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Abstract

In this work we consider the concept of differential flatness
defined by Fliess, Levine, Martin and Rouchon. The struc-
tural property ofk-flatness (the case in which flat outputs de-
pends up to thekth derivative of the inputs) is studied based
on the properties of the dynamic extension algorithm and the
Cartan-K̈ahler theorems on the existence of integral mani-
folds of exterior differential systems. In this context, it is
shown that there may exist two kind of flat systems — the
nonsingularand thesingular cases. Since thenonsingular
case contains properly the class of state-feedback lineariz-
able systems, this induces a classification of nonlinear flat
systems asstate-feedback linearizable, nonsingularandsin-
gular systems, in an ascending order of complexity.

Necessary and sufficient conditions ofk-flatness for the
nonsingular case are developed. Necessary and sufficient
conditions for the singular case are also presented, although
they are much more involved and are not in closed form. Ex-
amples are presented to illustrate the results.

1 Introduction and motivation

Feedback linearization is an important structural problem in
control systems theory. This problem was completely solved
in the static-state feedback case [20, 18] but necessary and
sufficient conditions for feedback linearizability by dynamic
state feedback are not yet known (see [3, 29, 4, 16, 32, 34,
30, 1, 27, 33, 26, 17, 35] for several results on this subject).

Fliess et al introduced the notion of differential flatness
for nonlinear control systems in [9, 11]. This structural con-
cept is strongly related to the problem of feedback lineariza-
tion, and corresponds to a complete and finite parametriza-
tion of all solutions of a control system by a differentially
independent family of functions. Differential flatness was
originally defined in a differential algebraic setting [9, 11]
and restated in a infinite dimensional geometric setting re-
cently introduced in control theory [10, 25, 12, 14, 13].

In this paper we consider analytic nonlinear affine control

systems of the form

ẋ(t) = f(x(t)) +
m

∑

j=0

gj(x(t))uj(t) (1)

wherex(t) evolves on an analytic manifoldX of dimension
n, and the inputu(t) is a vector of dimensionm. We will
assume that this dynamics is well formed (see [28])i.e., the
fields {gj(x), j ∈ bme} are linearly independent for every
x ∈ X.

Roughly speaking, a system (1) is said to beflat if there
exists a set of differentially independent functionsy =
(y1, . . . , ym) calledflat outputsuch that every variable of the
system is a function of time and ofy and its derivatives1 (see
[14]). The flat output is a set of functions that may depend
on the statex and on the inputu and its derivativesu(s) for
s = 0, . . . , k. In this case, the system is said to bek-flat.
When the flat output depends only onx, the system is said to
be0-flat.

Instrumental for our purposes are the structure algorithms,
like Singh’s algorithm[31] and theDynamic Extension Algo-
rithm (DEA) [6, 21, 7, 5, 24]. Our main results combine the
geometric properties of the DEA withCartan-Kähler theory
[2, Chap.3] to parametrize that the jets of the flat output can-
didates and to obtain necessary and sufficient conditions of
k-flatness can be obtained. The results developed here indi-
cate that two kind of flatness exists. For the first one, called
nonsingular, we give a complete and effective characteriza-
tion; For the second one, calledsingular, a characterization
is also given, but the computations in this case may be related
to more sophisticated results likeCartan-Kähler theoremand
Cartan-Kuranishi prolongation theorem[2, Chaps.3, 6 and
8]. In the nonsingular case, one can check flatness of a given
system using only standard geometric operations like Lie-
derivations, exterior differentiationsetc. Our results about
the singular case are inspired by the ideas of Fliesset al [15]
which show that checking flatness of a system is closely re-
lated to the problem of finding integral manifolds of exterior
differential systems. In this paper we show how to compute
this exterior differential system through some symbolic op-
erations.

If a system is flat, by definition it isk-flat fork big enough.
An important question that remains open is if there exists a

1The definition of flatness given here is not rigourous. The reader may
refer the cited literature for a complete presentation.



bound onk depending on the number of the states and inputs
[15].

The paper is organized as follows. In section 2 we present
notation and some results about exterior differential systems.
In section 3 we present the notion of structure codistribu-
tions, instrumental for parametrizing the jet of the flat-ouput
candidate. In sections 4 and 5 we present the main results
respectively about the singular and the nonsingular case. In
section 6 some examples are discussed. Finally in section 7
we state some conclusions.

2 Preliminaries and notation

2.1 Notation

The field of real numbers will be denoted byIR. The sub-
set of natural numbers{1, . . . , k} will be denoted bybke. A
symmetric multiindexK of classs and lengthk is a set of el-
ements of the form(i1, . . . , ik), whereij ∈ bse for j ∈ bke,
and where all the permutations of(i1, . . . , ik) are identified
with each other. The set of all symmetric multiindeces of
classs is denoted byΣ(s). The length ofK ∈ Σ(s) is de-
noted by‖K‖. Note thatK ∈ Σ(s), ‖K‖ = k is identified to
some(i1, . . . , ik) such thati1 ≤ i2 ≤ . . . ≤ ik ≤ s. Given
K ∈ Σ(s), K = (i1, . . . , ik) andi ∈ bse then(Ki) stands
for K = (i1, . . . , ik, i).

We will use the standard notations of differential geometry
and exterior algebra [36, 2]. LetP be a smooth manifold of
dimensionp. LetF be a set of smooth functions defined on
P. Let Z = {z ∈ P | f(z) = 0, ∀f ∈ F} be the set of
common zeroes of allf ∈ F . Thenz is anordinary zero
if : (i) There exists a subsetF = {f1, . . . , fr} ⊂ F such
that the setdf = (df1, . . . , dfr) is independent onz ; (ii)
There exists an open neighborhoodU of z such that the set
of common zeros ofF that are insideU coincides withZ∪U .
In particular,Z ∪ U is a submanifold ofP.

Given a fieldf and a 1-formω onP , we denoteω(f) by
〈f, ω〉. The set of smoothk-forms onP will be denoted by
Λk(P) andΛ(P) = ∪k∈INΛk(P).

Given two formsη andξ in Λ(P), thenη ∧ ξ denotes their
wedgemultiplication. Theexterior derivativeof η ∈ Λ(P)
will be denoted bydη. Note that the graded algebraΛ(P),
as well as its homogeneous elementsΛk(P) of degreek,
have a structure ofC∞(P)-module (see [36] for details).
Given a familyν = (ν1, . . . , νk) of a C∞(P)-module, then
span{ν1, . . . , νk} stands for the span overC∞(P).

