈ IN}.

3.5. Time-invariant systems. Consider a system (S, τ, IR) where S = IR×M
and τ : S 7→ IR is the canonical projection in the first factor. By definition IR is the
diffiety with Cartan field ∂IR defined by the standard derivation of smooth functions.
Assume that M is a diffiety with Cartan field ∂M . Let π : S → M be the canonical
projection and assume that the Cartan field d

dt of S has the following properties :

∂IR ◦ τ = τ∗
d

dt
(3.3a)

∂M ◦ π = π∗
d

dt
(3.3b)

Then the system is said to be a time-invariant system.
A (local) time-invariant state representation (x, u) for a time-invariant system

is a (local) coordinate system {xi, u
(j)
k : i ∈ bne, k ∈ bme, j ∈ IN} of M such that

u
(j+1)
k = L∂M

u
(j)
k for k ∈ bme and j ∈ IN . In these coordinates we have :

∂M =
n∑

i=1

fi
∂

∂xi
+

∑

k∈IN

∑

j∈bme
u

(k+1)
j

∂

∂u
(k)
j

(3.4)

where fi are functions of x, u, u̇, . . ..
Abusing notation, we denote xi ◦ π and u

(j)
k ◦ π respectively by xi and u

(j)
k . Note

that {t, xi, u
(j)
k : i ∈ bne, k ∈ bme, j ∈ bme} is a local coordinate system for S. From

(3.3) it is easy to verify that in these coordinates the Cartan field of S is given by (3.1).
We stress however that in this case the fi are time-invariant functions for i ∈ bne.

An output is of S is said to be time-invariant if y = ỹ ◦ π where ỹ is a smooth
function defined on M . In particular, in these coordinates we have

yj = yj(x, u, . . . , u(αj)), j ∈ bpe(3.5)

Now assume that a control system is defined by a set of equations

ṫ = 1
ẋi = fi(x, u, . . . , u(αi)), i ∈ bne
yj = yj(x, u, . . . , u(βj)), j ∈ bpe

(3.6)

2This definition is coordinate dependent since only smooth atlases are considered on diffities [69].
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One can always associate to these equations a diffiety S = IR×M of global coordinates
ψ = {t, x, U} and Cartan fields given by (3.1), (3.4) defined respectively on S and
M such that the properties (3.3) holds for the canonical projections τ : S → IR and
π : S → M . The system S is the time-invariant system associated to the equations
(3.6).

A time-invariant state representation (x, u) is said to be classical if span {dẋ} ⊂
span {dx, du}. An output y is said to be classical if span {dy} ⊂ span {dx, du}.

3.6. Endogenous feedback and coordinate changes. Since a state represen-
tation is by definition a coordinate system, a new state representation (z, v) induces a
coordinate change from {t, x, (u(i) : i ∈ IN)} to {t, z, (v(j) : i ∈ IN)}. The coordinate
changes of this kind are called endogenous feedbacks3 :

Definition 3.1. The following definitions classifies endogenous feedback as time-
invariant, time-varying, quasi-static and static :

(i) Two local state representations (x, u) and (z, v) of system S around ξ ∈ S
are said to be linked by endogenous feedback. If S is time-invariant and the two state
representations are time-invariant, then they are said to be linked by time-invariant
endogenous feedback.

(ii) We say that two state representations (x, u) and (z, v) are linked by time-
invariant static-state feedback if we locally have span {dx} = span {dz} and span {dx,
du} = span {dz, dv}.

(iii) We say that two state representations (x, u) and (z, v) are linked by time-
invariant quasi-static state feedback if we locally have span {dx} = span {dz}4.

(iv) We say that two state representations (x, u) and (z, v) are linked by time-
varying static-state feedback if we locally have span {dt, dx} = span {dt, dz} and
span {dt, dx, du} = span {dt, dz, dv}.

(v) We say that two state representations (x, u) and (z, v) are linked by time-
varying quasi-static state feedback if we locally have span {dt, dx} = span {dt, dz}.

Remark 3.1. An example of endogenous feedback is putting integrators in
series with the first k inputs of the system (??). This procedure induces a state
representation (z, v) of the system S, where z = (x1, . . . , xn, u1, . . . , uk) and v =
(u̇1, . . . , u̇k, uk+1, . . . , um), called dynamic extension of the state. ♠

The next proposition shows a characterization of static-state feedback for classical
systems.

Proposition 3.2. Let (x, u) be a classical state representation for system S. Let
z and v be sets of functions defined on S such that card z = card x and card v =
card u.

• Let S and (x, u) be time-invariant. Assume that we locally have span {dx} =
span {dz} and span {dx, du} = span {dz, dv} . Then (z, v) is a local state
representation that is linked to (x, u) by static-state time-invariant feedback.

• Assume that we locally have span {dt, dx} = span {dt, dz} and span {dt, dx,
du} = span {dt, dz, dv}. Then (z, v) is a local state representation that is
linked to (x, u) by time-varying static-state feedback.

Proof. By definition it suffices to show that (z, v) is also a state representation,
i.e., {t, z, (v(k) : k ∈ IN)} is a local coordinate system. We will do this only in the
time-invariant case, since the time-varying case is analogous (but is local in time).

For this it suffices to note from the finite dimensional Inverse Function Theorem

3Here we adopt a simplified definition. See [19, 22, 21] for a more intrinsic setting.
4See [11] for further details about quasi-static state feedback.
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that the map φ : V → W defined by (t, x, u) 7→ (t, z, v) is a local diffeomorphism such
that x 7→ z is also a local diffeomorphism. Note that ∂v

∂u must be nonsingular and
depends only on x and u. It follows that

v̇ =
∂v

∂x
ẋ +

∂v

∂u
u̇

Since (x, u) is classical, then span {dẋ} ⊂ span {dx, du}. By derivation one has

v(k) = φk(x, u, . . . , u(k−1)) +
∂v

∂u
u̇(k).

Let U ⊂ S be the open set where the local state representation (x, u) is defined
and ∂v

∂u is nonsingular.
We can define a local map Φ : U → W × (IRm)∞ by the rule (t, x, u, u̇, . . .) 7→

(t, z, v, v̇, . . .).
By the same arguments we may write

u̇ =
∂u

∂z
ż +

∂u

∂v
v̇

Note that span {dż} ⊂ span {dx, dẋ} ⊂ span {dx, du} = span {dz, dv}. By deriva-
tion one has

u(k) = ψk(z, v, . . . , v(k−1)) +
∂u

∂v
v̇(k)

This defines a local map Ψ : W × (IRm)∞ → V × (IRm)∞ by the rule (t, z, v, v̇, . . .) 7→
(t, x, u, u̇, . . .). Let Ũ = Ψ−1(U). By construction it is easy to show that we have that
Φ : U → Φ(U) is the inverse of Ψ|Ũ : Ũ → Ψ(Ũ).

3.7. Flatness. We present now a simple definition of flatness in terms of coor-
dinates5. A system S equipped with Cartan field d

dt and time function t = τ is locally
flat around ξ ∈ S if there exists a set of smooth functions y = (y1, . . . , ym), called flat
output, such that the set {t, y(j)

i | i ∈ bme, j ∈ IN} is a (local) coordinate system of S

around ξ ∈ S, where y
(j)
i = Lj

d
dt

yi. Note that the Cartan field is locally given by :

d

dt
=

∂

∂t
+

∑

j∈IN

∑

i∈bme
y
(j+1)
i

∂

∂y
(j)
i

(3.7)

Let Ψ : S → T be a Lie-Bäcklund isomorphism between two systems. Then S
is flat if and only if T is flat, also. If y = (y1, . . . , ym) is a flat output of T then
{y1 ◦Ψ, . . . , ym ◦Ψ} is a flat output of S.

