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Kahler theorem. i(t) = Fa() + Y gi(x(t)u;(t) (1)
=0

Abstract wherez(t) evolves on an analytic manifold of dimension
n, and the inputu(t) is a vector of dimensiom:. We will
In this work we consider the concept of differential flathess assume that this dynamics is well formed (see [28]) the
defined by Fliess, Levine, Martin and Rouchon. The struc-fields {¢;(z),j € |m]} are linearly independent for every
tural property ofi-flatness (the case in which flat outputs de- » ¢ X.
pends up to théth derivative of the inputs) is studied based  Roughly speaking, a system (1) is said toflae if there
on the properties of the dynamic extension algorithm and theexists a set of differentially independent functiops =
Cartan-Kahler theorems on the existence of integral mani-(y, ...,y ) calledflat outputsuch that every variable of the
folds of exterior differential systems. In this context, it is system is a function of time and gfand its derivative's(see
shown that there may exist two kind of flat systems — the[14]). The flat output is a set of functions that may depend
nonsingularand thesingular cases. Since theonsingular  on the stater and on the input, and its derivatives,(*) for
case contains properly the class of state-feedback linearizs = 0,...,k. In this case, the system is said to bdlat.
able systems, this induces a classification of nonlinear flawwhen the flat output depends only onthe system is said to
systems astate-feedback linearizahlaonsingularandsin- be 0-flat.
gular systems, in an ascending order of complexity. Instrumental for our purposes are the structure algorithms,
Necessary and sufficient conditions lofflatness for the  like Singh’s algorithn{31] and theDynamic Extension Algo-
nonsingular case are developed. Necessary and sufficiemithm (DEA)[6, 21, 7, 5, 24]. Our main results combine the
conditions for the singular case are also presented, althougpeometric properties of the DEA withartan-Kahler theory
they are much more involved and are not in closed form. Ex-[2, Chap.3] to parametrize that the jets of the flat output can-
amples are presented to illustrate the results. didates and to obtain necessary and sufficient conditions of
k-flatness can be obtained. The results developed here indi-
cate that two kind of flatness exists. For the first one, called
1 Introduction and motivation nonsingular we give a complete and effective characteriza-
tion; For the second one, callsthgular, a characterization
Feedback linearization is an important structural problem injs also given, but the computations in this case may be related
control systems theory. This problem was completely solvedio more sophisticated results likartan-Kahler theorenand
in the static-state feedback case [20, 18] but necessary anQartan-Kuranishi prolongation theoreii2, Chaps.3, 6 and
sufficient conditions for feedback linearizability by dynamic 8]. In the nonsingular case, one can check flatness of a given
state feedback are not yet known (see [3, 29, 4, 16, 32, 34system using only standard geometric operations like Lie-
30, 1, 27, 33, 26, 17, 35] for several results on this subject). derivations, exterior differentiationstc  Our results about
Fliess et al introduced the notion of differential flatness the singular case are inspired by the ideas of Figsd[15]
for nonlinear control systems in [9, 11]. This structural con- which show that checking flatness of a system is closely re-
cept is strongly related to the problem of feedback lineariza-ated to the problem of finding integral manifolds of exterior
tion, and corresponds to a complete and finite parametrizadifferential systems. In this paper we show how to compute
tion of all solutions of a control system by a differentially this exterior differential system through some symbolic op-
independent family of functions. Differential flatness was erations.
originally defined in a differential algebraic setting [9, 11] If a systemis flat, by definition it i&-flat for k£ big enough.
and restated in a infinite dimensional geometric setting re-An important question that remains open is if there exists a
Cently introduced in control theory [10* 25,12, 14, 13]' 1The definition of flatness given here is not rigourous. The reader may
In this paper we consider analytic nonlinear affine control refer the cited literature for a complete presentation.




bound onk depending on the number of the states and input2.2 Exterior Differential Systems with independence
[15]. condition

The paper is organized as follows. In section 2 we presenfye present some definitions and results about exterior differ-
notation and some results about exterior differential systemsgpig) systems. The reader may refer to the treatise [2] for
In section 3 we present the notion of structure codistribu-yetails.

tions, instrumental for parametrizing the jet of the flat-ouput | ot A7 pe an analytic manifold with dimension and letZ
candidate. In sections 4 and 5 we present the main resultgg 5 gifrerential ideal defined oif. Let ) — WiA. . Awp, &

respectively about the singular and the nonsingular case. 1% pe ann-form onM. Then the paifZ, Q) is calledExterior
section 6 some examples are discussed. Finally in section Bjfferential System with independence condition

we state some conclusions. An integral elementz of Z onz € M is a subspace of
T, M such tha¥|g = 0 for all formsé of Z. An integral ele-
ment of(Z,2) onx € M is a subspacé of dimension. of
T..M such that|g = 0 for all form 6 of Z andQ)| g # 0 (this

2 Preliminaries and notation

2.1 Notation

The field of real numbers will be denoted I#y. The sub-
set of natural numbersl, . . ., k} will be denoted by k7. A
symmetric multiindex< of classs and length is a set of el-
ements of the fornfiy, ..., ix), wherei; € |s] for j € | k],
and where all the permutations @f, . . ., i) are identified

last condition is calleéhdependence conditipnAn integral
manifold of (Z,?) is an immersed manifold : N — M
dimensionn of T, M such that, for every poirg € N, its
tangent spac& = i, (T¢N) is an integral element ¢iZ, ).
For every immersed manifold: N — M (not necessarily
an integral manifold) we define thestriction of(Z, Q) to N
by (Z,Q) = (i*Z,i*Q). We denote by, (T M) the Grass-
mann bundle of alh-subspace&’ C T, M. The bundle of all
integral element& of Z of dimension: is denoted by, (Z)

with each other. The set of all symmetric multiindeces of and is a subbundle a¥,,(TM). Similarly, G, (T M, ) de-

classs is denoted by (s). The length ofK € X(s) is de-
noted by|| K ||. Note thatil € X(s), || K|| = k is identified to

some(iy, . ..,i;) such that; <i, < ... < i < s. Given
K € X(s), K = (i1,...,4) andi € |s] then(K+i) stands
for K = (i1,...,10,10).

