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Abstract: Two methods of numerical integration of DAE’s using mixed sym-
bolic/numerical computations are studied in this paper. The first method, not
new in the literature, is directly obtained by a decoupling and stabilizing control
law. Numerical experiments shows that this first method may be numerically
unstable for high index systems. The main problem of the first method is that the
stabilization of the constraint manifold is the stabilization of a chain of integrators,
and this may generate the numerical problems found in the experiments. The
second method assures a direct convergence to the constraint manifold, and the
numerical experiments show very good results. Copyright c©2005 IFAC
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1. INTRODUCTION

Implicit systems have been deeply studied in the
literature. Linear singular (or implicit, or descrip-
tor) systems are an important class of control
systems and many papers and books on this
subject have been published (Campbell, 1982;
Liyi, 1989; Campbell, 1990). Solvability of non-
linear implicit differential equations is addressed
in (Brenan et al., 1995; Rheinboldt, 1991). The
index of general DAE’s was studied for instance
in (Campbell and Gear, 1995; Le Vey, 1998). Our
paper is an attempt to study DAE’s under a
geometric approach, as done earlier for instance by

1 The first author was partially supported by CNPq. The
first and the second authors are partially supported by
CAPES-COFECUB, proj. 425/03

(Rheinboldt, 1984; Reich, 1990; Rabier and Rhein-
boldt, 1991; Rabier and Rheinboldt, 1994; Fliess
et al., 1995). In previous works, the connections
between implicit systems and the zero dynamics
was pointed out (Byrnes and Isidori, 1988; Rou-
chon, 1990; Krishnan and McClamroch, 1994)
Our work studies this relationship further and
shows that the normal form associated to static
decoupling theory (Isidori, 1995) may be used for
the numerical integration of a class of DAE’s, at
least when one introduces a modification in the
dynamics that assures a direct convergence to the
constraint manifold, as it will be shown later. In
this paper we consider a semi-implicit system Γ of
of the form

ẋ(t) = f(x(t)) + g(x(t))u(t) (1a)



y(t) = h(x(t)) = 0 (1b)

where x(t) ∈ IRn is the pseudo-state of the system,
u(t) ∈ IRm is the pseudo-input 2 , and yi ≡ 0, i =
1, . . . , r are the constraints. In the language of
some DAE’s researchers, the components of u are
called algebraic variables, since no derivatives of
u are involved in (1). The explicit system

ẋ(t) = f(x(t)) + g(x(t))u(t) (2a)

y(t) = h(x(t)) (2b)

will be denoted by S. Note that S is obtained from
Γ by considering that y is an output, instead of
being a constraint.

In this paper, two methods of numerical integra-
tion of DAE’s will be studied. The first one (that is
not a contribution of the paper, but it is presented
only for comparison terms) is simply the decou-
pling and stabilization of constraint functions y.
Some numerical experiments shows that it is not
a reliable numerical scheme for high index DAEs.
The second method is a symbolic/numeric scheme
(see (Campbell and Marszalek, 1998)), and it is
based on the following geometric result. Given a
completely determined DAE (1) one can construct
an explicit system T (using some symbolic differ-
entiations of the constraints y, that are executed
for once and for all), in a way that the solutions of
T converge to the solutions of Γ. Such a method
is in fact an explicit integrator of a DAE (see
(Campbell and Zhong, 1997)) In fact, under some
regularity assumptions we will show that there
exists an explicit control system given by

(
ẋ
u̇

)
= τ(x(t), u(t)) (3)

having the property, that the subvector x(t) of
the solutions of (3) converge (globally) to the
solutions of the implicit system (1) with compat-
ible initial conditions and input u(t). It is shown
that the field τ may be constructed using the
symbolic derivatives y(k) and their differentials for
k = 0, . . . k∗, where k∗ is the differential index.
Based on this result, one may develop a numerical
integration method for a class of high index DAEs.
In this method, one has to compute the symbolic
derivatives of the constraints but all the other
computation may be performed numerically. Note
that, if the equations of the system are sparse,
then matrix inversions may destroy this property,
whereas the symbolic derivatives of restrictions
will preserve sparsity, which is a nice feature of
this second method. The paper is organized as

2 Note that u is not a differentially independent input for
Γ, since the constraints y ≡ 0 induce differential relations
linking the components of u. By the same reasons, x is not
a state of Γ.

follows. In this section, we present some basic facts
about decoupling theory. In section 2 we present
the first method of numerical integration, in sec-
tion 3 we establish the second method. In section 5
we state some conclusion remarks. Finally, in the
appendix, we show the results of some numerical
experiments.