A (time-varying) system S with state-representation (x, u) is said to be 0-flat if
there exists a flat output y = h(t, x) and y is said to be a 0-flat output.

A system S is said to be k-flat if there exists a flat output y = h(t, x, u, . . . , u(k−1))
and y is said to be a k-flat output.

5For more intrinsic definitions and some variations, see [19, 22, 21, 23].
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3.8. Flatness and time-invariant systems. Let S = IR × M be a time-
invariant system equipped with Cartan field d

dt and time function t = τ . Let π : S →
M be the canonical projection. Let ∂M be the Cartan field on M that obeys condition
(3.3).

Let ξ ∈ S and let ζ = π(ζ). Then S is locally flat around ξ ∈ S if there exists a
set of time-invariant smooth functions y = (y1, . . . , ym), called flat output, such that
the set {y(j)

i | i ∈ bme, j ∈ IN} is a (local) coordinate system of M around ζ ∈ M ,
where y

(j)
i = Lj

∂M
yi. Note that the Cartan field ∂M is locally given by :

∑

j∈IN

∑

i∈bme
y
(j+1)
i

∂

∂y
(j)
i

(3.8)

Abusing notation, we denote the y
(j)
i ◦ π simply by y

(j)
i . Notice that {t, y(j)

i | i ∈
bme, j ∈ IN} is a local coordinate system around x ∈ S and in these coordinates the
Cartan field is given by (3.7). The only difference from the time-varying definition is
the fact that the flat output is a time invariant-function. In theory, a time-invariant
system could be flat when regarded as a time-varying system (i.e., accepting time-
varying flat-outputs) but not flat when regarded as a time-invariant system (i.e.,
accepting only time-invariant flat-outputs). However, we state as a conjecture that
if it exists a time-varying flat output for a time-invariant system then there exists a
time-invariant flat output for the same system.

A time-invariant system S with state-representation (x, u) is said to be 0-flat if
there exists a flat output y = h(x) and y is said to be a 0-flat output.

A system S is said to be k-flat if there exists a flat output y = h(x, u, . . . , u(k−1))
and y is said to be a k-flat output.

Remark 3.2. It is important to stress that the time-varying notions of state-
representation, endogenous feedback and flatness are local in time, whereas the cor-
responding notion for the case of time-varying systems are global in time. ♠

4. Dynamic Extension Algorithm. Consider an affine nonlinear system of
the form

ẋ(t) = f(x(t)) + g(x(t))u(t)(4.1a)
y(t) = a(x(t)) + b(x(t))u(t)(4.1b)

where x(t) ∈ X ⊂ IRn is the state vector, y(t) ∈ IRp is the output, and u(t) ∈ IRm is
the input. Assume that all the components of f(x), g(x), a(x) and b(x) are analytical
functions of x.

Let us recall the main aspects of the dynamic extension algorithm (in the version
of [15]). Given an analytic system (4.1a)–(4.1b), the dynamic extension algorithm is
a sequence of applications of regular static-state feedbacks and extensions of the state
by integrators. Denote a system (4.1a)–(4.1b) with state x, input u and output y by
(f, g).
Step 1. Let σ0 be the generical rank of b(x). There exists a partition6 of the outputs
y = (ȳT

0 , ŷT
0 )T , such that ȳ0 has dimension σ0, and we may write

ȳ1 = ā(x) + b̄(x)u
ŷ1 = â(x) + b̂(x)u

6Including a possible reordering of the outputs.
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where b̄ has generical rank equal to σ0. Up to a reordering of the input components,
assume that b̄ =

(
b̄11 b̄12

)
where b̄11(x) is generically nonsingular. Construct a

static-state feedback (defined generically on X)

u = α0(x) + β0(x)v0

where

β0(x) =
(

b̄11 b̄12

0 I

)−1

=
(

b̄−1
11 −b̄−1

11 b̄12

0 I

)

α0(x) = β0(x)
( −ā0(x)

0

)

Let v0 =
(

v̄T
0 v̂T

0

)T where v̄0 has σ0 components. By construction we have

ȳ0 = v̄0

ŷ0 = ŷ0(x, v̄0)

Add a dynamic extension :

ū0 = ˙̄v0

û0 = v̂0

and let u0 =
(
ūT

0 , ûT
0

)T .

Step k. After step k − 1 we have constructed a system (fk−1, gk−1) with state
xk−1 = (xT , v̄T

1 , . . . , v̄T
k−1) input uk−1 and output y(k−1) = hk−1(xk−1). Compute

y(k) = 〈dy(k−1), fk−1 + gk−1uk−1〉
= ak(xk−1) + bk(xk−1)uk−1

(4.2)

Let σk be the generic rank of bk. There exists a partition7 of the outputs y =
(ȳT

k , ŷT
k )T , such that ȳk has dimension σk and an analytic regular static state feedback8

uk−1 = αk(xk−1) + βk(xk−1)vk

where vk =
(

v̄T
k v̂T

k

)T is such that :

ȳ
(k)
k = v̄k

ŷ
(k)
k = ŷk(xk−1, v̄k)

Add a dynamic extension :

ūk = ˙̄vk

ûk = v̂k

and let uk =
(
ūT

k , ûT
k

)T .

7Including a possible reordering of the outputs as we have seen in the step zero.
8Defined on an open and dense subset of Xk−1 = X × IRσ1 × . . . × IRσk−1 and constructed in

a similar way as the one of the step zero. As in the first step, we may consider a reordering of the
input uk−1.
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5. Geometric Interpretation of the Dynamic Extension Algorithm. It
is well known (see [15, 11]) that the dynamic extension algorithm has an intrinsic
interpretation. However, since the approaches of [15, 11] are algebraic it may be
useful to to adapt these results to the differential geometric setting of [23].

Remark 5.1. It is important to stress that in this section we consider smooth
state representations (that are not necessary analytic). ♠

Consider that system S is a time-invariant system with classical time-invariant
state representation (x, u) and classical time-invariant output y = h(x, u). Recall that
the dynamic extension algorithm is a sequence of applications of regular static-state
feedbacks and extensions of the state by integrators. By § 3.6, one sees that this
algorithm can be regarded as the choice of a new local state representation of system
S. Let (x−1, u−1) = (x, u) be the original state representation of S with output y.
In step k − 1 of this algorithm (k = 0, 1, 2, . . .) one has constructed a classical local
state representation (xk−1, uk−1) with output y(k−1) = hk−1(xk−1) defined on an open
neighborhood Uk−1 of ξ ∈ S. Assume that span

{
dxk−1, dy(k)

}
is nonsingular in ξ.

Note that
• (S1) xk = (xk−1, ȳ

(k)
k ), where ȳk is chosen among the components of y by

completing {dxk−1} into a basis {dxk−1, dȳ
(k)
k } for span

{
dxk−1, dy(k)

}
;

• (S2) uk = (ẏ
(k)
k , ûk), where ûk is chosen among the components of uk−1 by

completing {dxk−1, dȳ
(k)
k } into a basis {dxk−1, dȳ

(k)
k , dûk} for span {dxk, duk−1}.

By Prop. 3.2 and Rem. 3.1, it follows that (S1) and (S2) produces a new local
state representation (xk, uk) of system S defined in an open neighborhood Uk ⊂ Uk−1

of ξ.
Remark 5.2. Note that the steps (S1) and (S2) describes the procedure of

the Dynamic Extension Algorithm that could be performed, at least theoretically, for
nonaffine systems9 of the form :

ẋ = F (x, u)
y = G(x, u)

In particular our geometric interpretation of Lemma 5.2 holds for nonaffine systems.
♠

Definition 5.1. In the sequel we shall consider the following filtrations of T ∗S :

Y−1 = span {dx}(5.1a)

Yk = span
{

dx, dy, . . . , dy(k)
}

for all k ∈ IN(5.1b)

Y−1 = {0}(5.2a)

Yk = span
{

dy, . . . , dy(k)
}

for all k ∈ IN(5.2b)

The following result summarizes the main geometric properties of the DEA for
time-invariant nonlinear systems. We stress that the list of integers {σ0, . . . , σn},

9In this case the computations are much more difficult since one may apply the inverse function
theorem to compute the feedback uk−1 = γ(xk−1, vk) in each step of the algorithm. A description
of a version of the DEA for nonaffine systems can be found in [40].
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where n = dim x, is strongly related to the algebraic structure at infinity (see [15])
and the integer ρ = σn is called output rank at ξ.