We will use the standard notations of differential geometry
and exterior algebra [36, 2]. L& be a smooth manifold of
dimensionp. Let F be a set of smooth functions defined on
P. LetZ = {z € P | f(») = 0,Yf € F} be the set of

common zeroes of alf € F. Thenz is anordinary zero
if : (i) There exists a subset’ = {f1,..., f.} C F such
that the setdf = (df1,...,df,) is independent on ; (ii)

There exists an open neighborhoGdof z such that the set

of common zeros of that are insidé/ coincides withZUU .
In particular,Z U U is a submanifold ofP.

Given a fieldf and a 1-formw on P, we denoteuv(f) by
(f,w). The set of smoottk-forms onP will be denoted by
Ay (P) andA(P) = UkeWAk(P)-

Given two formsy and¢ in A(P), thenn A € denotes their

wedgemultiplication. Theexterior derivativeof € A(P)
will be denoted bydn. Note that the graded algebgP),
as well as its homogeneous elementgP) of degreek,

have a structure of?>°(P)-module (see [36] for detalls).

Given a familyry = (v1, ..., 1) of aC°(P)-module, then
span{vy, ..., v} stands for the span ovér=>(P).

An ideal 7 is a C*°(P)-submodule ofA(P) such that,

given two formsv andé in Z thenw A 0 € 7. Given a subset
S C A(P) then{S} stands for the least ideal that contains

S.

A differential idealZ is an ideal that is closed by the exte-

rior differentiation,i.e., dZ C Z. A differential ideal is also
called arexterior differential system

notes the bundle of ak-subspace# C T, M obeying the
independence conditian| g # 0. The bundle of all integral
elements ofZ, 2) is denoted by/,,(Z, ) and is a subbundle
of G,(TM,Q). LetE € G,,(TM,2). Denote a basis of
bye = (e1,...,e,). It can be shown that

Vo(Z) = {EeG,(TM)|0(e,...
Vo € 7,6 of degreen}

7en) =0,

If ¢ is ann-form on M, define a functiorg onV,,(Z, Q) by
the formulag| g = ¢ (F) Q|g. Let

Fao(T) ={éa | ¢ € Z,¢ has degree 2
Then

Vn(Z, Q) is the subset of common zeroes®§(Z) (3)

2.3 Prolongations

Let (Z,9) be an exterior differential system with indepen-
dence condition. The first prolongation is a Pfaffian sys-
tem (I(V, QM) defined on a manifold/("). To define
the prolongation we define first a Pfaffian systefy®) on
G,(TM,Q) in the following way. Letr : G,,(TM,Q) —
M be the canonical projection and for eaéh, E) €
Gn(TM, Q) we define

B+
T M

IO(z, ) =
JV(z,B) =

Then the filtrationIY ¢ JU) c T*G,(TM,Q) defines

a Pfaffian system with independence condition [2, p.104].

In particular, we may takel = {I) dIM} and® =

7*Q. To see what this gives in coordinates, assume that



(x',...,2™ y,...,y*) is a local coordinate system far
such thatQ) = dxy A ... A dx,. Then, ann-plane E of
G.(TM,Q) is generated by, .. ., e,,, Wwhere

0 s 0
ei—afxi-i-;pi@ 4)

where(z?,y°, p¢) is a local chart foiG,,(T'M, ). In other
words, E is defined by the equatio®§ (E) = 0,0 € |s]

where
Z pda’

It follows thatI(!) is generated by the forn# and we may
take® = 7*Q =dx1 A ... ANdx,.

=dy° )]

Definition 2.1 Let M) = V,(TM,) and assume that
M® is a submanifold ofG,(TM). Let: : MY —
G, (T M) be the canonical injection. Then the first prolon-
gation is the (linear) Pfaffian syste(i* L, .*®).

Note that one can always define the canonical map
M® — M as the composition of the canonical immer-
sion, : M — G,(TM) with the canonical projection
m:Gp(TM) — M.

Remark 2.1 Let X = span{dz',...,dz"} C T*M. As-
sume that the canonical map M) — M is a surjective
submersion. LeK = 7* X, 1) = ,*1M) and JW) = ,* D)

="TM.