1.1 Notation

The field of real numbers will be denoted by
IR. The matrix MT stands for the transpose of
M . Given a function f(t) then ḟ stands for d

dtf

and dk

dtk f will be denoted by f (k). For simplicity,
we abuse notation, letting (z1, z2) stand for the
column vector (zT

1 , zT
2 )T , where z1 and z2 are

also column vectors. Let x = (x1, . . . , xn) be a
vector of functions. Then {dx} stands for the set
{dx1, . . . , dxn} and x(k) stands for (x(k)

1 , . . . , x
(k)
n ).

Let ρ = (ρ1, . . . , ρr) and y = (y1, . . . , yr).
Then y〈ρ〉 stands for (y(ρ1)

1 , . . . , y
(ρr)
r ), and Y 〈ρ〉

stands for (y(0)
1 , . . . , y

(ρ1)
1 , . . . , y

(0)
r , . . . , y

(ρr)
r ). Fur-

thermore y〈ρ−1〉 stands for (y(ρ1−1)
1 , . . . , y

(ρr−1)
r )

and Y 〈ρ−1〉 stands for (y(0)
1 , . . . , y

(ρ1−1)
1 , . . . , y

(0)
r ,

. . . , y
(ρr−1)
r ).

1.2 Decoupling, normal forms and implicit systems

For a system S with output y given by (2) one can
define the relative degree at x0 as follows (Isidori,
1995). For i = 1, . . . , r. Compute the derivative
ẏi = ∂hi

∂x ẋ = ∂hi

∂x (f(x) + g(x)u) = h
(1)
i (x, u). If

we have ∂hi

∂u ≡ 0, locally around x0, this process
may be continued 3 . So, for k = 1, . . . , ρi we may

compute h
(k)
i (x, u) = ∂h

(k−1)
i

∂x (f(x)+g(x)u), where
ρi is the least integer k such that h

(k)
i (x, u) does

depend on u around x0. Hence one may write

y〈ρ〉 = a(x) + b(x)u (4)

If the r×m matrix b(x), called decoupling matrix,
has constant rank r around x0, then the decou-
pling problem by static-state feedback is locally
solvable around x0. In this case the output y
is said to have relative degree ρ = (ρ1, . . . , ρr)
and there exists a local coordinate change x 7→
(Y 〈ρ−1〉, x̂), for which, in these coordinates, we
have the following canonical form

ẏ1 = y
(1)
1 (5a)

...
...

... (5b)

ẏ
(ρ1−2)
1 = y

(ρ1−1)
1 (5c)

3 It is easy to see that ∂hi
∂u

does not depend on u



ẏ
(ρ1−1)
1 = a1 + b1u (5d)

...
...

...

ẏr = y(1)
r (5e)

...
...

...

ẏ(ρr−2)
r = y(ρr−1)

r (5f)

ẏ(ρr−1)
r = ar + bru (5g)

˙̂x = η(x̂, Y 〈ρ−1〉, u) (5h)

where a = (a1, . . . , ar)T and b = (bT
1 , . . . , br)T

are given by (4). In the literature, (5h) is called
zero dynamics (Byrnes and Isidori, 1988) and is
directly related to the subsystem obtained by ze-
roing the output and hence to the implicit system.
Let û be a set of m − r components. Up to a
reordering, we may write u = (ū, û) where ū are
the remaining r components of u. One obtains

y〈ρ〉 = a(x) + b̄(x)ū + b̂(x)û (6)

Assume that ū is such that b̄(x) is locally nonsin-
gular around x0

4 . Now choose v = (y〈ρ〉, û). Then
it is clear that

v =
(

a
0

)
+

(
b̄ b̂
0 I

)
u

and so the regular static-state feedback (see
(Isidori, 1995))

u = α(x) + β(x)v (7a)

where α and β are defined by

α =−
(

b̄ b̂
0 I

)−1 (
a
0

)
(7b)

β =
(

b̄ b̂
0 I

)−1

(7c)

is a static-feedback that solves the decoupling
problem. Note that the closed-loop system has
state z = (x̂, Y 〈ρ−1〉) and input v = (v1, . . . , vr, û),
where vi = y

(ρi)
i , given by

ẏ1 = y
(1)
1 (8a)

...
...