Lemma 5.2. Let S = IR × M be a time-invariant system with classical state
representation (x, u) and classical time-invariant output y = h(x, u). Let Vk be the
open and dense set of regular points of the codistributions Yi and Yi for i = 0, . . . , k
defined in (5.1) and (5.2) (see Prop. 2.1). In the kth step of the dynamic extension
algorithm, one may construct a new local classical state representation (xk, uk) of
the system S with state xk = (x, ȳ

(0)
0 , . . . , ȳ

(k)
k ), input uk = (ẏ

(k)
k , ûk) and output

y(k) = hk(xk) defined in an open neighborhood Uk of ξ, such that
1. span {dxk} = span

{
dx, dy, . . . , dy(k)

}
.

2. span {dxk, duk} = span
{
dx, dy, . . . , dy(k+1), du

}
.

3. It is always possible to choose ȳ
(k+1)
k+1 in a way that ˙̄y(k)

k ⊂ ȳ
(k+1)
k+1 .

4. It is always possible to choose ûk+1 ⊂ ûk.
5. Let ξ ∈ Vn. Let Sk be the open neighborhood of ξ such that the dimensions

of Yj ,Yj j ∈ {0, . . . , k} are constant inside Sk. The sequence σk = dim(Yk|ξ)) −
dim(Yk−1|ξ) is nondecreasing, the sequence ρk = dim(Yk|ξ) − dim(Yk−1|ξ) is nonin-
creasing, and both sequences converge to the same integer ρ, called the output rank
at ξ, for some k∗ ≤ n = dim x.

6. Sk = Sk∗ for k ≥ k∗.
7. Yk ∩ span {dx}|ν = Yk∗−1 ∩ span {dx}|ν for every ν ∈ Sk∗ and k ≥ k∗.
8. For k ≥ k∗, one may choose ȳk = ȳk∗ in Uk∗ . Furthermore, Yk+1 = Yk +

span
{

ȳ
(k+1)
k

}
for k ≥ k∗.

Proof. (1 and 2). We show first that the state representation (xk, uk) is classical
i.e., span {dẋk} ⊂ span {dxk, duk}. This property holds for (x, u). By induction,
assume that it holds for (xk, uk). Then from (S1) and (S2) we have span {dẋk+1} ⊂
span

{
dxk, dẋk, dȳ

(k)
k , d ˙̄y(k)

k

}
⊂ span {dxk+1, duk+1}.

In step k = 0, we choose a partition y(0) = (ȳ(0)
0 , ŷ

(0)
0 ) in a way that (S1) is satis-

fied for k = 0 and construct û0 satisfying (S2). Then dŷ
(0)
0 ∈ span{dx, dȳ

(0)
0 }. Thus,

d ˙̂y
(0)

0 ∈ span{dx, dẋ, dȳ
(0)
0 , d ˙̄y(0)

0 } ⊂ span{dx, du, dȳ
(0)
0 , d ˙̄y(0)

0 }. So, dẏ ∈ span{dx0, du0}.
Then it is easy to see that 1 and 2 are satisfied for k = 0. Now assume that, in the
step k−1 we have a local state representation (xk−1, uk−1) satisfying 1 and 2. Choose
a partition y(k) = (ȳ(k)

k , ŷ
(k)
k ) in a way that (S1) is satisfied and construct ûk satisfying

(S2). By 1 for k − 1 and (S1) it follows that, span{dxk} = span{dx, dy, . . . , dy(k)}.
By construction, notice that d ˙̂y

(k+1)

k ∈ span{dxk−1, dẋk−1, dȳ
(k)
k , d ˙̄y(k)

k } ⊂ span{dxk−1

duk−1, dȳ
(k)
k , d ˙̄y(k)

k }. So, dy(k+1) ∈ span{dxk, duk}. We show now that if 2 holds for
k−1, then span{dxk, duk} = span{dx, dy, . . . , dy(k+1), du}, completing the induction.
In fact, note that span{dxk, duk} = span{dxk−1, dȳ

(k)
k , dûk}+ span

{
d ˙̄y(k)

k

}
. By (S2)

and the induction hypothesis it follows that span{dxk, duk} = span{dx, du, dy, . . . ,

dy(k)}+ span
{

d ˙̄y(k)
k

}
. Since dy(k+1) ∈ span{dxk, duk}, then 2 holds for k. This

shows 1 and 2.

(3, 5, 6). We show first that

dim Yk(ν)− dim Yk−1(ν) ≥ dim Yk+1(ν)− dim Yk(ν) for every ν ∈ Sk(5.3)

For this note that, if the 1-forms {η1, . . . , ηs} ⊂ Yk are linearly dependent mod
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Yk−1, i. e., if
∑s

i=1 αiηi+
∑p

i=1

∑k−1
j=0 βijdy

(j)
i = 0 then, differentiation in time gives∑s

i=1(α̇iηi +αiη̇i)+
∑p

i=1

∑k−1
j=0 (β̇ijdy

(j)
i + βijdy

(j+1)
i ) = 0. In other words, η̇1, . . . , η̇s

are linearly dependent mod Yk+1. Let ξ ∈ Sk. From the nonsingularity of Yj ,Yj , j =
0, . . . , k in Sk, if dim Yk − dim Yk−1 = r in ξ ∈ Sk, then we may choose a partition
y = (ȳT , ŷT ) such that ȳ has r components and we locally have Yk = span

{
dȳ(k)

}
+

Yk−1. Let ŷj be any component of ŷ for j ∈ bp − re. By construction we have that
{dŷ

(k)
j , dȳ(k)} is linearly dependent mod Yk−1 for every j ∈ bp−re. From the remark

above it follows that the set {dŷ
(k+1)
j , dȳ(k+1)} is (locally) dependent mod Yk for

every j ∈ bp− re, showing (5.3). In particular the sequence ρk is nonincreasing.
We show now that

dimYk(ν)− dimYk−1(ν) ≤ dimYk+1(ν)− dimYk(ν) for every ν ∈ Sk(5.4)

Assume that (xk, uk) is a state representation constructed around a neighborhood
Uk of a point ξ ∈ Sk and satisfying (S1), (S2), 1 and 2. Since span{dxk} = Yk and
d ˙̄y(k)

k ⊂ uk, it follows that the components of d ˙̄y(k)
k are independent mod Yk since they

are also components of the input and uk and furthermore span {dxk} = Yk. Hence
ȳ
(k+1)
k+1 may be chosen satisfying 3, showing (5.4). In particular, σk+1 ≥ σk.

To show the convergence of sequences ρk and σk for some k∗ ≤ n, assume that
ν ∈ Sk. Denote span{dx} by X. Then Yk = X + Yk and thus

dimYk(ν) = dim X(ν) + dimYk(ν)− dim(Yk(ν) ∩X(ν)).

Denote for k ∈ IN :

sk(ν) = dimYk(ν)− dimYk−1(ν)
pk(ν) = dim Yk(ν)− dim Yk−1(ν)

Note that ρk = pk(ν) and σk = sk(ν) are constant for every ν ∈ Sk. We also have

sk(ν) = pk(ν)− dim(Yk(ν) ∩X(ν)) + dim(Yk−1(ν) ∩X(ν))(5.5)

We show now that

if there exists k∗ and some ν ∈ Sk such that sk∗(ν) = pk∗(ν) = ρ,
then sk∗+1(ξ) = pk∗+1(ξ) = ρ for every ξ ∈ Sk∗ .