Note thatJ) = M ¢ X. Let7 : JU — X be

Lemma 2.2 Let Z, M, N be analytic manifolds and |€2 be
avolume formorZ. LetM = Z x M andN = Z x N.
Letm; : M — Z,andmy : N — Z be the canonical
projections. Leti : M — A be an immersion such that
m 04 = m. Let(Z,Q) be an exterior differential system
defined on\ and let(7, §2) be the exterior differential sys-
tem defined ooV by j = z*[ Assume that both prolon-
gatlons(j(l) Q) and(ZM, Q) are WeII defined respectively
on MW and N, Letj . M) — N pe the map defined
by j(E¢) = i.Ee. Theng (M) = j*7(1),

Proof. The proof is an easy application of the definitions of
§2.3. 0O

Remark 2.2 It is easy to show that the integral manifoléls
and i) of Lemma 2.1 and the mapof Def. 2.1 obey the
relationi = 7o i1,

2.4 Prolongation and Symbolical Calculus

In this section we will state some definitions that allow to per-
form symbolical calculations with functions that are the so-
lution of a partial differential equatidn The idea is to define
symbolical operations in a way that, when specialized to an
integral manifold, these symbolical operations becomes the
usual manipulations of differential calculus. For instance, if
one denotes symbolically the partial derivativieg /0x" of

a functiony? by p?, then one can perform all the differential
operations (of first order) with this function in a symbolical
fashion. Using the language of exterior differential systems

the canonical projection. We can define a correspondencé‘nd their prolongations, we will consider this idea in a much

weTM—m(w) € X cT*MW by the ruler; (w) =
7 t*w. In coordinatez, y) for M, letw =" _, a,dy”+
> oicy Bidat. Thenmy(w) = 330 {Bit+ 3o, aopf bda'.
Note thatr; (w) is the uniquel-form such thatr; (w) — T*w
e I, Note also thaty € X implies thatr; (w) € X.

The next Lemma says that an integral manifold inducesmersiond for k € IV and thath/(*)
canonically an integral manifold for the prolongations of any Zx(, M) =

order.

Lemma 2.1 Assume that théth prolongation of a differen-
tial system with independence conditi@h, €2) is well de-
fined for allk € IN. Assume that : X — M is an integral
manifold of(Z, 2). Then there is a unique integral manifold
i®) + X — M®) associated ta : X — M by a canonical
lifting.

Proof. Note thati, : TX — TM induces a mag :
X — V,(Z,9Q) such thatj(x) = i.(T,M). Note also that
this map (canonical lifting) is an integral manifold for the

first prolongation (see [2, pp.147-149]). The proof may be

completed by induction oh. O

The next Lemma says that, under some natural assump

tions, the prolongation of the pull-back is the pull-back of
the prolongatioA.

2We abuse notation by using the same symdbr the independence
condition on all manifolds.

more abstract way.

Let M = X x N be amanifold and l&® = dz1 A. . .Adz,,
be a volume form orX. Let (Z,Q2) be an exterior differen-
tial system with independence condition definedidn Let
(ZM, Q) be its prolongation defined ab *), Assume that
the canonical mapg, : M *+1 — M (*) are surjective sub-
= X x N®), Note that
(z,nr—1) and hence the may, ). (&) restricted
to Tz X C Te M ™) is an isomorphism.

DenoteT M = T: X ® T¢N. A symbolic fields a field
f: M — TX C TM such that, for every poirg on M,
f is contained inl’; () X. Let i be the canonical map of
Def. 2.1. Since.({)|T: X is an isomorphism ont@; ) X,
to every symbolic field we can associate a unique symbolic
field f : MM — T7X ¢ TM® such that, fV) = foi.
We may deflne the symbolic fielf®) on M%) inductively
by the rule(zy,_1), f* = fEDog_.

Consider the mag : J) — X defined in Rem. 2.1.
One may define inductively thé€'>°(M)-linear map7;, :
JB < M® - xE) < MK This map may
be extended in a natural way to a map franaM %)) to
{X®} c A(M®). It follows that the composition

(6)

3Solutions of a partial differential equation are integral manifolds of ex-
terior differential systems, as will be shown§r2.6.
4This assumption is needed for considering the mapf Rem. 2.1.

~ %
T, = Tly_1, k=0,1,2,...




defines a map fromh (M=) to {X®} c A(My), k €
IN.

Definition 2.2 Given a functionp : M — IR and a sym-
bolical field we definddg, f) = (mido, f(V). Note that
Y = (do, f) is a function defined od/™). If w is a one
form on M we defingw, f) = (mw, fM). Given a form
w defined onM, denotew *w. Analogously, given a
codistributionT" on M we definel = 7*T". Note that both
objectsw andT are defined o/ (), A symbolicl-formw is
a form defined onV/ such thatw € span{dz?, ..., dz"}.
A codistributionT" on M is a symbolic codistribution if
I' C span{dz?,...,dz"}. For a symbolical codistribution
T, define the flag™) = {@ € T | dw € {IM +T}}. We say
thatT" is symbolicalyinvolutive if 1)) =T

DefineT'® = T'. As in the “nonsymbolical’ case one
may compute the derived fldg*) = {F(’“—l)}(l) defined
on M%) for k € IN. Letn = dim X and let(, € M™.
Denote by(._1 = 7({x). We say that, is a regular point
of the derived flagT"®) k € {0,1,...,n}, if (x is aregular
point of I'*) for k € {0,1,...,n}.

Definition 2.3 Let ¢ be a function andf be a sym-
bolic field, both defined on/. Then L;¢ stands for
(d¢, f). Define L}¢ inductively by (mpdL}™" ¢, f*)).
Note that £%¢ is a function defined om/(¥).  Let
w be a symbolicall-form on M. Define L;w =
7 {o(fV)(r1dw) + d((T*w, fI))}, wherea(-)(-) denotes
the interior product (see [36, 2.25 (d)]) and, is defined
by (6). If # is a symbolical form defined oh/ *—1) define
L 0 = 7 {o(fR)) (mrd0) + ({710, F*)) }. Then de-
fine inductivelyZw = £ ;o (£ 'w).

Note that, in coordinates we hav@, (}_", a;dz’) =
S {E,f (o) dx® + 7 (ed{da’, f(1)>)}.

there exist somg < dimI' < n such thatl'(¢=1) is
involutive. In particular,(i¢“=1))*T'(¢~1) js integrable as
a codistribution defined oX'.

