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Abstract

This work considers a nonlinear time-varying system described by a state representation, with input u and state x. A given
set of functions v, which is not necessarily the original input u of the system, is the (new) input candidate. The main result
presents necessary and sufficient conditions for the existence of a local classical state space representation with input v. These
conditions rely on integrability tests that are based on a derived flag. As a byproduct, one obtains a sufficient condition of
differential flatness of nonlinear systems.
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1 Introduction

A classical state representation is essentially a set of dif-
ferential equations of the form

ż(t) = g(t, z(t), v(t)) (1)

where z(t) ∈ IRs is the state and v(t) ∈ IRq is the input.
When the state representation depend on the derivatives
of the input, that is, when the state equations are of the
form

ẇ(t) = η(t, w(t), v(0)(t), v(1)(t), . . . , v(α)(t)) (2)

with η depending on v(α) for α > 0, then the state rep-
resentation (with state w and input v) is said to be gen-
eralized (see Fliess et al. (1993b)). An output y of (2)
given by

y = h(t, w(t), v(0)(t), . . . , v(β)(t))

is said to be classical with respect to the state represen-
tation (2), if y does not depend on v(j) for j > 0, that
is, y may be written as y = ĥ(t, w(t), v(t)).

The problem of realization of input/output nonlinear
differential equations is the problem of giving classical
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state representations (1) for input-output equations.
This problem was extensively studied in the literature
(see for instance van der Schaft (1987); Glad (1988);
Crouch and Lamnabhi-Lagarrigue (1988); van der
Schaft (1990); Liu and Moog (1994); Moog et al. (2002);
Jakubczyk (1986)). A comparison between some of
these works can been found in Kotta and Mullari (2005).
Closed related to this problem is the one of seeking gen-
eralized state transformations z = φ(t, w, v(0), . . . , v(α))
in a way that (2) is converted to (1), that is, the input
derivatives are eliminated. The time-invariant version
of this problem is solved in Delaleau and Respondek
(1995).

Recall that, in the behavioral approach of Willems
(1992), the input and the output are not chosen a pri-
ori. The same point of view is shared by the approach
of Fliess et al. (1999), and this fact is in accordance of
what is found in physical systems. For instance, the DC
motor can be represented by the following model 1

Li(1) +Ri+ [K(i)]θ(1) =E, (3a)
Jθ(2) +Bθ(1) = [K(i)]i− τ (3b)

where θ is the shaft angle, i is the armature current, L is
is the armature inductance, E is the external voltage, R
is the armature resistance of the motor, τ is the external

1 The model (3) may be found in Atay (2000). One may
disregard the effect of magnetic saturation, considering that
K(i) is a constant. This may be a bad approximation for
high current values (see Atay (2000)). The linear version of
this example is due to Emmanuel Delaleau.
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torque (or the load torque), J is the joint inertia of the
armature and shaft, and K(i) is the function that is
related to the dependence of the flux on the current.
When the input is the voltage E, the disturbance input
is the load torque τ , and the output is the shaft angle θ,
the device is working as a motor and one may give the
following state equations

d

dt
i=−(R/L)i− (K(i)/L)θ(1) + (1/L)E, (4a)

d

dt
θ(0) = θ(1), (4b)

d

dt
θ(1) = (K(i)/J)i− (B/J)θ(1) − (1/J)τ, (4c)

y = θ(0) (4d)

with state x = (i, θ(0), θ(1)), input u = (E, τ) and output
y = θ(0). If one considers that the device is working as
a voltage generator, one may take the external torque τ
as an input, the current i on the load as a disturbance
input, and the voltage E as an output, and one obtains
the following state equations

d

dt
θ(0) = θ(1), (5a)

d

dt
θ(1) = (K(i)/J)i− (B/J)θ(1) − (1/J)τ, (5b)

y1 =Kθ(1) +Ri+ Li(1) (5c)

with state z = (θ(0), θ(1)), input v = (τ, i) and output
y1 = E. Note that the dimension of the states of (4)
and (5) are different. The equations (3) are the same
for the motor and the generator, since they represent
the model of the same physical system, but one may
choose a different set of inputs and outputs, giving rise
to different state equations.