An ideal I is a C∞(P)-submodule ofΛ(P) such that,
given two formsω andθ in I thenω∧ θ ∈ I. Given a subset
S ⊂ Λ(P) then{S} stands for the least ideal that contains
S.

A differential idealI is an ideal that is closed by the exte-
rior differentiation,i.e., dI ⊂ I. A differential ideal is also
called anexterior differential system.

2.2 Exterior Differential Systems with independence
condition

We present some definitions and results about exterior differ-
ential systems. The reader may refer to the treatise [2] for
details.

LetM be an analytic manifold with dimensionm and letI
be a differential ideal defined onM . LetΩ = ω1∧. . .∧ωn, /∈
I be ann-form onM . Then the pair(I, Ω) is calledExterior
Differential System with independence condition.

An integral elementE of I on x ∈ M is a subspace of
TxM such thatθ|E = 0 for all formsθ of I. An integral ele-
ment of(I,Ω) onx ∈ M is a subspaceE of dimensionn of
TxM such thatθ|E = 0 for all form θ of I andΩ|E 6= 0 (this
last condition is calledindependence condition). An integral
manifold of (I, Ω) is an immersed manifoldi : N → M
dimensionn of TxM such that, for every pointξ ∈ N , its
tangent spaceE = i∗(TξN) is an integral element of(I, Ω).
For every immersed manifoldi : N → M (not necessarily
an integral manifold) we define therestriction of(I, Ω) to N
by (Ĩ, Ω̃) = (i∗I, i∗Ω). We denote byGn(TM) the Grass-
mann bundle of alln-subspacesE ⊂ TxM . The bundle of all
integral elementsE of I of dimensionn is denoted byVn(I)
and is a subbundle ofGn(TM). Similarly, Gn(TM, Ω) de-
notes the bundle of alln-subspacesE ⊂ TxM obeying the
independence conditionΩ|E 6= 0. The bundle of all integral
elements of(I, Ω) is denoted byVn(I,Ω) and is a subbundle
of Gn(TM, Ω). Let E ∈ Gn(TM,Ω). Denote a basis ofE
by e = (e1, . . . , en). It can be shown that

Vn(I) = {E ∈ Gn(TM) | θ(e1, . . . , en) = 0,
∀θ ∈ I, θ of degreen}

If φ is ann-form onM , define a functionφΩ onVn(I,Ω) by
the formulaφ|E = φΩ(E)Ω|E . Let

FΩ(I) = {φΩ | φ ∈ I, φ has degree n}. (2)

Then

Vn(I,Ω) is the subset of common zeroes ofFΩ(I) (3)

2.3 Prolongations

Let (I, Ω) be an exterior differential system with indepen-
dence condition. The first prolongation is a Pfaffian sys-
tem (I(1), Ω(1)) defined on a manifoldM (1). To define
the prolongation we define first a Pfaffian system(L, Φ) on
Gn(TM, Ω) in the following way. Letπ : Gn(TM, Ω) →
M be the canonical projection and for each(x,E) ∈
Gn(TM, Ω) we define

I(1)(x,E) = π∗E⊥

J (1)(x,E) = π∗T ∗x M

Then the filtrationI(1) ⊂ J (1) ⊂ T ∗Gn(TM, Ω) defines
a Pfaffian system with independence condition [2, p.104].
In particular, we may takeL = {I(1), dI(1)} and Φ =
π∗Ω. To see what this gives in coordinates, assume that



(x1, . . . , xn, y1, . . . , ys) is a local coordinate system forM
such thatΩ = dx1 ∧ . . . ∧ dxn. Then, ann-planeE of
Gn(TM, Ω) is generated bye1, . . . , en, where

ei =
∂

∂xi
+

∑

σ

pσ
i

∂
∂yσ (4)

where(xi, yσ, pσ
i ) is a local chart forGn(TM, Ω). In other

words,E is defined by the equationsθσ(E) = 0, σ ∈ bse
where

θσ = dyσ −
∑

i

pσ
i dxi (5)

It follows thatI(1) is generated by the formsθσ and we may
takeΦ = π∗Ω = dx1 ∧ . . . ∧ dxn.

Definition 2.1 Let M (1) = Vn(TM, Ω) and assume that
M (1) is a submanifold ofGn(TM). Let ι : M (1) →
Gn(TM) be the canonical injection. Then the first prolon-
gation is the (linear) Pfaffian system(ι∗L, ι∗Φ).

Note that one can always define the canonical mapῑ :
M (1) → M as the composition of the canonical immer-
sion ι : M (1) → Gn(TM) with the canonical projection
π : Gn(TM) → M .

Remark 2.1 Let X = span
{

dx1, . . . , dxn
}

⊂ T ∗M . As-
sume that the canonical map̄ι : M (1) → M is a surjective
submersion. Let̃X = ῑ∗X, Ĩ(1) = ι∗I(1) and J̃ (1) = ι∗J (1)

= ῑ∗TM .
Note that J̃ (1) = Ĩ(1) ⊕ X̃. Let π̃ : J̃ (1) → X̃ be

the canonical projection. We can define a correspondence
ω ∈ T ∗M → π1(ω) ∈ X̃ ⊂ T ∗M (1) by the ruleπ1(ω) =
π̃ ῑ∗ω. In coordinates(x, y) for M , let ω =

∑s
σ=1 ασdyσ+

∑n
i=1 βidxi. Thenπ1(ω) =

∑n
i=1{βi+

∑s
σ=1 ασpσ

i }dxi.
Note thatπ1(ω) is the unique1-form such thatπ1(ω) − ῑ∗ω
∈ Ĩ(1). Note also thatω ∈ X implies thatπ1(ω) ∈ X̃.

The next Lemma says that an integral manifold induces
canonically an integral manifold for the prolongations of any
order.

Lemma 2.1 Assume that thekth prolongation of a differen-
tial system with independence condition(I, Ω) is well de-
fined for allk ∈ IN . Assume thati : X → M is an integral
manifold of(I, Ω). Then there is a unique integral manifold
i(k) : X → M (k) associated toi : X → M by a canonical
lifting.

Proof. Note thati∗ : TX → TM induces a mapj :
X → Vn(I, Ω) such thatj(x) = i∗(TxM). Note also that
this map (canonical lifting) is an integral manifold for the
first prolongation (see [2, pp.147–149]). The proof may be
completed by induction onk. 2

The next Lemma says that, under some natural assump-
tions, the prolongation of the pull-back is the pull-back of
the prolongation2.

2We abuse notation by using the same symbolΩ for the independence
condition on all manifolds.