2.5 Jet-spaces, contact-forms and prolongations

We denote by7"(Z,Y") the set ofr-jets of all smooth maps

y : Z — Y between smooth manifold8 andY. Then
J"(Z,Y) has a structure of smooth manifold. For instance,
consider the manifold/; (Z,Y’), whereZ has dimensiort
andY = IR®. If Z has local coordinates = (z1,...,2%)
then7"(Z,Y) has local coordinate&?, y7,y% : i € [t],

o € [s]| K € ¥(t), |K| < r), wherey” € IR repre-
sents the function evaluatiq)f (z) andy% represents, for a
symmetric multindexk” = (i1 ... 15), the partial derivative

%L. On the manifold7"(Z,Y"), we may define the

contact forms

dy” = 5y yfded, o € |s]

dyg - Z;‘L:1 ygjdzjv S I_S-"k € I_ﬂ

dyge — 2271 Y%, 42, o € [s]. K € B(t), |K[| <r —(1)

-

Then the integral manifolds of the Pfaffian syst&fgener-
ated by the contact-forms above with independence condition
Q =dz A ... N\dz are the jets of functiong® : Z — IR,
o € |s] (see [2, Theo. 3.2, p.26]). Furthermore it is easy to
see that the prolongation & is Z"*. It can be shown also
that every integral element & at (z,y7,y% : 0 € |s],
K € X(t), |[K|| < r) is generated by the sét1,..., e}
given by

(8)

0 2 0
_ g
€= 5, 2. Yiigy,

o=1Jex(n)
I7l<r

whereyg ;= y7,;, if the symmetric multindece$Jyi,)

The next proposition shows that, when specialized to in-and(J»i») are identified by a convenient permutation.
tegral manifolds the symbolical calculations defined above Using Cartan’s test [2, Thm. 1.11, pp. 74] one may show

coincides to the “standard” differential calculus.

Proposition 2.1 Leti : X — M be alocal integral manifold
of Z and leti*) :— M () pe the the local integral manifold
of Z( induced byi*) (see Lemma 2.1). Note that there
exists a unique fielg defined onX such that(i*dx?, f) =
(dx', f oi). Let¢ : M — IR be a function, letf be a
symbolic field, letv be a symbolicl-form, and letl’ be a
symbolic distribution. Then

(i) {d¢, )0 iV = (d(¢ 03), f)

(i) L5¢o i) = L’Jj-)gb o1
(i) (i®)* Lhw = LA(i*w).
(iv) Assume that the symbolic distributidhis symbolically

involutive. Then*I" is involutive as a codistribution de-
fined onX.

(v) Let(,, be aregular point of the derived flag obtained from
I'. Assume that, is contained in the image 6f*). Then

that every integral element &f' is involutive and, by the
Cartan-Kahler Theorem[2, Cor. 2.3, p.86] it admits local in-
tegral manifolds around every point. Using [2, Theo. 2.1,
p.248], that shows that the prolongation of an involutive sys-
tem is also involutive, one may show tl#t is involutive for

all r.

2.6 Involutive codistributions and restricted Jet-spaces

In the sequel we abuse notation afit(Z, Y1) x J"(Z,Y2)
stands for7"(Z,Y; x Y5). Denote by(z,7;) the points
of 7" (Z,Y;), i =1, 2. In a similar vein, 7™ (Z,Y7) x
J"(Z,Y,) will stands for the set of points:, 71, 72) (with
a commorg).

Given a nonsingular involutive codistributiod
span{w!,...,w*} defined onZ, with dimI" = s, then one
may define a particular-class of contact forms on a manifold
R = Z x IR* x IR* with local coordinatesz*, y%, o : i €



|n],o € [so],J € |s]) given by : 2.7 Extension of Restricted Jets-Spaces

dy’ — Z§:1 a?wj, o € |so] 9) Let M = Z x N be a restricted jet space. LEbe the codis-
tribution generated ofV by the restricted-contact forms and
Yet7 = {I,dI}. LetQ = dz' A ... A dz! be avolume form
on Z. Assume that the prolongatiod$®) are well defined
on M*) and are involutive for alk € IN. We will define

Denote the Pfaffian system generated by these forms b
Z. SinceT is involutive, by the Frobenius theorem we
may assume without loss of generality that the local coor-

dinate system(z, ..., zs, Zstlyc s @) is such thfatl“ - an extension of this space by adjoining the restridtget of
span{dzl, ...,dzs}. Hence, in a new local coordinate sys- » new functions. For this. IeF c span{dz1 dzt} be
3 g g . 4 y : 1 PR
:E:rr]rfszc’ayn bﬁejw.ri:tei gts]’g € sol.J € |s]) for B, these a nonsingular symbolical codistribution did generated by
abasis{w!, ... ,w®}. Assume that is symbolically involu-
07 =dy” — 375, B7dz 0 € |s0] (10)  tive,i.e,dl’ mod{I+T} = 0°. LetY = Y; x...xY, and let

. . i A=A x...xA, ,whereY; = R,i € [sq],andA4; = IR?,
gon5|der tﬁe mtr:i]ependen_ce con|d|Tn: dle/\ : d /\ dzp.- j € |s]. Consider the manifold x A with global coordi-

ne can show that everyintegral element ofz and its pro- nates(y”, o’ : b € [v],j € |s]), and lethM; = M x Y x A.
longations of any order admit corresponding integral mani-p .« y .