... (8b)

ẏ
(ρ1−2)
1 = y

(ρ1−1)
1 (8c)

ẏ
(ρ1−1)
1 = y

(ρ1)
1 (8d)

...
...

...

ẏ1 = y
(1)
1 (8e)

...
...

...

4 Since b(x) has rank r, one can always choose ū in a way
that b̄ is nonsingular

ẏ(ρr−2)
r = y(ρr−1)

r (8f)

ẏ(ρr−1)
r = y(ρr)

r (8g)
˙̂x = θ(x̂, Y 〈ρ〉, û) (8h)

Where θ = η(x̂, Y 〈ρ−1〉, α + βv). Now consider a
implicit system (1). It is clear that the implicit
system is equivalent to the output nulling dynam-
ics or zero dynamics

Y 〈ρ〉 = 0 (9a)
˙̂x = θ(x̂, 0, û) (9b)

Let Σ = IRn× IRm with global coordinates (x, u).
Consider the submanifold Γ ⊂ Σ defined by (9a).
It is clear that the zero dynamics evolves on the
submanifold 5 Γ. The state and the input of the
implicit dynamics is respectively given by x̂ and
û. Note that the pair (x̂, û) is in fact a local
coordinate system of the submanifold Γ.

In this paper we assume that the input û of
the implicit system (1) one may perform the
construction above for the system (2). Note that,
if r = m, i. e., if the number of constraints
are equal to the number of inputs, then û is
absent and the implicit system will be completely
determined.

Let vi = y
(ρi)
i , i = 1, . . . , r. A standard trick now

may be applied in order to ensure the output
stabilization. For this it suffices to apply the
regular static-state feedback

vi = −
ρi−1∑

j=1

αijy
(j)
i , i = 1, . . . , r (10)

where all the roots of the polinomials πi(s) = sρi+∑ρi−1
j=1 αijs

j have negative real part.

2. FIRST METHOD

The first method of integration of DAE’s we
present here is a straightforward application of
decoupling theory, that is summarized in section
1.2. In this paper, some numerical experiments are
performed in order to show that this method is
not numerically reliable in general, even for linear
systems.

This first method is in fact the application of
the decoupling feedback (7) along with the stabi-
lization feedback (10). Furthermore, if the initial
condition is already in Γ, then the stabilizing
feedback will not act, ensuring that the closed
loop dynamics will be in fact will converge to
the implicit dynamics (9b). Then it suffices to

5 By the results of (Isidori, 1995), assuming that y pos-
sesses relative degree around every point of Γ, then it is
easy to show that Γ is a embedded submanifold of Γ



integrate the (explicit) closed loop system with
a standard numerical method. This seems very
nice, but numerical experiments shows that this
method is not reliable due to the following rea-
sons. The convergence to the manifold Γ is rather
indirect. In fact since one aims to stabilize a
chain of integrators, for some initial conditions
(for instance a positive yi and a positive ẏi) then
the function yi(t) will have a positive derivative
at t0. In one hand, this process, when regarded
from the numerical point of view, generates the
necessity of imposing fast poles in order to have
fast convergence, otherwise one observes a non
negligible numerical noise in the variables Y 〈ρ〉.
On the other hand, if one imposes fast poles, one
will observe a very fast dynamics, related to the
variables Y 〈ρ〉 and a slow dynamics, related to
zero dynamics (9b). From the numerical point of
view, this generates stiffness. So, as the numerical
experiments show, it is very difficult to tune the
poles in order to have good results. To illustrate
this, consider the following implicit linear system

ż = Az + Bu (11a)

y = Cx = 0 (11b)

where

A = R−1ÃR, B = R−1B̃ C = C̃R (11c)

where

Ã =




0 −100 −100 −100
0 0 1 0
0 0 0 1
0 0 0 0


 (11d)

B̃ =




0
0
0
1


 (11e)