(5.6)

Note that, from (5.6), a simple induction shows that sk(ξ) = pk(ξ) = ρ for every
k ≥ k∗ and ξ ∈ Sk∗ . Furthermore, this last affirmation implies that Sk = Sk∗ for
k ≥ k∗.

To show (5.6), assume that pk∗(ν) = sk∗(ν) = ρ for some ν ∈ Sk∗ From (5.5), it
follows that

− dim(Yk∗(ν) ∩X(ν)) + dim(Yk∗−1(ν) ∩X(ν)) = 0.

Since the dimensions of Yk∗ ∩X and of Yk∗−1 ∩X are constant in Sk∗ , it follows that,
for every ξ ∈ Sk∗ , we have

pk∗(ξ) = sk∗(ξ) = ρ

and

− dim(Yk∗(ξ) ∩X(ξ)) + dim(Yk∗−1(ξ) ∩X(ξ)) = 0.
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Note from (5.5) that

sk∗+1(ξ)− pk∗+1(ξ) = −dim(Yk∗+1(ξ) ∩X(ξ)) + dim(Yk∗(ξ) ∩X(ν))(5.7)

for every ξ ∈ Sk∗ . By (5.3) and (5.4) it follows that

sk∗+1(ξ)− pk∗+1(ξ) ≥ 0.

Since

− dim(Yk∗+1(ξ) ∩X(ξ)) + dim(Yk∗(ξ) ∩X(ξ)) ≤ 0,

the only possibility is to have both sides of (5.7) equal to zero for every ξ ∈ Sk∗ .
Using (5.3) and (5.4) again, then (5.6) follows. Note that a simple induction shows
that (5.6) implies 7.

To complete the proof of 5, 6 and 7 it suffices to show the existence of k∗ such that
(5.6) holds. For this note that dim(Yk(ν) ∩ X(ν)) is nondecreasing for k = 0, . . . , n
and it is least than or equal to n = dim X. In particular, there exists some k∗ ≤ n
such that dim(Yk∗(ν) ∩X(ν)) = dim(Yk∗−1(ν) ∩X(ν)).

(4). Easy consequence of 1, 2 and (S2).
(8). The first part of 8 follows easily from 3 from the fact that card ȳk = σk and

from 5. The second part of 8 follows easily from the equality card ȳk = σk, from the
fact that the components of dȳ

(k+1)
k are independent mod Yk and from the fact that

σk = ρk = ρ for k ≥ k∗.

6. Geometric interpretation of DEA for time-varying systems. Consider
that system S is a time-varying system with classical time-varying state representation
(x, u) and classical time-varying output y = h(t, x, u).

Remark 6.1. It is important to stress that in this section we consider smooth
state representations (that are not necessary analytic). ♠

Recall that the dynamic extension algorithm is a sequence of applications of reg-
ular static-state feedbacks and extensions of the state by integrators. By § 3.6, one
sees that this algorithm can be regarded as the choice of a new local state represen-
tation of system S. Let (x−1, u−1) = (x, u) be the original state representation of S
with output y. In step k − 1 of this algorithm (k = 0, 1, 2, . . .) one has constructed
a classical local state representation (xk−1, uk−1) with output y(k−1) = hk−1(xk−1)
defined on an open neighborhood Uk−1 of ξ ∈ S. Assume that span

{
dt, dxk−1, dy(k)

}
is nonsingular in ξ. Note that

• (S1) xk = (xk−1, ȳ
(k)
k ), where ȳk is chosen among the components of y by com-

pleting {dt, dxk−1} into a basis {dt, dxk−1, dȳ
(k)
k } for span

{
dt, dxk−1, dy(k)

}
;

• (S2) uk = (ẏ
(k)
k , ûk), where ûk is chosen among the components of uk−1 by

completing {dt, dxk−1, dȳ
(k)
k } into a basis {dt, dxk−1, dȳ

(k)
k , dûk} for span {dt,

dxk, duk−1}.
By Prop. 3.2 and Rem. 3.1, it follows that (S1) and (S2) produces a new local

state representation (xk, uk) of system S defined in an open neighborhood Uk ⊂ Uk−1

of ξ.
Definition 6.1. In the sequel we shall consider the following filtrations of T ∗S :

Y−1 = span {dt, dx}(6.1a)

Yk = span
{

dt, dx, dy, . . . , dy(k)
}

for all k ∈ IN(6.1b)
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Y−1 = span {dt}(6.2a)

Yk = span
{

dt, dy, . . . , dy(k)
}

for all k ∈ IN(6.2b)

The following result summarizes the main geometric properties of the DEA for
time-varying nonlinear systems. We stress that the list of integers {σ0, . . . , σn}, where
n = dimx, is strongly related to the algebraic structure at infinity (see [15]) and the
integer ρ = σn is called output rank at ξ. The main difference with respect to the
time-invariant case is that the results are local in time.

Lemma 6.2. Let S be a time-varying system with classical state representation
(x, u) and classical output y = h(x, u). Let Vk be the open and dense set of regular
points of the codistributions Yi and Yi for i = 0, . . . , k defined in (6.1) and (6.2) (see
Prop. 2.1). In the kth step of the dynamic extension algorithm, one may construct
a new local classical state representation (xk, uk) of the system S with state xk =
(x, ȳ

(0)
0 , . . . , ȳ

(k)
k ), input uk = (ẏ

(k)
k , ûk) and output y(k) = hk(xk) defined in an open

neighborhood Uk of ξ, such that
1. span {dt, dxk} = span

{
dt, dx, dy, . . . , dy(k)

}
.

2. span {dt, dxk, duk} = span
{
dt, dx, dy, . . . , dy(k+1), du

}
.

3. It is always possible to choose ȳ
(k+1)
k+1 in a way that ˙̄y(k)

k ⊂ ȳ
(k+1)
k+1 .

4. It is always possible to choose ûk+1 ⊂ ûk.
5. Let ξ ∈ Vn. Let Sk be the open neighborhood of ξ such that the dimensions

of Yj ,Yj j ∈ {0, . . . , k} are constant inside Sk. The sequence σk = dim(Yk|ξ)) −
dim(Yk−1|ξ) is nondecreasing, the sequence ρk = dim(Yk|ξ) − dim(Yk−1|ξ) is nonin-
creasing, and both sequences converge to the same integer ρ, called the output rank
at ξ, for some k∗ ≤ n = dim x.

6. Sk = Sk∗ for k ≥ k∗.
7. Yk ∩ span {dx}|ν = Yk∗−1 ∩ span {dx}|ν for every ν ∈ Sk∗ and k ≥ k∗.
8. For k ≥ k∗, one may choose ȳk = ȳk∗ in Uk∗ . Furthermore, Yk+1 = Yk +

span
{

ȳ
(k+1)
k

}
for k ≥ k∗.

Proof. The proof is very similar to the proof of Lemma 8.2 and is left to the
reader.

7. Applications for Smooth Systems.

7.1. Uniqueness of differential dimension. We give two applications of Lem-
ma 5.2 for smooth systems. The first result implies, using Prop. 7.3, that the flat
output of a flat system has the same dimension than the input10. The second one
says that the dimension of the input of a smooth connected system is an invariant
called differential dimension.