Lemma 2.2 LetZ, M, N be analytic manifolds and letΩ be
a volume form onZ. LetM = Z × M andN = Z × N .
Let π1 : M → Z, and π2 : N → Z be the canonical
projections. Leti : M → N be an immersion such that
π2 ◦ i = π1. Let (I, Ω) be an exterior differential system
defined onN and let(J ,Ω) be the exterior differential sys-
tem defined onN by J = i∗I. Assume that both prolon-
gations(J (1), Ω) and(I(1), Ω) are well defined respectively
onM(1) andN (1). Letj : M (1) → N (1) be the map defined
by j(Eξ) = i∗Eξ. ThenJ (1) = j∗I(1).

Proof. The proof is an easy application of the definitions of
§ 2.3. 2.

Remark 2.2 It is easy to show that the integral manifoldsi
and i(1) of Lemma 2.1 and the map̄ι of Def. 2.1 obey the
relation i = ῑ ◦ i(1).

2.4 Prolongation and Symbolical Calculus

In this section we will state some definitions that allow to per-
form symbolical calculations with functions that are the so-
lution of a partial differential equation3. The idea is to define
symbolical operations in a way that, when specialized to an
integral manifold, these symbolical operations becomes the
usual manipulations of differential calculus. For instance, if
one denotes symbolically the partial derivatives∂yσ/∂xi of
a functionyσ by pσ

i , then one can perform all the differential
operations (of first order) with this function in a symbolical
fashion. Using the language of exterior differential systems
and their prolongations, we will consider this idea in a much
more abstract way.

LetM = X×N be a manifold and letΩ = dx1∧. . .∧dxn
be a volume form onX. Let (I,Ω) be an exterior differen-
tial system with independence condition defined onM . Let
(I(k),Ω) be its prolongation defined onM (k). Assume that
the canonical maps̄ιk : M (k+1) → M (k) are surjective sub-
mersions4 for k ∈ IN and thatM (k) = X ×N (k). Note that
ῑk(x, ηk) = (x, ηk−1) and hence the map(ιk)∗(ξ) restricted
to TξX ⊂ TξM (k) is an isomorphism.

DenoteTζM = TζX ⊕ TζN . A symbolic fieldis a field
f : M → TX ⊂ TM such that, for every pointξ on M ,
f is contained inTπx(ξ)X. Let ῑ be the canonical map of
Def. 2.1. Sincēι∗(ξ)|TξX is an isomorphism ontoTῑ(ξ)X,
to every symbolic field we can associate a unique symbolic
field f (1) : M (1) → TX ⊂ TM (1) such that̄ι∗f (1) = f ◦ ῑ.
We may define the symbolic fieldf (k) on M (k) inductively
by the rule(ῑk−1)∗f

(k) = f (k−1) ◦ ῑk−1.
Consider the map̃π : J̃ (1) → X̃ defined in Rem. 2.1.

One may define inductively theC∞(M)-linear mapπ̃k :
J̃ (k) ⊂ T ∗M (k) → X(k) ⊂ T ∗M (k). This map may
be extended in a natural way to a map fromΛ(M (k)) to
{X(k)} ⊂ Λ(M (k)). It follows that the composition

πk = π̃k ῑ∗k−1, k = 0, 1, 2, . . . (6)
3Solutions of a partial differential equation are integral manifolds of ex-

terior differential systems, as will be shown in§ 2.6.
4This assumption is needed for considering the mapπ1 of Rem. 2.1.



defines a map fromΛ(M (k−1)) to {X(k)} ⊂ Λ(Mk), k ∈
IN .

Definition 2.2 Given a functionφ : M → IR and a sym-
bolical field we define〈〈dφ, f〉〉 = 〈π1dφ, f (1)〉. Note that
ψ = 〈〈dφ, f〉〉 is a function defined onM (1). If ω is a one
form onM we define〈〈ω, f〉〉 = 〈π1ω, f (1)〉. Given a form
ω defined onM , denoteω̄ = ῑ∗ω. Analogously, given a
codistributionΓ on M we definēΓ = ῑ∗Γ. Note that both
objectsω̄ andΓ̄ are defined onM (1). A symbolic1-formω is
a form defined onM such thatω ∈ span

{

dx1, . . . , dxn
}

.
A codistribution Γ on M is a symbolic codistribution if
Γ ⊂ span

{

dx1, . . . , dxn
}

. For a symbolical codistribution
Γ, define the flagΓ(1) = {ω̄ ∈ Γ̄ | dω̄ ∈ {I(1) +Γ̄}}. We say
thatΓ is symbolicalyinvolutive ifΓ(1) = Γ̄.

Define Γ(0) = Γ. As in the “nonsymbolical” case one

may compute the derived flagΓ(k) =
{

Γ(k−1)
}(1)

defined
on M (k) for k ∈ IN . Let n = dim X and letζn ∈ M (n).
Denote byζk−1 = ῑk(ζk). We say thatζn is a regular point
of the derived flag{Γ(k), k ∈ {0, 1, . . . , n}, if ζk is a regular
point ofΓ(k) for k ∈ {0, 1, . . . , n}.

Definition 2.3 Let φ be a function andf be a sym-
bolic field, both defined onM . Then LLfφ stands for

〈〈dφ, f〉〉. Define LLk
fφ inductively by 〈πkdLLk−1

f φ, f (k)〉.
Note that LLk

fφ is a function defined onM (k). Let
ω be a symbolical1-form on M . Define LLfω =
π̃

{

ı(f (1))(π1dω) + d(〈ῑ∗ω, f (1)〉)
}

, where ı(·)(·) denotes
the interior product (see [36, 2.25 (d)]) andπ1 is defined
by (6). If θ is a symbolical form defined onM (k−1) define
LLf(k)θ = π̃k

{

ı(f (k))(πkdθ) + d(〈ῑ∗k−1θ, f
(k)〉)

}

. Then de-

fine inductivelyLLk
fω = LLf(k)(LLk−1

f ω).

Note that, in coordinates we haveLLf

(∑n
i=1 αidxi

)

=
∑n

i=1

{

LLf (αi) dxi + π̃
(

αid〈dxi, f (1)〉
)}

.
The next proposition shows that, when specialized to in-

tegral manifolds the symbolical calculations defined above
coincides to the “standard” differential calculus.