Motivated by this example, one may state the following
problem 2 . Given a system that is defined by its state
representation

ẋ(t) = f(t, x(t), u(t)) (6)

where x(t) ∈ IRn is the state, and u(t) ∈ IRm is the in-
put, when does this system admit another classical state
representation (1), with a given input candidate v? Now,
v is a new input, and so the original state x and the
new state z may have different dimensions. For instance,
given the system defined by (4) with input u = (E, τ)
and state x = (i, θ, θ(1)), one may ask if v = (τ, i) is
a possible input of (4), corresponding to classical state
equations. When the output y1 is disregarded, the ex-
pected answer is yes, as (5a-b) is an alternate state repre-
sentation of the same physical system (3), and this may

2 In this section one will only motivate the problem. See the
precise statements and definitions in section 2.

be confirmed by the application of Theo. 1 of section 2.
In section 2, necessary and sufficient conditions for the
solution of this problem are given. In section 3 a version
of this problem for systems with outputs is considered.
As a byproduct, a sufficient condition of differential flat-
ness is shown in section 4. Our approach will follow the
infinite dimensional geometric setting introduced in con-
trol theory by Fliess et al. (1993a); Pomet (1995); Fliess
et al. (1999).

2 Notations, Preliminaries and Problem State-
ment

The standard notations of differential geometry will be
considered in the finite and infinite dimensional case.
The field of real numbers will be denoted by IR. The
set of natural numbers {1, . . . , k} will be denoted by
bke. For simplicity, we abuse notation, letting (z1, z2)
stand for the column vector (zT

1 , z
T
2 )T, where z1 and z2

are also column vectors, and the transpose of zi is zT
i ,

i=1,2. Let x = (x1, . . . , xn) be a vector of functions (or
a collection of functions). Then {dx} stands for the set
{dx1, . . . , dxn}. Some notations and definitions of Fliess
et al. (1999); Pereira da Silva and Corrêa Filho (2001)
are used along the paper. (e. g. the definition of a system
as a diffiety, and the definition of state representation
as a local coordinate system). The survey Pereira da
Silva (2008a) presents an elementary introduction to this
approach. If S is a diffiety with Cartan field d

dt , and u

is a function defined on S, then the Lie derivative d
dtu

of a function u will be denoted by u̇ (or u(1)) and the k-
fold Lie derivative d

dt

k
(u) of u will be denoted by u(k). If

u = (u1, . . . , um) is a set of functions defined on S then
u(k) = (u(k)

1 , . . . , u
(k)
m ). If ω =

∑p
k=1 αkdφk is a one-form

defined on S, then ω̇ stands for L d
dt
ω =

∑p
k=1 α̇kdφk +

αkdφ̇k. A nonsingular codistribution Γ that is generated
by a linearly independent set {dω1, . . . , dωr} is integrable
if dωi ∧ ω1 ∧ . . . ∧ ωr = 0 for i ∈ bre. In the rest of this
paper, one will refer to system S, as stated in the next
definition.

Definition 1 Consider the state equations (6), where
t ∈ IR is the time, x(t) ∈ IRn is the state, and u(t) ∈ IRm

is the input, and f is smooth with respect to its argu-
ments. The system S associated to (6) is the diffiety
with (global) coordinates {t, x, (u(k) : k ∈ IN)} and the
Cartan field d

dt is given by d
dt = ∂

∂t +
∑n

i=1 fi
∂

∂xi
+∑

k∈IN

∑
j∈bme u

(k+1)
j

∂

∂u
(k)
j

. A local state representation

(w, v) of S is a set of functions {w1, . . . , ws, v1, . . . , vq},
defined on some open set of S, such that {t, w, (v(k) :
k ∈ IN)} is a local coordinate system 3 of S. In this

3 The approach of Fliess et al. (1999) considers an intrin-
sic definition of state representation. See Pereira da Silva
(2008a) for a comparison with the present definition.
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case, the Cartan field will be locally given by d
dt = ∂

∂t +∑s
i=1 ηi

∂
∂zi

+
∑

k∈IN

∑
j∈bqe v

(k+1)
j

∂

∂v
(k)
j

and the corre-

sponding local state equations 4 will be given by (2), where
η = (η1, . . . , ηs). A local state representation is said to
be classical if α = 0 in (2), that is, if ηi does not depend
on v(j) for j > 0, and for i ∈ bqe.