Proposition 7.1. Consider a system S with classical time-invariant state repre-
sentation (x, u) and classical time-invariant output y = h(x). Suppose that this system
is well formed, i.e., span {dẋ} ⊂ span {dx, du}. Assume that, for some k∗ there exist
an open neighborhood V of ξ ∈ S such that span {dx} |ν ⊂ span

{
dy, . . . , dy(k∗−1)

} |ν
for all ν in V . Then σk∗ |ξ = card u = m for all ξ in the open and dense set
Vk∗ of regular points of the codistributions Yk and Yk for k = 0, . . . , k∗ (see (5.1)

10See [53] for an alternative proof of this fact.
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and (5.2)). Furthermore, if the set {dy, . . . , dy(k∗)} is linearly independent in ξ then
card y = card u = m.

Proof. Let W ⊂ V be the open neighborhood of ξ such that the dimensions
of Yj ,Yj are constant in W for j = 0, . . . , k∗. By Lemma 5.2 part 7, in W we
may consider without loss of generality that k∗ is the same integer stated in that
Lemma. We may execute the DEA and in the step k∗ − 1 one will construct a
state representation (xk∗−1, uk∗−1) such that, By Lemma 5.2 part 2, we locally have
span {dxk∗−1, duk∗−1} = span

{
dy, . . . , dy(k∗), du

}
. Since the system is well formed

and Yk∗−1 ⊃ span {dx}, by derivation it we have Yk∗ ⊃ span {dx, du}. In particular,
it follows that span {dxk∗−1, duk∗−1} = Yk∗ = Yk∗ . Taking dimensions and applying
Lemma 5.2 parts 1 and 2 it follows that

dim (span {dxk∗−1, duk∗−1}) = dimYk∗−1 + dim (span {duk∗−1})
=

(
n +

∑k∗−1
k=0 σk

)
+ m.

On the other hand, we have dim Yk∗ = dimYk∗ =
(
n +

∑k∗

k=0 σk

)
. It follows that

σk∗ = m = card u.
If we the set {dy, . . . , dy(k∗)} is independent in ξ then, there exist an open neigh-

borhood U ⊂ V of ξ such that {dy, . . . , dy(k∗)} is independent in ν ∈ U . Let
W1 = W ∩ U . In W1 we may apply Lemma 5.2 part 5 showing that m = σk∗ =
ρk∗ = dim Yk∗/Yk∗−1. Note that, from the independence of {dy, . . . , dy(k∗)} it follows
that ρj = card y, k = 0, . . . , k∗. We conclude that card y = card u = m.

The following result shows that two inputs of system S has always the same
number of components. This invariant is called the differential dimension of S.

Corollary 7.2. Let S = IR×M be a time-invariant system that admits a local
state representation around every point ξ ∈ S. Assume that S is a connected diffiety.
Then the dimension of any input of the system is an invariant called differential
dimension of the system.

Proof. We show first that we cannot have two state representations (x, u) and
(z, v) around ξ such that card v 6= card u.

Without loss of generality, assume that both state representations are defined on
the same open neighborhood U of ξ.

As (x, u) induces a local coordinate system, for r big enough we have span {dẋ,
dz, dv} ⊂ span

{
dx, du, . . . , du(r)

}
. In particular we can write z = z(x, u, . . . , u(r))

and v = v(x, u, . . . , u(r)).
Consider state representation (x̃, ũ) where x̃ = (x, u, . . . , u(r)) and ũ = u(r+1).

Then consider ỹ = (z, v) as an output of the system. Then (x̃, ũ) is a classical state
representation and ỹ is a classical output. Let n = dim x̃ and choose a point ξ ∈ U that
is a regular point of Ỹj = span

{
dx̃, dỹ, . . . , dỹ(j)

}
and Ỹj = span

{
dx̃, dỹ, . . . , dỹ(j)

}
for j = 0, . . . , n.

By Lemma 5.2, from the independence of {dz, dv, . . . , dv(k)} for k ∈ IN and
from the fact that span {dż} ⊂ span

{
dz, dv, . . . , dv(l)

}
for some l, it follows that

ρk = card v for k ≥ q∗. Since span {dx̃} ⊂ span
{
dỹ, . . . , dỹ(r∗)

}
for r∗ big enough,

then the application of the first part of Prop. 7.1 furnishes σk∗ = m = card u. By
Lemma 5.2 part 5, it follows that card u = card v = m.

Now assume that there exists two points ξ0 and ξ1 of S such and two state
representations defined respectively around ξ0 and ξ1 for which the dimensions of the
inputs do not coincide.
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Since S is connected and open, by Lemma 2.2, S is pathwise connected and so
there exists a continuous map σ : [0, 1] → S such that σ(0) = ξ0 and σ(1) = ξ1. Let
θ ∈ [0, 1] be the least number such that there a state representation (xθ, uθ), defined
on an open neighborhood Uθ of σ(θ), for which the dimension of its input do not
coincide with the one of the state representation (x, u) defined around ξ0. Hence, for
ε small enough, σ(θ− ε) ∈ Uθ and hence Uθ will contain points for which there exists
local state representations with inputs of different dimensions.

Remark 7.1. The reader will have no difficult to establish the corresponding
results of Prop. 7.1 and Cor. 7.2 for the time-varying state representations. ♠

7.2. A characterization of flatness : time-invariant case. In this subsec-
tion we will consider the following assumption

Assumption 7.1. The System S is time-invariant with classic time-invariant
state representation (x, u) and time-invariant output y = h(x). ♣

Consider the filtrations of T ∗S defined in (5.1) and (5.2). The following proposi-
tion gives a well known characterization of 0-flat outputs11

Proposition 7.3. [41] Let S be a system that obeys Assumption 7.1. Assume
that the state representation is (x, u) is well-formed i.e., span {dẋ} ⊂ span {dx, du}.
Then S is locally 0-flat around ξ ∈ S with flat output y = h(x) if and only if there
exist k∗ ∈ IN such that {dy, . . . , dy(k∗)} is linearly independent in ξ and span {dx} |ν ⊂
Yk∗ |ν for ν in some open neighborhood of ξ.

Remark 7.2. Proposition 7.3 was originally stated in [41, 24] with the extra
assumption that span {du} |ν ⊂ Yk∗ |ν , ν ∈ U , that is not necessary for well-formed
systems. Note that, by Prop. 7.1 and Prop. 7.3, if y is a flat output, then card y =
card u = m. An alternative proof of this fact can be found in [53]. ♠

Proof. Note first that time-invariant flatness implies that {dy(k) : k ∈ IN} is
a basis for T ∗M . It follows that there exists k∗ such that span {dx} ⊂ Yk∗ and
{dy, . . . , dy(k∗)} is linearly independent in ξ.

We show now that this condition implies 0-flatness.
As the system is well-formed, it follows that span {dx, du} = span {dx, dẋ}. Since

span {dx, du} is nonsingular, we may locally write u = ψ(x, ẋ).
Let y = h(x) and let y(k) = L d

dt
h, k ∈ IN .