Proposition 2.1 Leti : X → M be a local integral manifold
of I and leti(k) :→ M (k) be the the local integral manifold
of I(k) induced byi(k) (see Lemma 2.1). Note that there
exists a unique fieldf defined onX such that〈i∗dxi, f̃〉 =
〈dxi, f ◦ i〉. Let φ : M → IR be a function, letf be a
symbolic field, letω be a symbolic1-form, and letΓ be a
symbolic distribution. Then
(i) 〈〈dφ, f〉〉 ◦ i(1) = 〈d(φ ◦ i), f̃〉

(ii) LLk
fφ ◦ i(k) = Lk

f̃)
φ ◦ i

(iii) (i(k))∗LLk
fω = Lk

f̃
(i∗ω).

(iv) Assume that the symbolic distributionΓ is symbolically
involutive. Theni∗Γ is involutive as a codistribution de-
fined onX.

(v) Letζn be a regular point of the derived flag obtained from
Γ. Assume thatζn is contained in the image ofi(n). Then

there exist someq ≤ dim Γ ≤ n such thatΓ(q−1) is
involutive. In particular,(i(q−1))∗Γ(q−1) is integrable as
a codistribution defined onX.

2.5 Jet-spaces, contact-forms and prolongations

We denote byJ r(Z, Y ) the set ofr-jets of all smooth maps
y : Z → Y between smooth manifoldsZ and Y . Then
J r(Z, Y ) has a structure of smooth manifold. For instance,
consider the manifoldJ r

y (Z, Y ), whereZ has dimensiont
andY = IRs. If Z has local coordinatesz = (z1, . . . , zt)
thenJ r(Z, Y ) has local coordinates(zi, yσ, yσ

K : i ∈ bte,
σ ∈ bse K ∈ Σ(t), ‖K‖ ≤ r), whereyσ ∈ IR repre-
sents the function evaluationyσ(z) andyσ

K represents, for a
symmetric multiindexK = (i1 . . . is), the partial derivative

∂yσ

∂zi1 ...∂zis

∣

∣

∣

z
. On the manifoldJ r(Z, Y ), we may define the

contact forms

dyσ −
∑n

j=1 yσ
j dzj , σ ∈ bse

dyσ
k −

∑n
j=1 yσ

kjdzj , σ ∈ bse, k ∈ bte
. . .

dyσ
K −

∑n
j=1 yσ

Kjdzj , σ ∈ bse,K ∈ Σ(t), ‖K‖ ≤ r − 1
(7)

Then the integral manifolds of the Pfaffian systemIr gener-
ated by the contact-forms above with independence condition
Ω = dz1 ∧ . . . ∧ dzt are the jets of functionsyσ : Z → IR,
σ ∈ bse (see [2, Theo. 3.2, p.26]). Furthermore it is easy to
see that the prolongation ofIr is Ir+1. It can be shown also
that every integral element ofIr at (z, yσ, yσ

K : σ ∈ bse,
K ∈ Σ(t), ‖K‖ ≤ r) is generated by the set{e1, . . . , et}
given by

ei =
∂

∂zi +
s

∑

σ=1

∑

J∈Σ(n)

‖J‖≤r

yσ
Ji

∂
∂yJ

(8)

whereyσ
J1i1 = yσ

J2i2 if the symmetric multiindeces(J1i1)
and(J2i2) are identified by a convenient permutation.

Using Cartan’s test [2, Thm. 1.11, pp. 74] one may show
that every integral element ofI1 is involutive and, by the
Cartan-K̈ahler Theorem[2, Cor. 2.3, p.86] it admits local in-
tegral manifolds around every point. Using [2, Theo. 2.1,
p.248], that shows that the prolongation of an involutive sys-
tem is also involutive, one may show thatIr is involutive for
all r.

2.6 Involutive codistributions and restricted Jet-spaces

In the sequel we abuse notation andJ r(Z, Y1)×J r(Z, Y2)
stands forJ r(Z, Y1 × Y2). Denote by(z, ηi) the points
of J ri(Z, Yi), i = 1, 2. In a similar vein,J r1(Z, Y1) ×
J r2(Z, Y2) will stands for the set of points(z, η1, η2) (with
a commonz).

Given a nonsingular involutive codistributionΓ =
span

{

ω1, . . . , ωs
}

defined onZ, with dimΓ = s, then one
may define a particular-class of contact forms on a manifold
R = Z × IRs0 × IRs with local coordinates(zi, yσ, αj : i ∈



bne, σ ∈ bs0e, j ∈ bse) given by :

dyσ −
∑s

j=1 ασ
j ωj , σ ∈ bs0e (9)

Denote the Pfaffian system generated by these forms by
I. Since Γ is involutive, by the Frobenius theorem we
may assume without loss of generality that the local coor-
dinate system(z1, . . . , zs, zs+1, . . . , zt) is such thatΓ =
span{dz1, . . . , dzs}. Hence, in a new local coordinate sys-
tem (zi, yσ, βσ

j : i ∈ bte, σ ∈ bs0e, j ∈ bse) for R, these
forms can be written as

θσ = dyσ −
∑s

j=1 βσ
j dzj , σ ∈ bs0e (10)

Consider the independence conditionΩ = dz1 ∧ . . . ∧ dzn.
One can show that everyn-integral element ofR and its pro-
longations of any order admit corresponding integral mani-
folds (they are all involutive with respect to the independence
conditionΩ = dz1 ∧ . . . ∧ dzn). In particular, one can show
the following result

Proposition 2.2 Let R = Z × IRs0 × IRs0s be a manifold
with local coordinates(zi, yσ, ασ

j : i ∈ bte, j ∈ bse, σ ∈
bs0e). Let I be the Pfaffian system generated by the forms
(9). There exist integral manifolds of(I(k), Ω) at every point
of the prolongationR(k) for everyk ∈ IN .

Note that the construction above may be considered as a
restricted jet spacein the sense that the partial-derivatives
are subject to some relations. The following definition gen-
eralizes this situation.

Definition 2.4 LetZ be an analytic manifold and letΩ be a
volume form onZ. LetN = J r1(Z, Y1)× . . .×J rp(Z, Yp),
whereYi = IR, i ∈ bpe. Let I be the Pfaffian system gen-
erated onN by the contact forms associated to all the jet
spacesJ r1(Z, Y1), . . . , J rp(Z, Yp). LetM be an analyti-
cal manifold of the formZ ×M . A restricted jet spaceis an
analytic immersioni : M→ N such thatπ ◦ i = π1 where
π1 : M→ Z andπ : N → Z are the canonical projections.
The pull-backJ = i∗(I) defines therestricted exterior dif-
ferential systemgenerated by therestricted contact forms.

Note that solving any partial differential equations withp-
unknown functions(y1, . . . , yp) (depending on the variables
z1, . . . , zt, with orderrσ onyσ for σ ∈ bpe), is equivalent to
finding integral manifolds of a convenient restricted exterior
differential system.