Now, the main problem considered in this paper may be
precisely stated.

Problem 1 Let v = (v1, . . . , vq) be a set of functions
defined on 5 the diffiety S. The Problem of Classical state
Representation with input v is solvable around some ξ ∈
S, if S admits a local classical state representation (z, v)
defined in an open neighborhood U of ξ.

Remark 1 Note that there is no loss of generality in
assuming that the original system S is defined by (6).
For instance, if the original equations 6 were in the
form (2), then one may take the dynamic extension
x = (w, v, . . . , v(α−1)) and u = v(α). In this case, one
will obtain a classical state representation (6).

The following lemma will be useful in this paper.

Lemma 1 (Pereira da Silva, 2008a, Lemma 1) Let
(x, u) and (z, v) be two local classical state representa-
tions of the system S defined on an open neighborhood
U of ξ ∈ S.
(1) If b ∈ IN is such that span {dv} ⊂ span {dt, dx, du(0),
. . . , du(b)}, then span {dz} ⊂ span {dt, dx, du(0), . . . ,
du(b−1)} 7 .
(2) Let β ∈ IN be the smallest non-negative integer
such that there exists an open neighborhood V of ξ such
that 8 span {du} ⊂ span

{
dt, dz, dv(0), . . . , dv(β)

}
on V .

If span {dz, dv} ⊂ span
{
dt, dx, du(0), . . . , du(γ)

}
, then

β ≤ n+mγ, where n = dimx and m = dimu.

Now, the main result of the section will be presented.

Theorem 1 Consider the system S defined by (6). Let
v = (v1, . . . vm) be a set of functions locally defined
around ξ ∈ S. Let γ be the least non-negative integer

4 The Def. 1 mimics the concept of endogeneous feedback.
Note that the dimension of an input v is the differential
dimension of S. In particular, q = m (see Fliess et al. (1999)).
5 Note that each vi may be a function of
(t, x, u(0), u(1), . . . , u(α)) for some α. If Problem 1 is solvable,
one must have q = m (see footnote 4).
6 If the choice of v of Problem 1 coincides with the v of
(2), then one recovers a time-varying version of the Problem
stated in Delaleau and Respondek (1995).
7 When b = 0, then span {dt, dx, du(0), . . . , du(b−1)} stands
for span {dx}.
8 The integer β always exists (locally), since {t, z, (v(k), k ∈
IN)} is a local coordinate system.

such that span {dv} ⊂ span
{
dt, dx, du(0), . . . , du(γ)

}
(locally). For a given δ ∈ IN , one may define derived
flag Γk, k ∈ IN on the diffiety S by

Γ0 = span
{
dt, dx, du(0), . . . , du(γ), dv(0), . . . , dv(δ)

}
(7a)

Γk = span {ω ∈ Γk−1 | ω̇ ∈ Γk−1} (7b)

Then Problem 1 is solvable if and only if there exists an
integer δ, with 0 ≤ δ ≤ n+ γ(1 +m) such that
(i) Γk is nonsingular for k = 0, . . . , δ+1, and (dim Γk−1−
dim Γk) = m, for k = 1, . . . , δ + 1.
(ii) Γδ+1 is integrable.
(iii) Γ0 = Γ1 ⊕ span

{
dv(δ)

}
.

(iv) The set {dv(k)} is locally linearly independent for
k = 0, . . . , δ.

