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Abstract

In this paper we show that constrained robots are �at systems� Using
this structural property of this class of control systems� a technique of
simultaneous contact forces and position tracking along the constrained
surface will be developed�

� Introduction

The concept of �atness� introduced by Fliess al� ���� is strongly related
to the problem of dynamic feedback linearizability �see for instance ��	��
���
 and was shown to be useful to solve many important control problems
�see ��� for several applications and ��� for stabilization around a reference
trajectory
�

The control of constrained robots has been an active area of research�
The main problem concerning this subject is the simultaneous tracking
of contact forces and the position along the constraint surface� �see for
instance ��� ���� ����� ���� and the references therein
�

The dynamic model of constrained robots consists of a set of implicit
nonlinear equations and hence one can not apply to this class of control
systems� the standard state space techniques� For instance� in order to
tackle this problem with the so called geometric di�erential approach �see
Isidori ���� or Nijmeijer and Van der Schaft ����
� one must adapt or gen�
eralize these results to the context of implicit equations �see for instance
���
�

We shall show that the notion of �atness is also a good tool to consider
the control of constrained robots� We will adopt the approach of Fliess
et al� �	�� ���� that can be directly applied to implicit and generalized
systems� The resulting control technique is closely related to the one of
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the section � of ���� Our main contribution is to point out that this
technique is indeed a direct consequence of the fact that the constrained
robot is �at�

The paper is organized as follows� In section  we present a very brief
exposition about Di�eties and Di�erential Flatness ���� ���� In the section
� we present a particular class of constrained systems� that are obtained
from a �at system by adding some constraints on its �at output and we
show that these constrained systems are �at� indeed� In the section � we
show that the problem of simultaneous tracking of position and contact
forces of a constrained robot can be considered using the ideas of section
�� Finally� in section � we will apply this method to an academic example�

� Di�eties and di�erential �atness

In this section we will consider the concept of di�erential �atness given
in ���� that is based in the di�erential geometry of in�nite jets ����� �����
It is not our aim here to give a complete and precise presentation of this
subject and so we will restrict ourselves to the basic ideas� The �rst
paragraphs of this sections are based in ����

Let I be a countable set� �nite or in�nite with cardinal l� Denote by
IRl the set of mappings x � I �� IR� For each i � I we can associate the
coordinate function xi � IR

l �� IR such that xi�x
 � x�i
� Consider the set
IRl with the Fr�echet topology ����� i�e�� the usual topology of IRl when l is
�nite and the projective limit of the usual topology when l is in�nite� For
any open subset O� write C��O
 the set of functions that depend only
on a �nite number of variables among the xi and are C��

The concept of in�nite dimensional Fr�echet C� manifolds may be
de�ned in this context by a topological space M that is equipped with a
C� atlas consisting on IRl valued charts ����� The notion of C� functions�
�elds and forms on an open subset of M are de�ned similarly as in the
�nite dimensional case� If fxiji � Ig are local coordinates� we recall that a
vector �eld f on M has in general an in�nite expression f �

P
i�I

�i �
�xi

�

whereas one�forms have always �nite expressions like
P

finite
�idxi�

The notion of �local
 C� maps �or morphisms
 between in�nite di�
mensional Fr�echet C� manifolds is now obvious� as well as the notion of
�local
 di�eomorphisms �or isomorphisms
� A �local
 submersion �resp�
immersion
 is a C� map such that there exist coordinates where its local
expression is a canonical projection �resp� injection
� �

A di�ety is a C� Fr�echet manifold equipped with involutive distrib�
ution � of �nite dimension �� called the Cartan dimension� Any �local

section f of � is called a �local
 Cartan �eld� A di�ety is called ordinary
if � � �� otherwise the di�ety is said to be partial� In this work we restrict
our attention to the ordinary case�

A Lie�Backl�und map � � �M �� M between two di�eties � �M� ��
 and
�M��
 is a C� map such that �� ��

��
x
� �j��x�� where �� � Tx �M ��

Tf�x�M is the tangent mapping�

�The implicit function theorem do not hold true for in�nite dimensional Fr�echet manifolds