The next proposition implies that the prolongation of a re-
stricted jet-space is a restricted jet-space of greater order.

Proposition 2.3 Consider the same notation stated in the
last definition. Assume that the prolongationJ (1) is well
defined onM(1). Let j : M(1) → N (1) be the map defined
by j(Eξ) = i∗Eξ. ThenJ (1) = j∗I(1).

Proof. Note that the prolongationM (k) of M is always
well defined and is given by

J r1+k(Z, Y1)× . . .× J rp+k(Z, Yp).

Hence, the proof is a straightforward application of Lemma
2.2. 2

2.7 Extension of Restricted Jets-Spaces

Let M = Z×N be a restricted jet space. LetI be the codis-
tribution generated onN by the restricted-contact forms and
let I = {I, dI}. Let Ω = dz1 ∧ . . . ∧ dzt be a volume form
on Z. Assume that the prolongationsI(k) are well defined
on M (k) and are involutive for allk ∈ IN . We will define
an extension of this space by adjoining the restricted1-jet of
ν new functions. For this, letΓ ⊂ span

{

dz1, . . . , dzt
}

be
a nonsingular symbolical codistribution onM generated by
a basis{ω1, . . . , ωs}. Assume thatΓ is symbolically involu-
tive, i.e., dΓ mod{I+Γ} ≡ 05. LetY = Y1×. . .×Yν and let
A = A1×. . .×Aν , whereYi = IR, i ∈ bs0e, andAj = IRs,
j ∈ bse. Consider the manifoldY × A with global coordi-
nates(yb, αb

j : b ∈ bνe, j ∈ bse), and letM1 = M ×Y ×A.
Define the forms onM1 given by

θb
0 = dhb −

s
∑

j=1

αb
jω

j , b ∈ bνe (11)

Define the codistributionI1 = span
{

θb
0 : b ∈ bνe

}

+ I and
let I1 = {I1, dI1}. Abusing notation, letΩ stands for its
pull-back fromZ to M1. We have the following result :

Proposition 2.4 Consider the construction ofM1 and I1

above. Assume that the canonical mapsῑk : M (k) →
M (k−1) are surjective submersions. Then
(i) The exterior differential system with independence con-

dition (I1, Ω) defined onM1 is is involutive.

(ii) The prolongations(I(k)
1 ,Ω) are well defined on the re-

stricted jet-spacesM (k)
1 and are involutive for allk ∈

IN .

(iii) The canonical maps̄k : M (k+1)
1 → M (k)

1 are surjective
submersions.

3 Structure codistributions

In this section we discuss some structural properties of a non-
linear control system of the form

ẋ(t) = f(x(t)) +
m

∑

j=0

gj(x(t))uj(t) (12a)

y = h(x(t)) (12b)

3.1 Dynamic extension algorithm (DEA)

Let us recall the main aspects of the dynamic extension al-
gorithm (in the version of [7]). Given an analytic system
(12a)–(12b), the dynamic extension algorithm is a sequence
of applications of regular static-state feedbacks and exten-
sions of the state by integrators.

It is well known (see [7]) that the dynamic extension al-
gorithm has an intrinsic interpretation based on the algebraic
structure at infinity{σ1, . . . , σn}. The integerρ = σn is

5Note that, by Prop. 2.1 part (iv), this implies thatΓ restricted to an
integral manifold ofI is involutive.



calledoutput rank[8, 7]. The following result is well known6

but is restated here in the differential geometric setting of
[14] :

Theorem 3.1 [7, 5, 24] Assume that system(12a) is ana-
lytic. LetS be the system associated to(12a)in the sense of
[14]. Consider the filtrations (defined onS)

Yk = span
{

dx, dy, . . . , dy(k)
}

, k ∈ IN
Yk = span{dy, . . . , dy(k)}, k ∈ IN

LetSk ⊂ S be the open and dense set of regular points of the
codistributionsYi andYi for i = 0, . . . , k. In thekth step of
the dynamic extension algorithm, one may construct around
ξ ∈ Sk−1 a partition (and a reordering) of the outputy =
(ȳk, ŷk) with card ȳk = σk, a new local state representation

(xk, uk) of the systemS with statexk = (x, ȳ(1)
1 , . . . , ȳ(k)

k )

and inputuk = (ẏ
(k)
k , ûk) such that

(i) span{dxk} = span
{

dx, dy, . . . , dy(k)
}

.

(ii) span{dxk, duk} = span
{

dx, dy, . . . , dy(k+1), du
}

.

(iii) ˙̄y(k)
k ⊂ ȳ(k+1)

k+1

(iv) LetD(C) denote the generic dimension of a codistribu-
tion C generated by the differentials of a finite set of ana-
lytic functions. The sequenceσk = D(Yk)−D(Yk−1) is
nondecreasing, the sequenceρk = D(Yk) − D(Yk−1) is
nonincreasing, and both sequences converge to the same
integer ρ, called theoutput rank, for somek∗ ≤ n =
dim x. In particular, we haveρk ≥ ρ ≥ σn for k =
0, . . . , n and the the sequenceνk = D(Yk ∩ span{dx})
converges fork = k∗ − 1.

Proof. The reader may refer to [24] for a complete proof
which an adaptation of known results to the geometric setting
of [14]. 2

3.2 Structure codistributions

Consider the system (12a)–(12b), defined in the sense of
[14]. Define the codistributionsΩk calculated fromYk =
span

{

dx, dy, . . . , dy(k)
}

in the following way :

Definition 3.1

Ω0 = span{dx}
Ωk = span

{

ω ∈ Ωk−1 | ω(k) ∈ Yk
}

, k ∈ bne (13)

The involutive closureΓk = Ω̄k for k ∈ bne are system
invariants calledstructure codistributionsof (1).

This codistributions may be computed based on the same
ideas presented in [1].

Proposition 3.1 Consider system(12a)with outputy. As-
sume that the structure at infinity of this system is
{σ1, . . . , σn}. Denote byy = (ȳk, ŷk) the partition of the
output corresponding to the applicationk step of the DEA

6The approaches of [7, 5] are algebraic. Some other properties of the
DEA considered in the geometric approach of [19] can be found in [22].

(see the notation of§ 3.1), wherēyk are, up to a convenient
reordering, the firstσk components ofy. Thenspan{dŷk} ⊂
Γk.