The conditions of Theorem 1 will be briefly discussed
before proving this result. Note first that, as one seeks
z such that {t, z, (v(i), i ∈ IN)} is a local coordinate sys-
tem, it is clear that the set B = {dv(0), . . . , dv(k)} is lin-
early independent for all k ∈ IN . Under certain assump-
tions 9 the independence of B for all k would imply that
there exits local coordinates {t, ζ, (v(i) : i ∈ IN)}. This
means that the system would admit a generalized state
representation ζ̇ = F (t, ζ, v, . . . , v(α)). Then one would
apply, for instance, the conditions of Delaleau and Re-
spondek (1995) to the last state representation, obtain-
ing solvability conditions of Problem 1. This could be a
way of proving Theorem 1, but this may lead to some
technical difficulties. Note that condition (iv) is weaker
than the independence of B for all k ∈ IN . The conditions
of Theorem 1 may appear to be technical, and so Ex-
amples 4 and 5 will present some situations where such
conditions may fail. The proof of necessity of Theorem
1 relies on the next Lemma, whose proof is straightfor-
ward by direct computation (see Liu and Moog (1994);
Batista (2006)):

Lemma 2 Let S be a system with local classical state
representation (z, v) and state equations (1). Fix some
δ ∈ IN . Let Γ0 = span {dt, dz, dv, . . . , dv(δ)} and let
Γk = span {ω ∈ Γk−1 | ω̇ ∈ Γk−1}. Then one lo-
cally has Γk = span

{
dt, dz, dv, . . . , dv(δ−k)

}
and Γδ+1 =

span {dt, dz}.

The proof of sufficiency is based on the following result.

Lemma 3 (Pereira da Silva (2008a)) Let (x, u) be
a local classical state representation of a system S
around some ξ ∈ S, and let z = (z1, . . . , zs) and
v = (v1, . . . , vq) be sets of functions defined on the diffi-
ety S such that the set S = {dt, dz, dv, . . . , dv(α)} is
(locally) linearly independent. Assume that span {dx} ⊂

9 See for instance Pereira da Silva (2008a) for several special
versions of the inverse function theorem for diffieties.
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span
{
dt, dz, dv, . . . , dv(α−1)

}
, and span {dż, du} ⊂

span
{
dt, dz, dv, . . . , dv(α)

}
around ξ. Suppose also that

span {dz, dv} ⊂ span {dt, dx, du}. Then (z, v) is also a
local state representation of S around ξ.

Proof of Theorem 1.
Necessity. Let (z, v) be a local classical state represen-
tation of system S defined by (6) with state equations
(1). Since {t, z, (v(k) : k ∈ IN)} is a local coordinate sys-
tem of the diffiety S, then x = x(t, z, v(0), . . . , v(β−1))
and u = u(t, z, v(0), . . . , v(β)) for β ≥ 0 big enough
(see Lemma 1). Hence, du(k) ∈ span {dt, dz, dv(0), . . . ,
dv(β+k)} for all k ∈ IN . In the same way, one
may (locally) write z = z(t, x, u(0), . . . , u(r−1)) and
v = v(t, x, u(0), . . . , u(r)) for a convenient r ∈ IN .
Now take δ = β + r and γ = r. By construction, it
follows that span {dz} ⊂ span

{
dt, dx, . . . , du(γ−1)

}
,

(or span {dz} ⊂ span {dt, dx}, if γ = 0). Hence,
span

{
dt, dx, du, . . . , du(γ)

}
⊂ span {dt, dz, dv, . . . ,

dv(δ)}. In particular, one shows that, for γ = r and
δ = β + r, one has Γ0 = span {dt, dz, dv, . . . , dv(δ)}.
The proof of necessity then follows from Lemma 2. The
fact that δ ≤ n+ γ(1 +m) follows easily from part 2 of
Lemma 1.
Sufficiency. It will be shown first that

span
{
dv, . . . , dv(δ−k)

}
⊂ Γk, k = 0, . . . , δ (8a)

Γk = Γk+1 ⊕ span
{
dv(δ−k)

}
, k = 0, . . . , δ (8b)

The property (8a) is a straightforward consequence
of the definition (7b). The equation (8b) will be
shown by induction. By the assumption (iii) of
Theorem 1, (8b) holds for k = 0. Assume that
it holds for some k, with 0 ≤ k < δ in some
V ⊂ S. By reduction to the absurd, one assumes that
Γk+2 ∩ span

{
dv(δ−k−1)

}
|ν 6= {0} for some ν ∈ V .