. , , ; Define the forms or/; given by

folds (they are all involutive with respect to the independence
conditionQ2 = dz; A ... Adzy,). In particular, one can show , , s b
the following result 0 =dh* > abwl b€ |v] (11)
Proposition 2.2 Let R = Z x IR* x IR** be a manifold =t
with local coordinatey(z',y”,af : i € [t].j € |s],0 €  Define the codistributiod; = span{6} : b € [v]} + I and
[so]). LetZ be the Pfaffian system generated by the formsjet 7, — {1, dI,}. Abusing notation, lef2 stands for its

(9). There exist integral manifolds 6", ©) at every point  pull-back fromZ to M. We have the following resuit -
of the prolongationR*) for everyk € IN.
Proposition 2.4 Consider the construction of/; and Z;

bove. Assume that the canonical maps: M®*) —
M*=1) are surjective submersions. Then

(i) The exterior differential system with independence con-

dition (11, ) defined on\/; is is involutive.

Definition 2.4 Let Z be an analytic manifold and 162 be a (i) The prolongations(Ifk), Q) are well defined on the re-
volume formorg. LetN = J"(Z,Y1) x... x J"*(Z,Y), stricted jet-spaces/ ) and are involutive for allk €
whereY; = IR,i € |p]. LetZ be the Pfaffian system gen- 1
erated onN by the contact forms associated to all the jet ) ) - (k+1) (k) o
spaces7" (Z, Y1), ..., J"(Z,Y,). Let M be an analyti- (iii) The canqmcal mapg, : M, — M;™ are surjective
cal manifold of the forniZ x M. Arestricted jet spacis an submersions.
analytic immersion : M — N such thatr o i = m; where
m : M — Zandw : N — Z are the canonical projections. 3 Structure codistributions
The pull-backy = i*(Z) defines theestricted exterior dif-
ferential systengenerated by theestricted contact forms In this section we discuss some structural properties of a non-
linear control system of the form

Note that the construction above may be considered as
restricted jet spacen the sense that the partial-derivatives
are subject to some relations. The following definition gen-
eralizes this situation.

Note that solving any partial differential equations with

unknown functiongy!, ..., y?) (depending on the variables m
21,. .., 2, With orderr, ony? for o € |p]), is equivalent to ©(t) = f(z(t)+ Z g (x(t))u;(t) (12a)
finding integral manifolds of a convenient restricted exterior j=0
differential system. y = h(z(t)) (12b)

The next proposition implies that the prolongation of a re-
stricted jet-space is a restricted jet-space of greater order. 31  pynamic extension algorithm (DEA)

Proposition 2.3 Consider the same notation stated in the

S 3 . Let us recall the main aspects of the dynamic extension al-
last definition. Assume that the prolongatigh®) is well b y

: ) ) & ) gorithm (in the version .of [7n. inen an ana!ytic system
gef!ngd OEME' I_‘I_itj ’ /Xl) B '_*:I](\g be the map defined (12a)—(12b), the dynamic extension algorithm is a sequence
yJ(Eg) = iEe. Theng ™ = j : of applications of regular static-state feedbacks and exten-
Proof. Note that the prolongation/(¥) of M is always  sions of the state by integrators.
well defined and is given by It is well known (see [7]) that the dynamic extension al-
" — gorithm has an intrinsic interpretation based on the algebraic
JHZ ) <. x T (Z,Y3)- structure at infinity{o1,...,0,}. The integerp = o, is
Hence, the proof is a straightforward application of Lemma  snote that, by Prop. 2.1 part (iv), this implies thatrestricted to an
2.2. O integral manifold ofZ is involutive.




calledoutput ranK8, 7]. The following resultis well knowh  (see the notation df 3.1), wherey;, are, up to a convenient
but is restated here in the differential geometric setting ofreordering, the first;, components of. Thenspan{dy;} C

[14] : I
Theorem 3.1 [7, 5, 24] Assume that syste(2a)is ana- Proof. By Theo. 3.1 it follows tha{dw,dﬂ§l), ceey d@,(f)}
lytic. Let.S be the system associated(fk®a)in the sense of is a basis oy, and we may takg, C y,—:. In particular,
[14]. Consider the filtrations (defined a$)) dﬂ,ﬁ” e Y forj =0,...,k. The desired result follows from
Definition 3.1. O
Vi = span{dzdy,....dy"M} ke N The following proposition characterizésflatness.
Y, = spaddy,...,dy®™)} ke N

Proposition 3.2 Consider an analytic systersi defined by
LetS), C S be the open and dense set of regular points of the(1) in the sense of [14] and assume that the system is well
codistributionsY; and); fori = 0,..., k. Inthekth step of ~ formed. i.e.span{du} C span{dz,di}. Consider the out-
the dynamic extension algorithm, one may construct aroundut y; = hi(x), i € [m]. Let{ € S be a regular point

¢ € Sj_, a partition (and a reordering) of the outpyt =  of Y3, and));, for k = 0,1,...,n. ThenS is (locally) O-flat
(Ux, Ji) With cardy, = oy, a new local state representation around§ with (local) flat outputy if and only if there exist
(2, uy,) Of the systens with statex; = (z, ggl)’ o 7§;(ck)) k* < n such that one of the following equivalent conditions

are satisfied :

and inputuy, = @(k) 4i3,) such that . . L .
ko (i) The algebraic structure at infinity obeys the following

(i) span{dz;} = span{dz,dy, ..., dy"}.

condition
(i) span{dzy, duy,} = span{dz,dy, ...,dy"*+Y, du}. .
(i) 51 < gt nt Y o = mk (14a)
(iv) LetD(C) denote the generic dimension of a codistribu- i=1
tion C generated by the differentials of a finite set of ana- Op= = m (14b)