C̃ =
(
1 0 0 0

)
(11f)

By construction, it is clear that, if x = (x1x2x3x4)T

and z = (z1z2z3z4)T with x = Rz, then

ẋ1 =−100x2 − 100x3 − 100x4 (12)

ẋ2 = x3 (13)

ẋ3 = x4 (14)

ẋ4 = u (15)

y = x2 = 0 (16)

In particular y = x2, ẏ = x3, y
(2) = x4, y

(3) =
u. This system is an index 4 implicit system.
Applying the first method, one has to integrate
the explicit system ż = Az + Bu in closed loop
with the output stabilizing feedback u = −a1y −
a2ẏ − a3ÿ. Choosing a1 = γ3, a2 = 3γ2, a3 = 3γ,
one imposes the poles {−γ,−γ,−γ} to the output

dynamics. Note that, for this example, Γ is the set
{(z, u) ∈ IR5|z = T−1

1 (c, 0, 0, 0)T , c ∈ IR and u =
0}. The exact solution of the implicit system for
some (z0, 0) ∈ Γ is z(t) ≡ z0.

3. SECOND METHOD FOR COMPLETELY
DETERMINED SYSTEMS

In this section we assume that the output y of
system (2) possesses relative degree and m = r.
In particular, the input û of the implicit system
(1) is absent and so it is completely determined.
Note that, in this case (x̂, Y 〈ρ〉) will be a local
coordinate system of space Σ = IRn× IRm (which
possesses canonical coordinates (x, u). In these
coordinates the dynamics of the explicit system
(2) reads like (8) where û ≡ 0 (no input). Recall
from section 2 that a problem of the first method
is that the stabilization of a chain of integrators is
rather indirect. The idea of the second method is
to forget that y

(j)
i is the derivative of y

(j−1)
i and to

regard the vector Y 〈ρ〉 as a vector of independent
variables. So, in the coordinates (x̂, Y 〈ρ〉) of the
space Σ = IRn × IRm, take γ > 0 and define the
following auxiliary system obtained by performing
what can be called a generalized output injection

ẏ1 =−γy1 (17a)
...

...
... (17b)

ẏ
(ρ1−1)
1 =−γy

(ρ1−1)
1 (17c)

ẏ(ρ1)
r =−γẏ(ρ1)

r (17d)
...

...
...

ẏr =−γyr (17e)
...

...
... (17f)

ẏ(ρr−1)
r =−γy(ρr−1)

r (17g)

ẏ(ρr)
r =−γẏ(ρr)

r (17h)
˙̂x = θ(x̂, Y 〈ρ〉) (17i)

By construction it is clear that the solution
of the auxiliary system is such that Y 〈ρ〉(t) =
Y 〈ρ〉(t0)e−γ(t−t0). In particular limt→∞ Y 〈ρ〉 = 0
(see Theorem 1).

Now, to establish our second method, it suffices
to rewrite system (17) in the original coordinates
(x, u). For this, denote by Ψ(x, u) = (x̂, Y 〈ρ〉).
Around (x0, u0) note that Ψ is a diffeomorphism.
Hence, the matrix T (x, u) = ∂Ψ

∂(x,u) is inversible.

Note that ˙̂x = ∂x̂
∂x (f(x) + g(u)) = θ(x̂, Y 〈ρ〉). Now

define the explicit completely determined system

d

dt

(
x
u

)
= τ(x, u) (18)



where τ(x, u) is defined by the following rule

T (x, u)τ(x, u) =




∂x̂

∂x
(f(x) + g(u))

−γY 〈ρ〉


 (19)

Write

Y 〈ρ〉 =
(

Y 〈ρ−1〉

y〈ρ〉

)

Then note that T (x, u) is of the following form

T (x, u) =




∂x̂

∂x
0

∂Y 〈ρ−1〉

∂x
0

∂y〈ρ〉

∂x

∂y〈ρ〉

∂u




Note that T (x, u) may be determined by sym-
bolic computations and the solution of the linear
equation (19) may be computed pointwise by nu-
merical methods. If the system is sparse, the the
matrix T of equations (19) is also sparse.