By (iv) and (8a), one can construct a local basis of
Γk+1 of the form {ω1, . . . , ωs, dv

(δ−k−1)} around ν. Let
ω =

∑s
i=1 αiωi +

∑m
j=1 βjdv

(δ−k−1)
j be a smooth one

form in Γk+2 such that ω|ν ∈ Γk+2∩span
{
dv(δ−k−1)

}
|ν .

This is equivalent to have αi|ν = 0, i ∈ bse and
some βj |ν 6= 0. It follows from (7b) that ω̇ =∑s

i=1 αiω̇i +
∑m

j=1 βjdv
(δ−k)
j + γ ∈ Γk+1, where γ =∑s

i=1 α̇iωi +
∑m

j=1 β̇jdv
(δ−k−1)
j ∈ Γk+1. One concludes

that
∑m

i=1 βjdv
(δ−k)
j |ν ∈ Γk+1 ∩ span

{
dv(δ−k)

}
|ν . This

contradicts the induction hypothesis. Now, by (i) and
(iv), one shows (8b) from simple dimensional argu-
ments. Now, let ω = dt. Since ω̇ = 0, it follows that
dt ∈ Γk, k = 0, . . . δ+1. In particular, span {dt} ∈ Γδ+1.
Since Γδ+1 is nonsingular and integrable, from Frobe-
nius theorem, there exists (locally) a set of functions
{z1, . . . , zp} such that Γδ+1 = span {dt, dz}. By (8b),
it is clear that the set S = {dt, dz, dv, . . . , dv(δ)} is

(locally) linearly independent and Γ0 = span {S}. By
(8b) for k = δ, and from (7b), one concludes that
span {dż} ∈ span {dt, dz, dv}. By construction, from
the fact that span {dẋ} ⊂ span {dt, dx, du} ⊂ Γ0, and
span

{
du(i)

}
⊂ Γ0 for i = 0, . . . , γ, it follows that

span
{
dẋ, du(0) . . . , du(γ)

}
⊂ Γ0. So, by Lemma 3 ap-

plied to the classical state representation (x̃, ũ), where
x̃ = (x, u, . . . , u(γ−1)) and ũ = u(γ), it follows that (z, v)
is a local state representation for the system. Since
span {dż} ∈ span {dt, dz, dv}, this local state represen-
tation is classical. From part 2 of Lemma 1, it follows
that δ ≤ n+ γ(1 +m). 2

3 Systems with outputs

Consider system S defined by (6) with output y given
by 10

y(t) = h(t, x(t), u(t)) (9)

Given a set of functions v defined on S, one may state
the following problem.

Problem 2 When there exists a local classical state rep-
resentation (z, v) with state equations (1), and the output
is also classical (with respect to (z, v))?

Recall that the output is classical (with respect to (z, v))
if one may locally write

y = h̃(t, z(t), v(t))

The following theorem answers this question.

Theorem 2 Consider system S defined by (6) with out-
put y given by (9). Problem 2 is solvable if and only if
the assumptions of Theorem 1 hold for some δ ∈ IN, δ ≤
n+ γ(1 +m), and furthermore, span {dy} ⊂ Γδ+1.

Proof. Straightforward from the proof of Theo. 1. 2

4 A sufficient condition of flatness

In this section one will show that, under some condi-
tions, one may choose a (virtual) input v in a way that
there exists a local classical state representation (z, v)
such that (1) is linearizable by regular static-state feed-
back v = ψ(t, z, µ), where µ is the new input. Since v is
not the actual input of the system, this state feedback
is endogenous, but is not really a static-state feedback.