Iytic functions. The sequeneg = D(Vx) — D(Vi—1) IS .
nondecreasing, the sequenge = D(Yy) — D(Yi—1) is (i) span{dz} C Y- 1.
nonincreasing, and both sequences converge to the same

integer p, called theoutput rank for somek* < n = 4 The nonsingular case
dimz. In particular, we havep, > p > o, for k = o N )
0,...,n and the the sequencg = D(Y; N span{dz}) In order to develop sufficient conditions kfflatness we will
converges fok — k* — 1. define asymbolicversion of the dynamic extension algo-
rithm (SDEA). Choosing a nondecreasing integer solution
Proof. The reader may refer to [24] for a complete proof (4, ...,s,) of equation (14), this algorithm constructsea
which an adaptation of known results to the geometric settingstrictedjet-space that parametrizes the flat-output candidates
of [14]. O y1 = hi(x),...,ym = hn(x). The corresponding exte-
rior differential system(.7,2) (generated by the restricted
3.2 Structure codistributions contact forms, see Definition 2.4) is constructed in a way

] ) ) that theseestrictionscorrespond to the properties stated in
Consider the system (12a)—(12b), defined in the sense Gbroposition 3.1. In each step of the algorithm, the restricted
[14]. Define the CO((;ICIStr.IbutIOHQk cglculated from), = jet space is extended by the proceduré &f7. So by Prop.
span{dz, dy, ..., dy"™ } in the following way : 2.4, the exterior differential system constructed in step
Definition 3.1 involutive. If_ some further_dimensionall properties are ful-
filled, the existence of an integral manifold Qf, ) will
imply, by Proposition 3.2, the existence ofdlat output of
the system.

Qo span{dz}

Qe = span{w € Q1 |w® € Y}k € |n] (13)

Remark 4.1 It is important to point out the meaning of the
word “nonsingular’employed here. This means that we will
consider that we are working in a neighborhood points where
This codistributions may be computed based on the sameur (symbolic) objects are nonsingular, i.e., we consider only
ideas presented in [1]. generic points.

The involutive closurd, = Q for k € |n] are system
invariants calledstructure codistributionsf (1).

Proposition 3.1 Consider systenfl2a)with outputy. As- 41 gpga

sume that the structure at infinity of this system is

{o1,...,0,}. Denote byy = (7, ) the partition of the  Consider the analytic system (1) defined on an open set
output corresponding to the applicatidnstep of the DEA X with global coordinatesr = (z',...,z"). De-

6The approaches of [7, 5] are algebraic. Some other properties of tha'0te (fo,90) = (f.9)- Let so = mn, Lo =

DEA considered in the geometric approach of [19] can be found in [22]. "This remark refers to step (S3) of SDEA, describef 3.




span{wg i=1,... ,n}, wherew) = dz;. DefineZ, = chosen. Otherwise, up to a reordering of the input compo-
{0}. The SDEA can be summarized as follows. nents, assume that = ( bi1  bio ) whereb;; is generi-

(SO) Let 09 = 0. For every nondecreasing integer so- cally nonsingular (with rank:). Define

lution (o1, ...,0,+) Of equation (14), consider the mani-

7 7 -1 _
fold Z = X x R°* x ... x IR, with local coordinates Br = < bir b1y ) Cap = B ( —ax() >
(2,01,...,05). Let My = Z. U 0
Then, fork = 1 to k*, execute:
and let
(S1) (a) Extend the restricted jet-space as describeédary Up—1 = ap, + B vk

by addingo, — o1 more functions to the the re-

stricted jet-spaceM_, constructed in the previous be an analytic regular static state feedback, where=
step. Note that\/,_; is immersed in7" (Z, Hy) x (of of )T Note thata: and 3 are respectively matrices
. X J"™(Z, Hy), wherel; = IR%,j € [k]. De-  y; x 1 andm x m of functions defined off{". Add a dy-
fine a restricted jet spacE, = Mj;_1 x Ly, where  namic extension :

Ly = R", uy, = sg—1(o) — ox—1) and Ly has canon- ==

: . K= 1A\ER ] Uk = Vg
ical coordinategh’, o : i € {oj—1+1,...,04},j € Ty = D
{1, ey Sk—l}-

A = 7T AT T
(S1) (b) Let 7, be a Pfaffian system defined @ generated and letuy, = (a, @) -

by Ji_1 and the forms :
4.3 Step (S3)

0 = dh’ — Zstk_l aj-w‘;fl, 1€ {O'kfl +1,... ,O’k}

This step corresponds to the computation of the symbolical
where the symbolic distributiol,_; = spafw;_,, structure codistributiof', (see [1] for similar computations).
..., we '} C span{dz} was computed in the previous ~ In iteration £ — 1 we have computedl',_; =
step. span{w;_,,...,w;" ;' } and their derivative%i;k_lwif1 €

_ ~ span{dx,dty,...,dvg_1}. Inthis step we have to find func-
(S2) Compute (symbolically) théth step of the Dynamic tionsy; such that

Extension Algorithm. This will produce the (symbol-

ical) system(f, gx)- ar .
o= Zyja wl_, € Z), = span{dz,dvy, . ..,do;} .
(S3) Compute the (symbolical) structure codistribution j
(16)
Iy = span{wy,...,w;*} C span{dz}. where %07 | = Lo (%kilw#l). If ~; are so,

then(;, is spanned by all symbolic fornasthat obey condi-
The steps (S2) and (S3) will be described in detail in the setion (16).

quef. Let 9/ = %k_lwi_l (computed in the iteratiok — 1).
Computeéi = Ly, y,.,0. ¢From (16) one may find a