Proof. By Theo. 3.1 it follows that{dx, dȳ(1)
1 , . . . , dȳ(k)

k }
is a basis ofYk and we may takêyk ⊂ ŷk−1. In particular,
dŷ(j)

k ∈ Yk for j = 0, . . . , k. The desired result follows from
Definition 3.1. 2

The following proposition characterizes0-flatness.

Proposition 3.2 Consider an analytic systemS defined by
(1) in the sense of [14] and assume that the system is well
formed. i.e.,span{du} ⊂ span{dx, dẋ}. Consider the out-
put yi = hi(x), i ∈ bme. Let ξ ∈ S be a regular point
of Yk andYk for k = 0, 1, . . . , n. ThenS is (locally) 0-flat
aroundξ with (local) flat outputy if and only if there exist
k∗ ≤ n such that one of the following equivalent conditions
are satisfied :
(i) The algebraic structure at infinity obeys the following

condition

n +
k∗−1
∑

i=1

σi = mk∗ (14a)

σk∗ = m (14b)

(ii) span{dx} ⊂ Yk∗−1.

4 The nonsingular case

In order to develop sufficient conditions ofk-flatness we will
define asymbolicversion of the dynamic extension algo-
rithm (SDEA). Choosing a nondecreasing integer solution
(σ1, . . . , σn) of equation (14), this algorithm constructs are-
strictedjet-space that parametrizes the flat-output candidates
y1 = h1(x), . . . , ym = hm(x). The corresponding exte-
rior differential system(J , Ω) (generated by the restricted
contact forms, see Definition 2.4) is constructed in a way
that theserestrictionscorrespond to the properties stated in
Proposition 3.1. In each step of the algorithm, the restricted
jet space is extended by the procedure of§ 2.7. So by Prop.
2.4, the exterior differential system constructed in stepk is
involutive. If some further dimensional properties are ful-
filled, the existence of an integral manifold of(J , Ω) will
imply, by Proposition 3.2, the existence of a0-flat output of
the system.

Remark 4.1 It is important to point out the meaning of the
word “nonsingular”employed here. This means that we will
consider that we are working in a neighborhood points where
our (symbolic) objects are nonsingular, i.e., we consider only
generic points7.

4.1 SDEA

Consider the analytic system (1) defined on an open set
X with global coordinatesx = (x1, . . . , xn). De-
note (f0, g0) = (f, g). Let s0 = n, Γ0 =

7This remark refers to step (S3) of SDEA, described in§ 4.3.



span
{

ωi
0 : i = 1, . . . , n

}

, whereωi
0 = dxi. DefineI0 =

{0}. The SDEA can be summarized as follows.

(S0) Let σ0 = 0. For every nondecreasing integer so-
lution (σ1, . . . , σk∗) of equation (14), consider the mani-
fold Z = X × IRσ1 × . . . × IRσk∗ , with local coordinates
(x, v̄1, . . . , v̄k∗). Let M0 = Z.
Then, fork = 1 to k∗, execute:

(S1) (a) Extend the restricted jet-space as described in§ 2.7
by addingσk − σk−1 more functions to the the re-
stricted jet-spaceMk−1 constructed in the previous
step. Note thatMk−1 is immersed inJ r1(Z,H1) ×
. . . × J rk(Z,Hk), whereHj = IRσj , j ∈ bke. De-
fine a restricted jet spaceTk = Mk−1 × Lk, where
Lk = IRµk , µk = sk−1(σk − σk−1) andLk has canon-
ical coordinates(hi, αi

j : i ∈ {σk−1 + 1, . . . , σk}, j ∈
{1, . . . , sk−1}.

(S1) (b) Let Ĵk be a Pfaffian system defined onTk generated
byJk−1 and the forms :

θi = dhi −
∑

j∈sk−1
αi

jω
j
k−1, i ∈ {σk−1 + 1, . . . , σk}

where the symbolic distributionΓk−1 = span{ω1
k−1,

. . . , ωsk−1
k−1 } ⊂ span{dx} was computed in the previous

step.

(S2) Compute (symbolically) thekth step of the Dynamic
Extension Algorithm. This will produce the (symbol-
ical) system(fk, gk).

(S3) Compute the (symbolical) structure codistribution

Γk = span
{

ω1
k, . . . , ωsk

k

}

⊂ span{dx} .

The steps (S2) and (S3) will be described in detail in the se-
quel8.

4.2 Step (S2)

This step corresponds to the symbolical computation of
the kth step of the dynamical extension algorithm. In the
(k − 1)th iteration we have computed a symbolical system
(fk−1, gk−1), with statexk−1 = (xT , v̄T

1 , . . . , v̄T
k−1), input

uk−1 and outputy i.e., fk−1 andgk−1 are symbolical fields
defined onMk−1 (see§ 2.4). Let hk = (h1, . . . , hσk)T .
Compute

ȳ(k)
k = LLk

fk−1
hk + (LLgk−1

LLk−1
fk−1

hk)uk−1

= āk + b̄kuk−1
(15)

Note that̄ak andb̄k are matrices of functions defined onT (k)
k .

Assume that the generical rank ofbk onT (k)
k is σk. If this is

not true, no solution is possible with the structure at infinity

8The step (S2) includes a finite number of choices represented by a re-
ordering of the inputs.

chosen. Otherwise, up to a reordering of the input compo-
nents, assume thatb̄k =

(

b̄11 b̄12
)

whereb̄11 is generi-
cally nonsingular (with rankσk). Define

βk =
(

b̄11 b̄12

0 I

)−1

; αk = βk

(

−āk(x)
0

)

and let

uk−1 = αk + βk vk

be an analytic regular static state feedback, wherevk =
(

v̄T
k v̂T

k

)T
Note thatα andβ are respectively matrices

m × 1 andm ×m of functions defined onT (k)
k . Add a dy-

namic extension :
ūk = ˙̄vk
ûk = v̂k

and letuk =
(

ūT
k , ûT

k

)T
.

4.3 Step (S3)

This step corresponds to the computation of the symbolical
structure codistributionΓk (see [1] for similar computations).

In iteration k − 1 we have computedΓk−1 =
span

{

ω1
k−1, . . . , ω

sk−1
k−1

}

and their derivativesddt
k−1

ωj
k−1 ∈

span{dx, dv̄1, . . . , dv̄k−1}. In this step we have to find func-
tionsγj such that

ω̄ =
∑

j

γj
d
dt

k

ωj
k−1 ∈ Zk = span{dx, dv̄1, . . . , dv̄k} .

(16)

where d
dt

k
ωj

k−1 = LLfk+gkuk

(

d
dt

k−1
ωj

k−1

)

. If γj are so,

thenΩk is spanned by all symbolic forms̄ω that obey condi-
tion (16).