As a consequence� the usual local� characterization of submersions and immersions via the
classi�cation of tangent map is no longer valid
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Intrinsic de�nitions of systems� their state variables representation and
di�erential �atness are given in ���� �	�� ���� It is not our aim here to give
a complete exposition of these concepts� but only to present the main
ideas� The reader may refer to ���� ���� �	� for a more elegant and intrinsic
presentation�

A system �M�f
 is an ordinary di�ety M equipped with a privileged
Cartan �eld f called the total derivation and a privileged function t � M ��
IR called time such that f�t
 � hdt� fi � �� Given a system �M�f
� and
a function � � M �� IR we will denote the �Lie
 derivatives Lk

f ��
 � ��k��
corresponding to the k�fold derivatives of the function with respect to
time�

A Lie�B�acklund morphism �resp� immersion� submersion
 between two
systems � �M� �f
 and �M�f
 is a Lie B�acklund morphism �resp� immersion�
submersion
 � � �M ��M such that the Cartan �elds �f and f are ��related�
i�e�� �� �f � f � ��

A local state variables representation for a system �M�f
 is a set of co�

ordinate functions forM of the form
n
t� xi� u

�k�
j ji � f�� � � � � ng� j � f�� � � � �mg� k � IN

o
in C��O
� where O is an open region of M � In other words the Cartan
�eld f is locally given by� �

f �
�

�t
�

nX
i��

fi
�

�xi
�
X
k�IN

mX
j��

u
�k���
j

�

�u
�k�
j

The set �x�� � � � � xn
 is the state and �u�� � � � � um
 is the input of the state
variables representation�

A system �M�f
 is said to be locally di�erentially �at� if there exists
a set of functions fy�� � � � � ymg in C��O
� where O is an open region of

M � called �at outputs� such that the set
n
t� y

�k�
j jj � f�� � � � �mg� k � IN

o
is a set of local coordinate functions for M � In other words� the Cartan
�eld f is locally given by

f �
�

�t
�
X
k�IN

mX
j��

y
�k���
j

�

�y
�k�
j

Example ����� Consider the di�erential equations�

�q � R�q� �q
 � S�q
	 � T �q

 ���


where T �q
 is a square nonsingular matrix of smooth functions for all
q � IRn�

De�ne a system consisting in the di�ety of global coordinates fq� q���� �	�i�� 
 �i� �
i � IN
g and the Cartan �eld

f � �
�t

� q��� �
�q

� �R� S	 � T
 � �

�q���
�

�
P

k�IN
�	�k��� �

���k�
� 
 �k��� �

���k�
�

�Note that the functions fi may depend on x� u� � � � � u���� corresponding to a �generalized�
state variables representation


�For simplicity� we do not distinguish here the notions of topological orbital� and di�er	
ential �atness ���� ���


�We will see in the section � equation �
��� that di�erential equations of this form may
be useful in Robotics
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corresponding to a state representation of the system� with input �	� 

�
and state �q� q���
� Note that this system is �at and �	� q
 is a possi�
ble choice of a �at output� In fact� the regular static�state feedback
v � R � S	 � T
 � w � 
 corresponds to a new coordinate system
fq� q���� �v�i�� w�i� � i � IN
g for which the Cartan �eld is given by

f � �
�t

� q��� �
�q

� v �

�q���
�P

k�IN
�w�k��� �

�w�k� � v�k��� �

�v�k�
�

�

� On a class of constrained systems

Let �M�f
 be a �at system with �at output y � �y�� � � � � ym
� Consider the
submanifold �M obtained fromM by adding r constraints �i�y�� � � � � ym
 �
� �i � �� � � � r
 to the system M � Assume that the Jacobian matrix
J� � ��

�y
of the map � � ���� � � � � �r


T is of full row rank r for all y

in the open domain of �� We shall show that the �restriction� �f of the
Cartan �eld f to the submanifold �M is a Cartan �eld for �M � Furthermore�
the system � �M� �f
 is a �at system with �at output ��yr��� � � � � �ym
� where
�yi denotes the �restriction� of the function yi to �M � and the canonical
insertion of �M in M is a Lie�B�acklund immersion� In particular� since
the �implicit
 system � �M� �f
 is �at� this system is well posed as a control
system� So there exists no singularities that could appear in the context
of implicit systems and one can parametrize all the solutions by the choice
of the �at outputs as smooth functions of time�

For what follows in this section� note that the set of smooth functionsn
t� �y�j�i � i � f�� � � � � rg� j � IN
�

�y�j�k � k � fr � �� � � � �mg� j � IN

o

denoted by
�
t� Y �� Y �

�
is a local coordinate system for M and in this

coordinates we have

f �
�

�t
�
X
j�IN

�
rX

i��

y
�j���
i

�

�y
�j�
i

�

mX
k�r��

y
�j���
k

�

�y
�j�
k

�

We begin by considering a more particular situation �

Proposition ����� Let �M � M be the submanifold of M de�ned by the
set of points of M such that y�j�� � � � � � y

�j�
r � � for all j � IN � Consider

the canonical insertion mapping i � �M �� M � Then the restriction �f of f
to �M is a Cartan �eld for �M � the system � �M� �f
 is �at with �at output
��yr��� � � � � �ym
� where �yi denotes the restriction of yi to �M � Furthermore�
i � �M ��M is a Lie�B�acklund immersion�

Proof� Note �rst that the set
�
t� �Y �

�
is a local coordinate chart for �M �

where �Y � denotes the restriction of the set of functions Y � �
n
y
�j�
k � k � fr � �� � � � �mg� j � IN

o

�



to �M �by simplicity� the restriction of the function t to �M is also denoted
by t
�

Note that the restrictions of the functions de�ned on M to �M are ob�
tained by �y

�j�
k � y

�j�
k � i� By de�nition it is clear that in these coordinates�

i�t� �Y �
 � �t� �� �Y �
 and i�
�
�t

� �
�t
� i�

�

�	y
�j�
i

� �

�y
�j�
i

� i for �y
�j�
i � �Y �� In

particular the linear mapping i��q
 � Tq �M �� Ti�q�M is injective� So the
equation

i� �f � f � i

de�nes a unique �eld �f on �N given by

�f �
�

�t
�
X
j�IN

mX
k�r��

�y�j���k

�

��y
�j�
k

and the proposition is proved� Note that we can call �f by the �restriction�
of f to M by using the usual identi�cation Tq �M �� i��Tq �M
 � Ti�q�M �

i�e�� Tq �M can be canonically identi�ed with a subspace of Ti�q�M � �

Now return to the situation where that the constraints added toM are
of the form �i�y�� � � � � ym
� i � f�� � � � � rg where � � ���� � � � � �r
 is such
that ��

��y������ym� has rank r�

Corollary ����� Let �M �M be the submanifold of M de�ned by the set
of points p of M such that ��j�� �p
 � � � � � �

�j�
r �p
 � � for all j � IN �

Then the restriction �f of f to �M is a Cartan �eld for �M � the system
� �M� �f
 is �locally� �at and the canonical insertion map i � �M �� M is a
Lie�B�acklund immersion�

Furthermore� if we choose a set of functions f��� � � � � �m�rg in a way

that the Jacobian matrix J

�
�

�

�
�

�
J�

J�

�
is locally nonsingular�

then the restrictions f ���� � � � � ��m�rg of the functions f��� � � � � �m�rg to
�M form a �local� �at output for the system � �M� �f
�

Proof�By the inverse function theorem� it is clear that the map �y�� � � � � yr� yr��� � � � � ym
 ��
���� � � � � �r� ��� � � � � �m�r
 is a local di�eomorphism� In particular� we see
that ���� � � � � �r� ��� � � � � �m�r
 is also a �local
 �at output for the system
�M�f
� Hence the proposition ���� can be applied� showing the desired
result� �

The following result is a generalization of the canonical form ��
 and
��
 of ���� at least whwn the �zero dynamics� is not present �

Corollary ����� Consider the analytic system

�x � f�x
 � g�x
u
y� � h��x

y� � h��x


���


with input u � �u�� � � � � um
� state x � �x�� � � � � xn
 and output y �
�y�� y�
� where y� � �y�� � � � yk
 and y

� � �yk��� � � � � yp
� Consider that we
add to the system the constraint

y
� � � ����


�



Let f��� � � � � �ng the algebraic structure at in�nity 	
� of the nonconstrained
system ���
 with input u� state x and output y� Assume that the sys�
tem is right invertible �i�e�� the rank of this system is �n � p� and thatPn

i�
 �i � �n� �
p� Then the constrained system ���
�����
 is �at� with
�at output y��

Proof� Using the extension algorithm of ��� one veri�es easily that y is a
�at output for the nonconstrained system ��� The result follows from the
proposition ����� �

� Control of Constrained Robots

In this section we study the control of constrained robots� We restrict our�
selves to the case of rigid robots� although it is not di�cult to adapt these
techniques to more complex models� taking into account elastic joints
and or actuator dynamics�

It is well known that rigid robots can be modeled by equations of the
form

M�q
�q �H�q� �q
 � 
 ����


where q � �q�� � � � � qn
T is the vector of generalized displacements� M�q

is the inertia matrix� which is symmetric and de�nite positive� H�q� �q

represents the Coriolis� centripetal and gravity forces� and 
 the vector of
generalized forces applied to each joint�

Constrained robots are robots for which their displacements are re�
stricted by some physical contact surface� This is equivalent to add r

holonomic constraints �i�q
 � � �i � �� � � � � r
 to its original equations�
The following model can be obtained� by taking into account the contact
forces ����� ��� �

M�q
�q �H�q� �q
 � u ����a


u � �J�
T �q
	� 
 ����b


�i�q
 � � �i � �� � � � � r
 ����c


where J��q
 � ��

�q
� 	 � �	�� � � � � 	r


T is a vector of multipliers that para�

metrizes the e�ect of contact forces� We will assume that ��

�q� �����qr
has

rank r for all q in the operation region of the robot�
Now consider the system

M�q
�q �H�q� �q
 � u

u � �J�
T �q
	� 

����


obtained from the system ����a
�����b
 by disregarding the constraints
����c
� For this �nonconstrained
 system ����
� with state �q� �q
 and in�
put �	� 

 it is easy to verify �see example ����
 this system is �at and
�	� q
 is a �at output for this system� Now choose a set of functions

� � ���� � � � � �n�r
 in a way that the Jacobian matrix

�
J�

J�

�
is non�

singular� It is now clear that �	� ���
 is also a �at output for the non�
contrained system ����
� In particular� the corollary ����� may be applied

�



and one concludes that � � �	� ��� � � � � �n�r
 is a local �at output for the
constrained robot ����a
�����b
�����c
 �by simplicity we do not distinguish
� from �� in the notation of this section
� Hence� one can �x a reference
trajectory �ref�t
 and construct a control law in order to track �ref �t

asymptotically�

It is convenient to re�write the nonconstrained robot equations consid�
ering the new �at output �	� ���
� For this note that �� � �J�
 �q and so
�� � �J�
�q�F �q� �q
� where F �q� �q
 is a vector with r components given by

Fj � �qTHj �q and Hj �
���j �q�

�q��q
is the Hessian matrix of �j� j � f�� � � � rg�

Analogously� �� � �J�
 �q and �� � �J�
�q �G�q� �q
� Hence

�� � A�q
	�B�q
��H�q� �q
 � 

 � F �q� �q

�� � C�q
��H�q� �q
 � �J�
T	� 

 �G�q� �q


���	


where A�q
 � �J�
M���J�
T � B�q
 � �J�
M�� and C�q
 � �J�
M���
Let �

v�

v�

�
�

�
F �q� �q

G�q� �q


�
�

�

�
J�

J�

�
M���q


�
�H�q� �q
 �

�

�


�

�	 ����


It follows that
�� � A�q
	� v�
�� � C�q
�J�
T 	� v�

����


Now note that� adding the constraint ��q
 � � to the equations ���	

implies that �� � �� In other words� one obtains �

	 � �A���q
v�

Note that the matrix A�q
 � �J�
M���J�
T is invertible because M�q

is symmetric and positive de�nite and J��q
 is full row rank� So the
dynamics of the constrained robot is given by