10 There is no loss of generality in considering that (x, u) is
a classic state representation and y is a classic output, that
is, y does not depend on u(j) for j > 0 (see Remark 1).
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In particular, the system is linearizable by endogenous
feedback, and so it is flat (see Fliess et al. (1999)). Al-
though v is not the actual input of the system, one may
develop a flatness based control. Now, consider some re-
sults and definitions of Pereira da Silva (2008c). Let S be
the system defined by (6). A time-varying regular static-
state feedback (TVRSSF) is a local diffeomorphism φ
such that (t, x, u) 7→ (t, z, v), where (t, x) 7→ (t, z) is also
a local diffeomorphism, called state transformation. The
closed loop equations are given by

ż(t) = f̃(t, z(t), v(t)) (10)

where f̃(t, z, v) =
[

∂φ
∂t + ∂φ

∂xf(t, x, u)
]∣∣∣

(t,x,u)=φ−1(t,z,v)
.

The linearization problem by TVRSSF seeks a TVRSSF
such that the closed loop system locally reads

ż(t) = Az(t) +Bv(t)

where this last system is time-invariant, linear and con-
trollable (and hence it is flat, as shown in Fliess et al.
(1999)). This problem is solved for instance in Pereira da
Silva (2008c), where it is shown that Prop. 1 generalizes
the results of (Aranda-Bricaire et al. (1995); Jakubczyk
and Respondek (1980)).

Proposition 1 Let ∆0 = span {dt, dx} and let ∆k =
span {ω ∈ ∆k−1 | ω̇ ∈ ∆k−1}. Then the linearization
problem by TVRSSF is locally solvable around ξ ∈ S if
and only if:
(1) The codistributions ∆k are nonsingular at ξ for k ∈
IN .
(2) There exists k∗ ∈ IN big enough, such that ∆k∗ =
span {dt}.
(3) The codistributions ∆k are locally integrable around
ξ, for k ∈ IN .

The following result is a sufficient condition of flatness
of a nonlinear system.

Theorem 3 Consider the system S defined by (6). Let
v = (v1, . . . , vm) be a collection of functions defined on
S. Let δ and γ, be integers, and let Γ0 be the codistribu-
tion defined in Theorem 1. Assume that the conditions
of Theorem 1 hold around some ξ ∈ S. Let ∆0 = Γδ+1

and let ∆k = span {ω ∈ ∆k−1|ω̇ ∈ ∆k−1} , k ∈ IN . Then
if the conditions 1, 2 and 3 of Proposition 1 are satisfied
for ∆k, k ∈ IN , then the system is locally flat around ξ.

Proof. By the proof of Theorem 1, system S admits
a local classical state representation (z, v) around ξ
and ∆0 = span {dt, dz}. In particular, the conditions of
Proposition 1 are satisfied for the state representation
(z, v). In particular, the system admits a flat output y
that is a function of z and t. Note that a given system
S is not necessarily static-feedback linearizable with
respect to the original state representation (x, u) (see
example 2). 2

5 Examples

In order to illustrate the results of this work, five very
simple examples are given.

Example 1. Consider the system ẋ1 = x2, ẋ2 =
t − x2x3 − x1u and ẋ3 = u. Let v = x3. Take Γ0 =
span {dt, dx1, dx2, dx3, du, dv, dv̇} = span {dt, dx1, dx2,
dv, dv̇}. Simple calculations give Γ1 = span {dt, dx1,
dx2, dv} and Γ2 = span {dt, dx1, dx2 + x1dv}. Hence,
the conditions of Theorem 1 hold. Taking z1 = x1 and
z2 = x2 + x1v, it follows that Γ2 = span {dt, dz1, dz2}
and so (z, v) is a local state representation for the sys-
tem, where z = (z1, z2). The corresponding state equa-
tions are given by ż1 = z2 − z1v and ż2 = t.
Example 2. Consider the system S given by ẋ1 = ex3u1,
ẋ2 = u1 and ẋ3 = u2. For this system one may take
v = (v1, v2), where v1 = u1 and v2 = ex3u1. Consid-
ering u1 6= 0, it is easy to show that, by taking γ = 0
and δ = 1, one finds Γ0 = span