Let ζ = (y, . . . , y(k∗))|ξ ∈ IRq. From the fact that Yk∗ is nonsingular and
span {dx} ⊂ Yk∗ then, an application of finite the dimensional inverse function the-
orem shows that there exist an open neighborhood V̂ ⊂ IRq of ζ and a function φ :
V̂ ⊂ IRq → IRn such that x = φ(y, . . . , y(k∗)). By derivation ẋ =

∑k
j=0

∂φ
∂y(j) y

(j+1) =
γ(y, . . . , y(k+1)). Hence, u = θ(y, . . . , y(k∗+1)) = ψ(φ, γ). Consider the projection
π : S → IRq such that π(ν) = (y, . . . , y(k∗))|ν . Let H ⊂ S be the open neighborhood
of ξ such that (x, u) is defined on H. Let U ⊂ S be the open neighborhood of ξ defined
by U = π−1(V̂ ) ∩H. Let δ : U ⊂ S → IRq defined by δ(ν) = (y, . . . , y(k∗+1))|ν . By
construction we have

x = φ ◦ δ(t, x, u, . . .)(7.1a)
u = θ ◦ δ(t, x, u, . . .)(7.1b)

at every point (t, x, u, . . .) ∈ U . We have y = h(x) and so

y = h ◦ φ(y, . . . , y(k∗))(7.2)

11See and [41, 24].
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for all (y, . . . , y(k∗)) ∈ V̂ .
Now consider the flat system Y with global coordinates {t̃, ỹ(k)

j : k ∈ IN, j ∈ bme}.
and Cartan-field

∂Y =
∂

∂t̃
+

∑

j∈IN

∑

i∈bme
ỹ
(j+1)
i

∂

∂ỹ
(j)
i

(7.3)

Let ε : Y → IRq defined by ε(a) = (ỹ, . . . , ỹ(k∗))|a. Let V be the open set of Y
given by V = ε−1(V̂ ). Define the Lie-Bäcklund mapping Γ : V ⊂ Y → S by

t = t̃

x = φ(ỹ, . . . , ỹ(k∗))
u(r) = Lr

∂Y
θ|(ỹ,...,ỹ(r+k∗+1)), r ∈ IN.

Without loss of generality, we may assume that Γ(V ) ⊂ U . If this is not the case we
can restrict Γ to the open set V1 = Γ−1(U).

Let Λ : U ⊂ S → Λ(U) ⊂ Y be the Lie-Bäcklund mapping defined by

t̃ = t
ỹ(k) = Lk

d
dt

h, k ∈ IN

We show now now that Γ is a Lie-Bäcklund isomorphism with inverse Λ12. For
this, we show first that ı = Γ ◦ Λ is the identity map. Note that Γ is defined locally
by the rule (x, u

(k)
j , j ∈ bme, k ∈ IN) 7→ (x ◦ ı, u

(k)
j ◦ ı, j ∈ bme, k ∈ IN)

From the application of the inverse function theorem above, we have t = t ◦ ı,
x = x ◦ ı and u ◦ ı. In fact, the first identity is obvious from the definition of Γ and
Λ. On the other hand, from (7.1a) and (7.1b) it follows that :

x ◦ ı = φ ◦ δ = x

and

u ◦ ı = θ ◦ δ = u.

Note that the composition of Lie-Bäcklund mappings is also Lie-Bäcklund. So ı is
a Lie-Bäcklund from U ⊂ S to S, i.e., ı∗ d

dt = d
dt ◦ ı. By induction assume that

u(k) ◦ ı = u(k). It follows that

u(k+1) ◦ ı = 〈du(k), d
dt ◦ ı〉

= 〈du(k), ı∗ d
dt 〉

= 〈ı∗du(k), d
dt 〉

= 〈d(u(k) ◦ ı), d
dt 〉

= 〈du(k), d
dt 〉

= u(k+1)

To show that  = Λ ◦Γ is the identity map, note first that, by construction (using the
inverse function theorem), we have t̃ ◦  = t̃, ỹ ◦  = ỹ. In fact, the first identity is
obvious from the definition of Γ and Λ. On the other hand, from (7.2) we have :

y ◦  = h ◦ φ ◦ π = y.

12See the proof of [53, Prop. 3, p. 3] for similar arguments.
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By induction assume that ỹ(k) ◦  = ỹ(k). As  is a Lie Bäcklund mapping from V ⊂ Y
to Y , we have ∗∂Y = ∂Y ◦ . It follows that

ỹ(k+1) ◦  = 〈dỹ(k), ∂Y ◦ 〉
= 〈dỹ(k), ∗∂Y 〉
= 〈∗dỹ(k), ∂Y 〉
= 〈d(ỹ(k) ◦ ), ∂Y 〉
= 〈dỹ(k), ∂Y 〉
= ỹ(k+1)

With some regularity assumptions, the characterization of 0-flatness above may
be related to the algebraic structure at infinity [15].

Proposition 7.4. Consider the nonlinear system S obeying the assumption 7.1.
Suppose that card y = card u = m and card x = n. Assume that ξ ∈ S is a regular
point of Yk and Yk, k ∈ {0, . . . , n} (see (5.1) and (5.2)). Then S is (locally) 0-flat
around ξ with (local) flat output y if and only if there exist k∗ ∈ bne such that one of
the following equivalent conditions are satisfied :

(i) The structure at infinity {σ1, . . . , σn} at ξ ∈ S obeys the following condition

n +
∑k∗−1

i=1 σi = mk∗

σk∗ = m
(7.4)

(ii) span {dx} ⊂ Yk∗−1.
Proof. It is important to note that y = h(x) implies σ0 = dimY0−dim span {dx} =

0.
We show first that 0-flatness implies (ii). This is an easy consequence of the fact

that T ∗M = span
{
dy(k) : k ∈ IN

}
13 and of Lemma 5.2 part 7.

We show now that (i) is equivalent to (ii). To show that (i) implies (ii), note
from Lemma 5.2 part 5 that m = card y ≥ ρk ≥ σk. Hence, σk∗ = m implies
that ρk = m for k ∈ IN and so dim Yk∗−1 = mk∗. From (i) we have dimYk∗−1 =
n + σ1 + . . . + σk∗−1 = mk∗. In particular Yk∗−1 = Yk∗−1 and so (ii) holds.

To show that (ii) implies (i), assume that (ii) holds. Since the system is well
formed, by derivation it follows that Yk∗ ⊃ span {dx, du}. By Lemma 5.2 part 2,
note that span {dxk∗−1, duk∗−1} = Yk∗ . Note that dim (span {dxk∗−1, duk∗−1}) =
dim (span {dxk∗−1}) + dim (span {duk∗−1}) = dimYk∗−1 + m = n +

∑k∗−1
i=1 σi + m.

We conclude that n +
∑k∗−1

i=1 σi + m = n +
∑k∗

i=1 σi. It follows that σk∗ = m and
from Lemma 5.2 part 5 we have ρ0 = . . . = ρk∗ = σk∗ = m. This show that the set
{dy, . . . , dy(k∗)} is independent in ξ. Then, the equality Yk∗−1 = Yk∗−1 implies that
(7.4) holds.

To show that (i) implies 0-flatness, assume that (i) is true. By the proof above (i)
implies the equality of Yk∗−1 = Yk∗−1 and the independence of {dy, . . . , dy(k∗)}. Since
σk∗ = m, Lemma 5.2 implies that in step k∗ one constructs a local state representation
with state xk∗ = (y, . . . , y(k∗)) and input y(k∗+1). In particular the system is locally
0-flat around ξ with flat output y = h(x).

Remark 7.3. If ξ ∈ S is a regular point of Yk and Yk, k ∈ {0, . . . , k∗ − 1} and
σk∗ = m then Lemma 5.2 parts 5 and 6 implies that ξ is a regular point of Yk and
Yk, k ∈ IN . ♠

13See § 3.5 for the definition of flatness for time-invariant systems.
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7.3. Characterization of Flatness — time-varying case. In this subsection
we will consider the following assumption :

Assumption 7.2. The System S is time-varying with classical time-varying
state representation (x, u) and classical output y = h(t, x). ♣

Consider the filtrations of T ∗S defined in (6.1) and (6.2). The following proposi-
tion gives a a time-varying characterization of 0-flatness.

Proposition 7.5. Let S be a system obeying Assumption 7.2. Assume that
the time-varying system S is well-formed i.e., span {dẋ} ⊂ span {dt, dx, du}. Then
S is locally 0-flat around ξ ∈ S with flat output y = h(t, x) if and only if there
exist k∗ ∈ IN such that such that {dt, dy, . . . , dy(k∗)} is linearly independent in ξ and
span {dt, dx} |ν ⊂ Yk∗ |ν for ν in some open neighborhood of ξ.