4.2 Step (S2) basis{/., ..., " } of © by solving the linear equations.

This step corresponds to the symbolical computation of o

the kth step of the dynamical extension algorithm. In the > 407, gr) =0, L€ |m]

(k — Dth iteration we have computed a symbolical system J

(fx—1,gK—1), with statez,,_, = (z7,9{,...,v}_,), input

w1 and outputy i.e., fy_1 andgy_; are symbolical fields We stress the_ standa_rd assumption tha_t we are working
defined onMj,_; (see§ 2.4). Lethy = (h',...,ho*)T. around (generlc) nonsmgularl pomise.,_ points V\{here the
Compute rank of the matrices of analytical functions, codistributions,
etc. are maximal (see Rem 4.1).
O N S S S et T T Using the symbolic derived flag (se€g2.4), we may
Yk sl (Lgy  Lg, )t (15)  obtain the greater involutive symbolic codistributitp =

= g+ bruk—1 1 s o ak i
span{w;,...,w;* } contained in;. Then compute},” w;,
- . . . k—1 5
Note thati;, andb;, are matrices of functions defined 65)5;’“). =L+ gun (% “Ji) (note that one may use the expres-
Assume that the generical rankigf on T,gk) is 0. If this is sions of%ij forr =1,...,k—1computed in the previous

not true, no solution is possible with the structure at infinity jterations).

_ (pr) _ Apx) i hi
8The step (S2) includes a finite number of choices represented by a re- Denote byM;, = Tk “andJy, = J, k.’ Wherepk. is big
ordering of the inputs. enough for performing all these symbolic calculations.



4.4 A sufficient condition for k-flatness

Theorem4.1LetY = (oy,...,0,) be a candidate for the
structure at infinity obeying conditiofi4). Assume that the
Symbolic Dynamic Extension Algorithm for sysi@®a) as-
sociated toX, constructs in thecth-iteration the symbolic
structure codistribution§';, and the symbolic systefiix, gx.)
such that rank,, is generically equal te;,. Then the system
is O-flat

Proof. By construction, in the-th iteration of the DEA
we have a manifold/,_; and a differential systeny;_
and we contruct a manifoldy, and a differential system
J. as described i} 2.7. Note also that7:, ) is a p-
prolongation of(jk, Q) for a convenienpy. By proposition
2.4 it follows that this exterior differential system is involu-

tive. In particular it admits local integral manifolds passing
through every point. These integral manifolds induce func-
tions (h1(z), ..., hn(z)) defined on an open neighborhood

of X. By Prop. 3.1, Prop. 3.2, Prop. 2.1 and from the fact

the SDEA is a symbolic version of the DEA it follows that
(h1(zx), ..., hy(x)) is alocal flat output of system (1)1

Definition 4.1 A 0-flat system is called nonsingular if the
conditions of Theo. 4.1 holds.

Proposition 4.1 A system(12a)that is static-feedback lin-
earizable is nonsingular in the sense of Def. 4.1.

5 Singular Case

In this section we give necessary and sufficient conditions for, b
0-flatness of a system (12a) in the general case. We construgt

a restricted jet-spac& and an exterior differential system

Then(Z, ) is an exterior differential system with indepen-
dence condition defined ai¥.

Now let {e1,...,e,} be defined by (8) replacing by
X, 22 by 27, t by n, »r by n and s by m. Define the
field f on M by = Y21 (filw) + X2, giw)uf ert
Sy S uy Y 5225 Letk* < n be an integer. Con-
sider the following restriction :

span{dz’ : i € [n]} modI C
span{dL’;-* Yy’ o€ Lm}} mod I (17)
It can be shown that (17) is equivalentfo; = 0,7 € |I]}
whereq; are analytic functions defined alf. So assume
that this restriction defines an immersipn N — M (in the
general case the analytical manifold can be decomposed in a
stratd). Then letZ = y*7 andQ2 = 7 x Q. Let 6 be al-form
on M and letrf be the uniqud-form in7*2Z C T* M such
thatw — 8 mod I = 0. We have the following result :

Theorem 5.1 The systenfl2a)is 0 flat around a point of

¢ e Zifandonlyif :

() (Z,©9) admits a local integral manifold that passes
through¢ € N such thati(¢) = ¢

(i) The codistribution

span{de}y" r=0,1,...,k*, 0 € Lm}}
is nonsingular iny o i(¢).

For the proof of a version of Theo. 5.1 and the details
out the constructions above see [23].

Remark 5.1 Note that necessary and sufficient conditions of

(Z, (), generated by restricted contact-forms, such that (10-; flaines can be obtained by puttifigintegrators in series
cal) O-flatness of system (12a) is equivalent to the existencgyith the inputs of the system (see [23]).

of (local) integral manifolds ofZ, 2).

Let X = IR™ be the state space of system (12a). Let

U = R™k € {0,...,n}. Consider the manifold

Z =X x U9 x ... xU™ with global coordinates
*) .5 e |n],j € |m], k € {0,...,n}). Con-

J

sider the fieldf = Y7 (fi(x) + X7 gi(2)ul”) 22+
PIYEND Py u§k+1)auf(k). Lety = h(z) be an output for
system (12a). Then it is easy to show thét) = L’;h(as),
ke {0,...,n} (see[22]). ‘

Now letY = IR™ with global coordinategy’, ..., y™).
Consider the jet-spacg™™(X,Y) and letI"*! be the

(zi,u

codistribution generated by the corresponding contact-forms

(the contact forms are given by (7) replaciddoy X, 27 by
27, t by n, r by n ands by m).