� � � �����a


	 � �A���q
v� �����b


�� � �C�q
�J�
TA���q
v� � v� �����c


By the implicit function theorem� the solution of the equation �����a
 is
locally given by q � ���
 for a convenient smooth map �� Hence� the
equation �����c
 for q � ���
 is a �nonconstrained
 state representation
of the dynamics of the constrained robot� with state ��� ��
 and input
�v�� v�
� In particular the equation ����
 with q � ���
 de�nes a regular
state feedback for the constrained robot�

Now let �ref�t
 � �	ref �t
� �ref 
 be a reference trajectory of the con�
strained system�

Let e�t
 � �ref � �� Then� letting

v� � �A�q
	ref �����a


v� � �C�q
�J�
T	ref � ��ref � �����b


� !�� ��ref � ��
 � !���ref � �
 �����c


�



where !� and !� are symmetric and de�nite positive matrices� Then it
follows that the variables ��t
 � �	�t
� ��t

 will converge asymptotically
to the reference trajectory� In fact �

	�t
� 	ref � �
�e�t
 � !� �e�t
 � !�e�t
 � �

Remark� When the model of the robot or the real shape of the
constraint surface are not precisely known� such a method may produce
bad results� Note that small errors in the constraint map � may produce
big deviations in the expected value of J�� The choice of the functions �
should be made in a way to have� locally� a nonsingular Jacobian matrix�

J�

J�

�
� In many cases one may choose more than one local �at output

��� and switch the corresponding control law according the operation
region�

� Example

In this section we will apply the technique of the last section to an acad�
emic example�

A
A
A

�
�
�

B
B
B
BBPPPP
pppppppppppppp

e

u

u
��

��

��

pppppppppppppppppppp

Figure �� Two link robot arm�

Consider the equations of the two link robot arm of �gure � ���� �
The constraint surface is represented by the horizontal dashed line� The
two dark disks represents unit masses and we can apply control torques
to each degree of freedom corresponding to � and �� The contact force
is represented by the vector 	 and the two arm lenghts are equal to one
meter� The corresponding model of the nonconstrained robot is giving by
�

d
dt

�

�

�
�

�
�

�M���



C�� �
 �K�


� ��

�

�
�

M���


�



����


where  � ��� �
 is the vector of angular displacements� 
 � �
�� 
�
 is
the vector of torques and

M�
 �

�
� �  cos � � � cos �
� � cos� �

�

	



C�� �
 �

�
� ��� �� � ��
 sin �

��� sin �

�

K�
 �

�
g sin � � g sin�� � �


g sin�� � �


�
and g is the gravity constant� Consider constraint function

� � ��
 � cos � � cos�� � �
� L �����


corresponding to restrict the trajectory of the end of the second arm to
the dashed straight line of �gure �� Note that L is the vertical distance of
the dashed line from the �rst joint from the top to the bottom of �gure
�� The corresponding constrained robot equations are �

d

dt

�

�

�
�

�
�

�M���



C�� �
 �K�


� ��

� �J�
T 	�

�
�

M���


�

 �����


� � ��
 � cos � � cos�� � �
� L �����


where J� �
�
� sin � � sin�� � �
 � sin�� � �



and 	 is the con�

tact force between the robot and the constraint surface� We can choose
� � sin��
 � sin�� � �
� corresponding to the position along the con�
straint of the system� Note that the coordinates ������L
 corresponds
to cartesian coordinates �x� y
 for the �gure �� A control system using the
previous development was constructed and some computer simulations are
now presented� For all the plotted curves� the x�axis represents time in
seconds�
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Figure �� Reference position �ref �t
�continuous line and trackink error
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