Proof. Very similar to the time-invariant case and is left to the reader.
We state now the time-varying version of Prop. 7.4.
Proposition 7.6. Let S be a system obeying Assumption 7.2. Suppose that

card y = card u = m and card x = n. Assume that ξ ∈ S is a regular point of Yk and
Yk, k ∈ {0, . . . , n}.

Then S is (locally) 0-flat around ξ with (local) flat output y if and only if there
exist k∗ ∈ bne such that one of the following equivalent conditions are satisfied :

(i) The algebraic structure at infinity {σ1, . . . , σn} of [15] obeys the following
condition

n +
∑k∗−1

i=1 σi = mk∗

σk∗ = m
(7.5)

(ii) span {dt, dx} ⊂ Yk∗−1.
Proof. Very similar to the time-invariant case and is left to the reader.

8. Some remarks about analytical state representations. Most of the
results of this work consider smooth state representations In this case, the output-
rank may change from point to point to point. For instance consider the system :

ẋ = u
y = h(x)

where h(x) is a smooth function such that h(x) = 0 for x ≤ 0 and h(x) = x for x ≥ 1.
It is clear that the output rank may be zero or one, depending on the point.

The main role of analycity in the proofs of many results is the existence of generical
dimensions. Hence, assuming analycity of the state representation we will obtain a
version of Lemma 5.2 that assures that the structure at infinity (σ1, . . . , σn) is a global
feature of the system that coincides with the one of [15]. Apart singular points, the
output rank is then an invariant of the system in a global fashion.

We state first the time-invariant version :
Lemma 8.1. Assume that the System S is time-invariant with classic analytic

time-invariant global state representation (x, u) and classic time-invariant analytic
output y = h(x, u) defined in the entire S. Let Sk be the open and dense set of regular
points of the codistributions Yi and Yi for i = 0, . . . , k defined in (5.1) and (5.2) (see
Prop. 2.1). In the kth step of the dynamic extension algorithm, one may construct,
around ξ ∈ Sk, a new local classical state representation (xk, uk) of the system S with
state xk = (x, ȳ

(0)
0 , . . . , ȳ

(k)
k ) and input uk = (ẏ

(k)
k , ûk) such that

1. span {dxk} = span
{
dx, dy, . . . , dy(k)

}
.

2. span {dxk, duk} = span
{
dx, dy, . . . , dy(k+1), du

}
.
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3. It is always possible to choose ȳ
(k+1)
k+1 in a way that ˙̄y(k)

k ⊂ ȳ
(k+1)
k+1 .

4. It is always possible to choose ûk+1 ⊂ ûk.
5. Let D(C) denote the generic dimension of a codistribution C generated by the

differentials of a finite set of analytic functions. The sequence σk = D(Yk)−D(Yk−1)
is nondecreasing, the sequence ρk = D(Yk) − D(Yk−1) is nonincreasing, and both
sequences converge to the same integer ρ, called the output rank, for some k∗ ≤ n =
dim x.

6. Sk = Sk∗ for k ≥ k∗.
7. Yk ∩ span {dx}|ν = Yk∗−1 ∩ span {dx}|ν for every ν ∈ Sk∗ and k ≥ k∗.
8. For k ≥ k∗, one may choose in Uk ȳk = ȳk∗ . Furthermore, Yk+1 = Yk +

span
{

ȳ
(k+1)
k

}
for k ≥ k∗.

Proof. Very similar to the proof of Lemma 8.2 and is left to the reader.
We state now the analytical version of Lemma 5.2. Refer to § 6 for the description

of steps (S1), (S2) of the time-varying dynamical extension algorithm. We stress again
that the next result is local in time.

Lemma 8.2. Assume that the System S is time-varying with classic analytic
time-varying global state representation (x, u) and classic time-varying analytic output
y = h(t, x, u) defined in the entire S.. Let Sk be the open and dense set of regular
points of the codistributions Yi and Yi for i = 0, . . . , k defined in (6.1) and (6.2) (see
Prop. 2.1). In the kth step of the dynamic extension algorithm, one may construct,
around ξ ∈ Sk, a new local classical state representation (xk, uk) of the system S with
state xk = (x, ȳ

(0)
0 , . . . , ȳ

(k)
k ) and input uk = (ẏ

(k)
k , ûk) such that

1. span {dt, dxk} = span
{
dt, dx, dy, . . . , dy(k)

}
.

2. span {dt, dxk, duk} = span
{
dt, dx, dy, . . . , dy(k+1), du

}
.

3. It is always possible to choose ȳ
(k+1)
k+1 in a way that ˙̄y(k)

k ⊂ ȳ
(k+1)
k+1 .

4. It is always possible to choose ûk+1 ⊂ ûk.
5. Let D(C) denote the generic dimension of a codistribution C generated by the

differentials of a finite set of analytic functions. The sequence σk = D(Yk)−D(Yk−1)
is nondecreasing, the sequence ρk = D(Yk) − D(Yk−1) is nonincreasing, and both
sequences converge to the same integer ρ, called the output rank, for some k∗ ≤ n =
dim x.

6. Sk = Sk∗ for k ≥ k∗.
7. Yk ∩ span {dx}|ν = Yk∗−1 ∩ span {dx}|ν for every ν ∈ Sk∗ and k ≥ k∗.
8. For k ≥ k∗, one may choose in Uk ȳk = ȳk∗ . Furthermore, Yk+1 = Yk +

span
{

ȳ
(k+1)
k

}
for k ≥ k∗.

Remark 8.1. The proof of Lemma 8.2 is very similar to the proof of Lemma
5.2 with a few adaptations for considering generical dimensions and the time-varying
case. The steps (S1) and (S2) of the DEA referred in this proof are described in
section 6. ♠

Proof. (1 and 2). We show first that the state representation (xk, uk) is classical
i.e., span {dẋk} ⊂ span {dt, dxk, duk}. This property holds for (x, u). By induction,
assume that it holds for (xk, uk). Then from (S1) and (S2) we have span {dt, dẋk+1} ⊂
span

{
dt, dxk, dẋk, dȳ

(k)
k , d ˙̄y(k)

k

}
⊂ span {dt, dxk+1, duk+1}.

In step k = 0, we choose a partition y(0) = (ȳ(0)
0 , ŷ

(0)
0 ) in a way that (S1) is

satisfied for k = 0 and construct û0 satisfying (S2). Then dŷ
(0)
0 ∈ span{dt, dx, dȳ

(0)
0 }.

Thus, d ˙̂y
(0)

0 ∈ span{dt, dx, dẋ, dȳ
(0)
0 , d ˙̄y(0)

0 } ⊂ span{dt, dx, du, dȳ
(0)
0 , d ˙̄y(0)

0 }. So, dẏ ∈
span{dt, dx0, du0}. Then it is easy to see that 1 and 2 are satisfied for k = 0. Now
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assume that, in the step k − 1 we have a local state representation (xk−1, uk−1)
satisfying 1 and 2. Choose a partition y(k) = (ȳ(k)

k , ŷ
(k)
k ) in a way that (S1) is sat-

isfied and construct ûk satisfying (S2). By 1 for k − 1 and (S1) it follows that,

span{dt, dxk} = span{dt, dx, dy, . . . , dy(k)}. By construction, notice that d ˙̂y
(k+1)

k ∈
span{dt, dxk−1, dẋk−1, dȳ

(k)
k , d ˙̄y(k)

k } ⊂ span{dt, dxk−1 duk−1, dȳ
(k)
k , d ˙̄y(k)

k }. So, dy(k+1) ∈
span{dt, dxk, duk}. We show now that if 2 holds for k − 1, then span{dt, dxk,
duk} = span{dt, dx, dy, . . . , dy(k+1), du}, completing the induction. In fact, note that
span{dt, dxk, duk} = span{dt, dxk−1, dȳ

(k)
k , dûk}+ span

{
d ˙̄y(k)

k

}
. By (S2) and the in-

duction hypothesis it follows that span{dt, dxk, duk} = span{dt, dx, du, dy, . . . , dy(k)}+
span

{
d ˙̄y(k)

k

}
. Since dy(k+1) ∈ span{dt, dxk, duk}, then 2 holds for k. This shows 1

and 2.