{
dt, dx, du, dv, dv(1)

}
,

Γ1 = span {dt, dx, du1}, Γ2 = span {dt, dx1, dx2},
and Γ3 = span {dt}. It is easy to see that the condi-
tions of theorems 1 and 3 hold. In this case it is easy
to integrate Γ2, furnishing the state representation
ż1 = v2, ż2 = v1, where z1 = x1 and z2 = x2. It is then
clear that y = (x1, x2) is a flat output of S. Note that
S is a classical example of a system that is not static-
feedback linearizable (with respect to the original state
representation (x, u)), but it becomes static-feedback
linearizable when one puts one integrator in series with
the first input u1. This last situation may be regarded
in the present approach, by choosing v = (u̇1, u2) and
applying Theorems 1 and 3.
Example 3. Consider now equation (5). Following
the idea of Remark 1, one considers a dynamic ex-
tension in order to get a classical state representa-
tion (x, u), since y1 depends on the derivative of the
input i. Define x = (x1, x2, x3) = (θ(0), θ(1), i) and
u = (τ, i(1)) = (u1, u2), obtaining the following ex-
ample of equation (6): ẋ1 = x2, ẋ2 = (K(x3)/J)x3 −
(B/J)x2 − (1/J)u1, ẋ3 = u2, y1 = K(x3)x2 + Rx3 +
Lu2. Let v = (τ, i) = (v1, v2). One obtains Γ0 =
span {dt, dx, du, dv, . . . , dv(δ)}, and for k ∈ bδe, Γk =
span{dt, dx, du1, . . . , du

(δ−k+1)
1 , du2, . . . , du

(δ−k)
2 }, and

Γδ+1 = span {dt, dx, du(0)
1 }, for a given δ ∈ IN . Since

span {dy1} 6∈ Γδ+1, by Theorem 2, Problem 2 is not
solvable with input v and output y1.
Example 4. Let ẋ1 = x2, ẋ2 = −x1, ẋ3 = u.
Choose v = x1. As this example is linear, the non-
singularity and integrability conditions of Theo-
rem 1 hold. Note that γ = 0. Given δ ∈ IN , let
Γ0 = span

{
dt, dx, du, dv, . . . , dv(δ)

}
. Simple calcula-

tions show that, Γ0 = span {dt, dx1, dx2, dx3, du}, Γ1 =
span {dt, dx1, dx2, dx3}, Γ2 = span {dt, dx1, dx2} =
Γk, k ∈ IN . In particular, condition (iii) does not hold,
since dv(δ) ∈ span {dx} ⊂ Γ1. In fact, as x1 is a solution
of the differential equation ẍ1 + x1 = 0 = ẋ2 + x1, the
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function x1 cannot be an input for this system. In this
example, the condition that dim Γk − dim Γk+1 = m
does not hold for k > 2.
Example 5. Let ẋ1 = x2, ẋ2 = u, ẋ3 = x2

2. Choose
v = x1. It is easy to show that, for any δ ∈ IN , then
Γδ+1 = span {dt, dx3 − 2x2dx1} which is not integrable.
By Theorem 1, Problem 1 is not solvable. However,
in this case the system admits a state representation
ẋ3 = v̇2, which is not classical.

6 Conclusions

The main result of this paper checks if there exists an-
other classical state representation (z, v) of (6), consid-
ering v as the new input. A negative answer will be ob-
tained if v is not the input of any state representation,
classical or not. This will happen for instance, if there
exists a differential equation linking the components of
v (see Example 4). A simple trick, namely, to include
the differential dt in Γ0, allow to consider time-varying
systems in a very natural way. Our results also contain,
with a proper choice of v, the linearization by extending
the state with integrators (see Examples 1 and 2). Note
that dim z may be smaller than dimx (see Example 1),
and dim z may be greater than dimx (see Example 2,
in the case where v = (u̇1, u2)). The results of this pa-
per may be generalized for input-output equations and
implicit systems Pereira da Silva (2008b).
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