Now let M = U© x ... xU™Mx J7*1(X,Y) with
global coordinate$xi,u§.k),y",y§< i1 € |n],j € |m],
ke {0,...,n}, 0 € |m|, K € 5(n),|| K| <n-+1). De-
note by the pull-back off *** from 7" *1(X,Y) to M. Let
7 ={I,dI} and let

Q=daz' A Ads" AUl A AduD AL Adu AL A

6 Examples
We begin with a very simple academic example :

Example 1 Consider the system with input = (uq,us)
evolving onX = IR, given by

[ B S IC R R
I
<
fin

It is easy to verify that this system is not linearizable by
static-state feedback because the conditions of [20, 18] are
not fulfilled.

A possible solution of conditiofl4) is k* = 3, o1 = 0,

oo = 1 andos = 2. We will execute the steps of SDEA for
this choice of structure at infinity.

S0.Letoy = 0, Z = X x IR°2 x IR?* with global coordinates
(z,02,03). LetDy = span{dz',dz?, da?,daz*, dz°} and



Seth:f’gozg!MU:

Iteration 1.

(S1) Sincer; — oy = 0, we havel} = M, and.7; = {0}.
(S2) Sincer; = 0, we havef; = fo, g1 = go, 21 = ,
Uy = Uu.

(S3) Note thaf); = {w € Ty | Ly, 49,0, w € SPan{dzy}}.
Simple computations giv@, = span{wl,wl,wl} where
w; = dz' : i € | 3] Computey] = z[:fﬁglulwl fori € |37,
Obta.lnlng<.u1 = 23du! + utda®, v? = da*, w3 = da®. Note
that 7; = {0} implies that symbolical involutivity reduces
to the involutivity of2;. In particular,I'; = 4, M; = M,
andJ; = {0}.

Iteration 2.

(S1) We havery, — o = 1. HenceT2
Ly = IR x IR® with coordlnates(h1

Z and letZ, = {0}.

X x Lo where

,al :j e [2]). Let

Iy = {dh! — Z] L ogdad },
(S2) Lethy = (h'...h°2) = h! Note that
T L3 hy + (L, L ho)ua
= G+ by
where )
by = ( 04%3734—055 aé )

Hence we may take

L al 4
ﬂZ — a%at;;—o—a% a}zg+aé Qg = 52 < 02 >
0 1

Denoting bys, = <B2 ﬂg) where/, is the first column and

(3, is the second column @k, then( fa, g2) is a system with

statex; = (z,72) and inputus = (2, 4s) given by :
& = fi+gias + g1faz + g2
Vo = U

(S3) To computés, let
Qy =spanfw eIy £, ,,,,@ € Span{dx, dvy} }
Letw = Zf’zl yiwt Thenw = 2;7’:1{%-@1 + Fiwil Itis

easy to show tha, . . & € span{dz,duv,} if and only
if (320, dwf, gf3) = 0. Hence

1 1
—« —
3 3 3
T ‘ + 72 +v3=0.
ata’ +ad ata® +ad

It follows that(2; = span{w}, w3}, where

wi =dz' — 23dze, Wi = (adz® + ad)dz? + adida®
Further computations show th&l, is symbolically involu-
tive and sd’'y = 5 and that :

ZZ 3 = 0p —25dat — 2tdws

T w% = 0y + dvg

where 6, € span{dz®, dz*}
span{ dat, dz?, do3, dot, da® }

and 6, €

Iteration 3. (S1) We haves; —o, = 1. Hencels = M3 x L3
whereL, = IR x IR* with coordinategh?,a? : j € |2]).
LetZ, = {dh' — 27 | QW t.
(S2) Lethy = (h'...ho?). After tedious computations it
follows that

9 = L3 hs+ (L, L3 hs)u

= C_lg + b3u1

where

5 1 0
37\ Y(x0) AB@Pal4at)+ad )

It follows thatbs is generically nonsingular. By Theorem 4.1
it follows that the system i&flat. The flat output igy*, y?)
wheredy' € span{dz’,dz? dz*} anddy? € I'; is such
that b3 is nonsingular.

The next example shows that there exist flat systems that
are singular with respect to Def. 4.1 :

Example 2 Consider the system with input = (u1,us)
evolving onX = IR, given by

.’).3'1 — CE4
i,Q — 1‘5
3 = 3341‘5
4 _ Uy
5 Us

Note that this example corresponds to the one of [15] with
a1 = as = 1 where one has extended the state by inte-
grators in series to the inputs. There exists two solutions of
equation(14) given by : {k* = 4, 01 = 09 = 03 = 1,

o4 = 2} and{k* =3,01 = 0,090 = 1,03 = 2} After
some tedious computations one can show that the condition
of Theo. 4.1 is not satisfied by either of these structures at
infinity becauseank b,- < 2 in both cases. It is shown in
[15] that this system i§-flat (the original system ig-flat®).
Hence this example shows that there efifiat systems that
are singular with respect to Def. 4.1.

7 Conclusions

In this paper it is shown that there may exist two kind dfat
systems — th@onsingularand thesingularcases. Thaon-
singular case contains properly the class of state-feedback
linearizable systems. Henédflat systems may be classified
asstate-feedback linearizahleonsingularandsingularsys-
tems, in an ascending order of complexity.

Necessary and sufficient conditions lofflatness for the
nonsingular case are developed. For the singular case, nec-
essary and sufficient conditions kfflatness relies on a con-
venient application of Cartandbler and Cartan-Kuranishi
theorems.

%In [23] it is shown that the example of [15] is notflat.
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