(3, 5, 6). Recall that the generical dimension of a codistribution is the maximal
dimension that occurs in any nonsingular points. Hence for every ξ ∈ Sk we have that
D(Yj) = dim(Yj |ξ) and D(Yj) = dim(Yj |ξ) for j ∈ {0, 1, . . . , k}.

We show first that

dim Yk(ν)− dim Yk−1(ν) ≥ dim Yk+1(ν)− dim Yk(ν) for every ν ∈ Sk(8.1)

For this note that, if the 1-forms {η1, . . . , ηs} ⊂ Yk are linearly dependent mod
Yk−1, i. e., if α0dt +

∑s
i=1 αiηi+

∑p
i=1

∑k−1
j=0 βijdy

(j)
i = 0 then, differentiation in

time gives α̇0dt +
∑s

i=1(α̇iηi + αiη̇i)+
∑p

i=1

∑k−1
j=0 (β̇ijdy

(j)
i + βijdy

(j+1)
i ) = 0. In

other words, η̇1, . . . , η̇s are linearly dependent mod Yk+1. Let ξ ∈ Sk. From the
nonsingularity of Yj ,Yj , j = 0, . . . , k in Sk, if dim Yk − dim Yk−1 = r in ξ ∈ Sk, then
we may choose a partition y = (ȳT , ŷT ) such that ȳ has r components and we locally
have Yk = span

{
dȳ(k)

}
+ Yk−1. Let ŷj be any component of ŷ for j ∈ bp − re. By

construction we have that {dŷ
(k)
j , dȳ(k)} is linearly dependent mod Yk−1 for every

j ∈ bp − re. From the remark above it follows that the set {dŷ
(k+1)
j , dȳ(k+1)} is

(locally) dependent mod Yk for every j ∈ bp − re, showing (8.1). In particular the
sequence ρk is nonincreasing.

We show now that

dimYk(ν)− dimYk−1(ν) ≤ dimYk+1(ν)− dimYk(ν) for every ν ∈ Sk(8.2)

Assume that (xk, uk) is a state representation constructed around a neighborhood
Uk of a point ξ ∈ Sk and satisfying (S1), (S2), 1 and 2. Since span{dxk} = Yk and
d ˙̄y(k)

k ⊂ uk, it follows that the components of d ˙̄y(k)
k are independent mod Yk since they

are also components of the input and uk and furthermore span {dxk} = Yk. Hence
ȳ
(k+1)
k+1 may be chosen satisfying 3, showing (8.2). In particular, σk+1 ≥ σk.

To show the convergence of sequences ρk and σk for some k∗ ≤ n, assume that
ν ∈ Sk. Denote span{dx} by X. Then Yk = X + Yk and thus

dimYk(ν) = dim X(ν) + dimYk(ν)− dim(Yk(ν) ∩X(ν)).

Denote for k ∈ IN :

sk(ν) = dimYk(ν)− dimYk−1(ν)
pk(ν) = dim Yk(ν)− dim Yk−1(ν)
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Note that ρk = pk(ν) and σk = sk(ν) are constant for every ν ∈ Sk. We also have

sk(ν) = pk(ν)− dim(Yk(ν) ∩X(ν)) + dim(Yk−1(ν) ∩X(ν))(8.3)

We show now that

if there exists k∗ and some ν ∈ Sk such that sk∗(ν) = pk∗(ν) = ρ,
then sk∗+1(ξ) = pk∗+1(ξ) = ρ for every ξ ∈ Sk∗ .

(8.4)

Note that, from (8.4), a simple induction shows that sk(ξ) = pk(ξ) = ρ for every
k ≥ k∗ and ξ ∈ Sk∗ . Furthermore, this last affirmation implies that Sk = Sk∗ for
k ≥ k∗.

To show (8.4), assume that pk∗(ν) = sk∗(ν) = ρ for some ν ∈ Sk∗ From (8.3), it
follows that

− dim(Yk∗(ν) ∩X(ν)) + dim(Yk∗−1(ν) ∩X(ν)) = 0.

Since the dimensions of Yk∗ ∩X and of Yk∗−1 ∩X are constant in Sk∗ , it follows that,
for every ξ ∈ Sk∗ , we have

pk∗(ξ) = sk∗(ξ) = ρ

and

− dim(Yk∗(ξ) ∩X(ξ)) + dim(Yk∗−1(ξ) ∩X(ξ)) = 0.

Note from (8.3) that

sk∗+1(ξ)− pk∗+1(ξ) = −dim(Yk∗+1(ξ) ∩X(ξ)) + dim(Yk∗(ξ) ∩X(ν))(8.5)

for every ξ ∈ Sk∗ . By (8.1) and (8.2) it follows that

sk∗+1(ξ)− pk∗+1(ξ) ≥ 0.

Since

− dim(Yk∗+1(ξ) ∩X(ξ)) + dim(Yk∗(ξ) ∩X(ξ)) ≤ 0,

the only possibility is to have both sides of (8.5) equal to zero for every ξ ∈ Sk∗ .
Using (8.1) and (8.2) again, then (8.4) follows. Note that a simple induction shows
that (8.4) implies 7.

To complete the proof of 5, 6 and 7 it suffices to show the existence of k∗ such that
(8.4) holds. For this note that dim(Yk(ν) ∩ X(ν)) is nondecreasing for k = 0, . . . , n
and it is least than or equal to n = dim X. In particular, there exists some k∗ ≤ n
such that dim(Yk∗(ν) ∩X(ν)) = dim(Yk∗−1(ν) ∩X(ν)).

(4). Easy consequence of 1, 2 and (S2).
(8). The first part of 8 follows easily from 3 from the fact that card ȳk = σk and

from 5. The second part of 8 follows easily from the equality card ȳk = σk, from the
fact that the components of dȳ

(k+1)
k are independent mod Yk and from the fact that

σk = ρk = ρ for k ≥ k∗.
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9. Conclusions. We have showed that the intrinsic interpretations of the dy-
namic extension algorithm of [15, 11] can be translated to the approach of [23] in
a quite natural manner. These interpretations was generalized for time-varying an
nonaffine nonlinear systems.

To illustrate the usefulness of Lemmas 5.2 and 6.2, we have studied a characteri-
zation of flatness for the time-invariant and the time-varying cases.

The uniqueness of the notion of differential dimension (cardinal of the input) is
established for connected smooth systems that admits state representations around
every point.
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[5] N. Bourbaki. Éléments de mathématique. Théorie des ensembles. Hermann, Paris, 1970.
E.III.52, § 1–2.
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1971. TG.I.28, § 4.

[7] L. Cao and Y.-F. Zheng. Disturbance decoupling via dynamic feedback. Internat. J. Systems
Sci., 23:683–694, 1992.
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[16] M. Fliess. Vers une nouvelle théorie du bouclage dynamique sur la sortie des systèmes non
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Congresso Brasileiro de Automática, São Paulo, Brazil, 1996.
[49] P. S. Pereira da Silva. Flatness of nonlinear control systems : a Cartan–Kähler approach. In

Proc. Mathematical Theory of Networks and Systems – MTNS’2000, pages 1–10, Perpig-
nan, Jun. 19–23, 2000. CDROM to appear.

[50] P. S. Pereira da Silva. Flatness of nonlinear control systems and exterior differential systems,
volume 2 of Lecture notes in control and Information Sciences. Springer, Berlin, 2000.
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