Remark 1. Note that, from decoupling theory, to
choose the state-variables x̂ of the zero dynamics
one may assure that the matrix T (x, u) of (19) is
pointwise nonsingular. Two facts may arise from
this remark. Sometimes it is easy to choose x̂(x)
using symbolic manipulations (for instance, in our
example the choice of some components of x does
the job). When it is not possible (or not easy)
to choose x̂(x) using symbolic manipulations, it
can be shown that one may choose x̂(x) pointwise
using numerical methods in the following way. At
(x̄, ū), choose a constant matrix R in way that the
matrix T (x̄, ū) defined by

T (x̄, ū) =




R 0
∂Y 〈ρ−1〉

∂x
0

∂y〈ρ〉

∂x

∂y〈ρ〉

∂u




Then find τ(x̄, ū) numerically by solving the fol-
lowing linear equation

T (x̄, ū)τ(x̄, ū) =
(

R(f(x̄) + g(x̄)ū)
−γY 〈ρ〉

)
(20)

It can be shown that this technique ensures the
convergence of (x(t), u(t)) to the manifold Γ and
for a point (x̄, ū) over Γ such a construction
defines the same field τ defined by (19).

One can show the following result that means
that the solutions of the auxiliary system (18)
converges to the solution of the implicit system
(1).

Theorem 1. The following statements holds:
(i) Let ζ(t) = (x(t), u(t)) be a solution of (18)
with ζ(t0) ∈ Γ. Then x(t) = πx(ζ(t)) is a
solution of (1) with input u(t). Conversely, if
x(t) is a smooth solution of (1), then x(t) is
equal to πx(ζ(t)) for some solution of (18) with
(ζ(t0), u(t0)) ∈ Γ.

(ii) Let ζ(t) = (x(t), u(t) be a solution of (18)
with initial condition ζ0. Assume that ζ(t) is well
defined for t ∈ ([t0, t1], then ‖Y 〈ρ〉‖ ≤ e−γt‖Y 〈ρ〉‖
for all t ∈ [t0, t1].

(iii) Let L ⊂ Σ = IRn × IRm be a compact set.
Let L1 = {µ ∈ Σ | dist(µ,L) < ε1} for a given
ε1 > 0. Assume that every solution ζ(t) of (18)
with initial condition ζ(t0) ∈ L1 is such that
ζ(t) is well defined and is inside a compact set
R ⊂ Σ for every t ∈ [t0, t1]. Then there exists
ε > 0 such that, if ζ(t), t ∈ I = [t0, tf ] is a
solution of (18) with initial condition inside L,
and ‖Y 〈ρ〉(t0)‖ < ε, then there exist κ1, κ2 > 0
and a solution x(t) of (1) such that ‖πx(ζ(t)) −
x(t)‖ ≤ κ1‖Y 〈ρ〉(t0)‖eκ2(t−t0) for all t ∈ [t0, tf ].

4. NUMERICAL EXPERIMENTS

In the following numerical experiments we have
used the initial condition z0 = T−1x0, with x0 =
(2, 1e− 4, 1e− 4, 1e− 4)T Note that (x0, u0), with
small u0 is close to the the submanifold Γ.

Fig. 1 plots x1(t) obtained with Method 1, γ = 1,
Matlab Simulink option = ode45, tolerance = 1e-
04. The solution diverges.
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Fig. 1.

Fig. 2 depicts x1(t), simulated under Method
1, γ = 10, Matlab Simulink option = ode23,
tolerance = 1e-04. The solution still diverges.

On Fig. 3 one can see y(t) simulated with Method
2, γ = 1, Matlab Simulink option = ode45, toler-
ance = 1e-04.The ideal value of y(t) is zero, but a
numerical error of about 1× 10−6 is observed.

Finally, Fig. 4 shows the result of the simulation of
x1(t)− 2, obtained with Method 2, γ = 1, Matlab
Simulink option = ode45, tolerance = 1e-04. The
ideal value is constant, and a numerical error of
only 2× 10−4 is observed.
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5. CONCLUSIONS

This paper have established an efficient method
for integrating DAEs numerically. This method
can be easily extended to time-varying systems
and systems with inputs, i. e. , systems that
are not completely determined. Many numerical
experiments have been performed for both sys-
tems, with linear and nonlinear systems and using
various Matlab Simulink options. By reasons of
space, only a small number of such experiments
are shown in the appendix.
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