Let θj = d
dt

k−1
ωj

k−1 (computed in the iterationk − 1).

Computeθ̇j = LLfk+gkuk
θj . ¿From (16) one may find a

basis{µ1
k, . . . , µrk

k } of Ωk by solving the linear equations.

∑

j

γj〈〈θj , gkl〉〉 = 0, l ∈ bme

We stress the standard assumption that we are working
around (generic) nonsingular points,i.e., points where the
rank of the matrices of analytical functions, codistributions,
etc. are maximal (see Rem 4.1).

Using the symbolic derived flag (see§ 2.4), we may
obtain the greater involutive symbolic codistributionΓk =
span

{

ω1
k, . . . , ωsk

k

}

contained inΩk. Then computed
dt

k
ωj

k

= LLfk+gkuk

(

d
dt

k−1
ωj

k

)

(note that one may use the expres-

sions of d
dt

r
ωj

r for r = 1, . . . , k−1 computed in the previous
iterations).

Denote byMk = T (pk)
k andJk = Ĵ (pk)

k , wherepk is big
enough for performing all these symbolic calculations.



4.4 A sufficient condition for k-flatness

Theorem 4.1 Let Σ = (σ1, . . . , σn) be a candidate for the
structure at infinity obeying condition(14). Assume that the
Symbolic Dynamic Extension Algorithm for system(12a), as-
sociated toΣ, constructs in thekth-iteration the symbolic
structure codistributionsΓk and the symbolic system(fk, gk)
such that rank̄bk is generically equal toσk. Then the system
is 0-flat

Proof. By construction, in thek-th iteration of the DEA
we have a manifoldMk−1 and a differential systemJk−1

and we contruct a manifoldTk, and a differential system
Ĵk as described in§ 2.7. Note also that(Jk, Ω) is a pk-
prolongation of(Ĵk, Ω) for a convenientpk. By proposition
2.4 it follows that this exterior differential system is involu-
tive. In particular it admits local integral manifolds passing
through every point. These integral manifolds induce func-
tions (h1(x), . . . , hm(x)) defined on an open neighborhood
of X. By Prop. 3.1, Prop. 3.2, Prop. 2.1 and from the fact
the SDEA is a symbolic version of the DEA it follows that
(h1(x), . . . , hm(x)) is a local flat output of system (1).2

Definition 4.1 A 0-flat system is called nonsingular if the
conditions of Theo. 4.1 holds.

Proposition 4.1 A system(12a) that is static-feedback lin-
earizable is nonsingular in the sense of Def. 4.1.

5 Singular Case

In this section we give necessary and sufficient conditions for
0-flatness of a system (12a) in the general case. We construct
a restricted jet-spaceN and an exterior differential system
(I, Ω), generated by restricted contact-forms, such that (lo-
cal) 0-flatness of system (12a) is equivalent to the existence
of (local) integral manifolds of(I,Ω).

Let X = IRn be the state space of system (12a). Let
U (k) = IRm, k ∈ {0, . . . , n}. Consider the manifold
Z = X × U (0) × . . . ×U (n) with global coordinates
(xi, u

(k)
j : i ∈ bne, j ∈ bme, k ∈ {0, . . . , n}). Con-

sider the fieldf̂ =
∑n

i=1(fi(x) +
∑m

j=1 gi(x)u(0)
j ) ∂

∂xi
+

∑m
j=1

∑n−1
k=0 u(k+1)

j
∂

∂uj(k) . Let y = h(x) be an output for

system (12a). Then it is easy to show thaty(k) = Lk
f̂
h(x),

k ∈ {0, . . . , n} (see [22]).
Now let Y = IRm with global coordinates(y1, . . . , ym).

Consider the jet-spaceJ n+1(X, Y ) and let In+1 be the
codistribution generated by the corresponding contact-forms
(the contact forms are given by (7) replacingZ by X, zj by
xj , t by n, r by n ands by m).

Now let M = U (0) × . . . ×U (n)× J n+1(X,Y ) with
global coordinates(xi, u

(k)
j , yσ, yσ

K : i ∈ bne, j ∈ bme,
k ∈ {0, . . . , n}, σ ∈ bme, K ∈ Σ(n), ‖K‖ ≤ n + 1). De-
note byI the pull-back ofIn+1 fromJ n+1(X,Y ) toM . Let
Ĩ = {I, dI} and let

Ω̃ = dx1∧. . .∧dxn∧du(0)
1 ∧. . .∧du(0)

m ∧. . .∧du(n)
1 ∧. . .∧du(n)

m .

Then(Ĩ, Ω̃) is an exterior differential system with indepen-
dence condition defined onM .

Now let {e1, . . . , en} be defined by (8) replacingZ by
X, zj by xj , t by n, r by n and s by m. Define the
field f̃ on M by f̃ =

∑n
i=1(fi(x) +

∑m
j=1 gi(x)u(0)

j )ei+
∑m

j=1
∑n−1

k=0 u(k+1)
j

∂
∂uj(k) . Let k∗ ≤ n be an integer. Con-

sider the following restriction :

span
{

dxi : i ∈ bne
}

modI ⊂
span

{

dLk∗

f̃
yσ : σ ∈ bme

}

modI
(17)

It can be shown that (17) is equivalent to{αi = 0, i ∈ ble}
whereαi are analytic functions defined onM . So assume
that this restriction defines an immersion : N → M (in the
general case the analytical manifold can be decomposed in a
strata). Then letI = ∗Ĩ andΩ =  ∗ Ω̃. Let θ be a1-form
onM and letπθ be the unique1-form in T ∗Z ⊂ T ∗M such
thatπθ − θ modI ≡ 0. We have the following result :

Theorem 5.1 The system(12a) is 0 flat around a point of
ζ ∈ Z if and only if :
(i) (I, Ω) admits a local integral manifold that passes

throughξ ∈ N such thati(ζ) = ξ
(ii) The codistribution

span
{

πdLr
f̃yσ : r = 0, 1, . . . , k∗, σ ∈ bme

}

is nonsingular in ◦ i(ζ).

For the proof of a version of Theo. 5.1 and the details
about the constructions above see [23].

Remark 5.1 Note that necessary and sufficient conditions of
k-flatnes can be obtained by puttingk integrators in series
with the inputs of the system (see [23]).

6 Examples

We begin with a very simple academic example :

Example 1 Consider the system with inputu = (u1, u2)
evolving onX = IR5, given by

ẋ1 = x4x3

ẋ2 = x4

ẋ3 = x5

ẋ4 = u1

ẋ5 = u2

It is easy to verify that this system is not linearizable by
static-state feedback because the conditions of [20, 18] are
not fulfilled.

A possible solution of condition(14) is k∗ = 3, σ1 = 0,
σ2 = 1 andσ3 = 2. We will execute the steps of SDEA for
this choice of structure at infinity.
S0.Letσ0 = 0, Z = X×IRσ2×IRσ3 with global coordinates
(x, v̄2, v̄3). Let Γ0 = span

{

dx1, dx2, dx3, dx4, dx5
}

and



Setf0 = f , g0 = g, M0 = Z and letI0 = {0}.

Iteration 1.
(S1) Sinceσ1 − σ0 = 0, we haveT1 = M0 andĴ1 = {0}.
(S2) Sinceσ1 = 0, we havef1 = f0, g1 = g0, x1 = x,
u1 = u.
(S3) Note thatΩ1 = {ω ∈ Γ0 | Lf1+g1u1ω ∈ span{dx1}}.
Simple computations giveΩ1 = span

{

ω1
1 , ω2

1 , ω3
1

}

, where

ωi = dxi : i ∈ b3e Computeω̇j
1 = LLf1+g1u1

ωj
i for i ∈ b3e,

obtainingω̇1
1 = x3du1 + u1dx3, ω̇2

1 = dx4, ω̇3
1 = dx5. Note

that Ĵ1 = {0} implies that symbolical involutivity reduces
to the involutivity ofΩ1. In particular, Γ1 = Ω1, M1 = M0

andJ1 = {0}.

Iteration 2.
(S1) We haveσ2 − σ1 = 1. HenceT2 = X × L2 where
L2 = IR × IR3 with coordinates(h1, α1

j : j ∈ b2e). Let

I2 = {dh1 −
∑3

j=1 α1
jdxj}.

(S2) Leth2 = (h1 . . . hσ2) = h1 Note that

ȳ(2)
2 = LL2

f1
h2 + (LLg1

LLf1
h2)u1

= ā2 + b̄2u1

where
b̄2 =

(

α1
1x3 + α1

2 α1
3

)

.

Hence we may take

β2 =

(

1
α1

1x3+α1
2

− α1
3

α1
1x3+α1

2

0 1

)

α2 = β2

(

−ā2

0

)

Denoting byβ2 =
(

β̄2 β̂2

)

whereβ̄2 is the first column and

β̂2 is the second column ofβ2, then(f2, g2) is a system with
statex1 = (x, v̄2) and inputu2 = (ū2, û2) given by :

ẋ = f1 + g1α2 + g1β̄2v̄2 + g2β̂2û2
˙̄v2 = ū2

(S3) To computeΓ2, let

Ω2 = span
{

ω ∈ Γ1 |LLf2+g2u2
ω̇ ∈ span{dx, dv̄2}

}

Let ω =
∑3

i=1 γiωi
1 Thenω̇ =

∑3
i=1{γiω̇i

1 + γ̇iωi
1}. It is

easy to show thatLLf2+g2u2
ω̇ ∈ span{dx, dv̄2} if and only

if 〈
∑3

i=1 dω̇i
1, gβ̂〉 = 0. Hence

γ1x3 −α1
3

α1
1x3 + α1

2
+ γ2

−α1
3

α1
1x3 + α1

2
+ γ3 = 0.

It follows thatΩ2 = span
{

ω2
1 , ω2

2

}

, where

ω1
2 = dx1 − x3dx2, ω2

2 = (α1
1x

3 + α1
2)dx2 + α1

3dx3

Further computations show thatΩ2 is symbolically involu-
tive and soΓ2 = Ω2 and that :

d2

dt ω
1
2 = θ1 − x5dx4 − x4dx5

d2

dt ω
2
2 = θ2 + dv̄2

where θ1 ∈ span
{

dx3, dx2
}

and θ2 ∈
span

{

dx1, dx2, dx3, dx4, dx5
}

.

Iteration 3. (S1) We haveσ3−σ2 = 1. HenceT3 = M3×L3

whereL2 = IR × IR3 with coordinates(h2, α2
j : j ∈ b2e).

LetI2 = {dh1 −
∑3

j=1 α1
jω

2
j }.

(S2) Leth3 = (h1 . . . hσ3). After tedious computations it
follows that

ȳ(3)
3 = LL3

f1
h3 + (LLg1

LL2
f1

h3)u1

= ā3 + b̄3u1

where

b̄3 =
(

1 0
ψ(x2) α2

1(x
5α1

3 + x4) + α2
2

)

.

It follows thatb̄3 is generically nonsingular. By Theorem 4.1
it follows that the system is0-flat. The flat output is(y1, y2)
wheredy1 ∈ span

{

dx1, dx2, dx3
}

and dy2 ∈ Γ2 is such
that b̄3 is nonsingular.

The next example shows that there exist flat systems that
are singular with respect to Def. 4.1 :

Example 2 Consider the system with inputu = (u1, u2)
evolving onX = IR5, given by

ẋ1 = x4

ẋ2 = x5

ẋ3 = x4x5

ẋ4 = u1

ẋ5 = u2

Note that this example corresponds to the one of [15] with
α1 = α2 = 1 where one has extended the state by inte-
grators in series to the inputs. There exists two solutions of
equation(14) given by : {k∗ = 4, σ1 = σ2 = σ3 = 1,
σ4 = 2} and {k∗ = 3, σ1 = 0, σ2 = 1, σ3 = 2}. After
some tedious computations one can show that the condition
of Theo. 4.1 is not satisfied by either of these structures at
infinity becauserank b̄k∗ < 2 in both cases. It is shown in
[15] that this system is0-flat (the original system is1-flat9).
Hence this example shows that there exist0-flat systems that
are singular with respect to Def. 4.1.

7 Conclusions

In this paper it is shown that there may exist two kind of0-flat
systems — thenonsingularand thesingularcases. Thenon-
singular case contains properly the class of state-feedback
linearizable systems. Hence0-flat systems may be classified
asstate-feedback linearizable, nonsingularandsingularsys-
tems, in an ascending order of complexity.

Necessary and sufficient conditions ofk-flatness for the
nonsingular case are developed. For the singular case, nec-
essary and sufficient conditions ofk-flatness relies on a con-
venient application of Cartan-K̈ahler and Cartan-Kuranishi
theorems.

9In [23] it is shown that the example of [15] is not0-flat.
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[3] B. Charlet, J. Ĺevine, and R. Marino. On dynamic feed-
back linearization.Systems Control Lett., 13:143–151,
1989.
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