Constrained Robots are Flat
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Abstract

In this paper we show that constrained robots are flat systems. Using
this structural property of this class of control systems, a technique of
simultaneous contact forces and position tracking along the constrained
surface will be developed.

1 Introduction

The concept of flatness, introduced by Fliess al. [6], is strongly related
to the problem of dynamic feedback linearizability (see for instance [17],
[1]) and was shown to be useful to solve many important control problems
(see [9] for several applications and [8] for stabilization around a reference
trajectory).

The control of constrained robots has been an active area of research.
The main problem concerning this subject is the simultaneous tracking
of contact forces and the position along the constraint surface. (see for
instance [2], [3], [13], [15] and the references therein).

The dynamic model of constrained robots consists of a set of implicit
nonlinear equations and hence one can not apply to this class of control
systems, the standard state space techniques. For instance, in order to
tackle this problem with the so called geometric differential approach (see
Isidori [11] or Nijmeijer and Van der Schaft [16]), one must adapt or gen-
eralize these results to the context of implicit equations (see for instance
[12]).

We shall show that the notion of flatness is also a good tool to consider
the control of constrained robots. We will adopt the approach of Fliess
et al. [7], [8], that can be directly applied to implicit and generalized
systems. The resulting control technique is closely related to the one of
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the section 3 of [12]. Our main contribution is to point out that this
technique is indeed a direct consequence of the fact that the constrained
robot is flat.

The paper is organized as follows. In section 2 we present a very brief
exposition about Diffieties and Differential Flatness [8], [9]. In the section
3 we present a particular class of constrained systems, that are obtained
from a flat system by adding some constraints on its flat output and we
show that these constrained systems are flat, indeed. In the section 4 we
show that the problem of simultaneous tracking of position and contact
forces of a constrained robot can be considered using the ideas of section
3. Finally, in section 5 we will apply this method to an academic example.

2 Diffieties and differential flatness

In this section we will consider the concept of differential flatness given
in [8], that is based in the differential geometry of infinite jets [18], [19].
It is not our aim here to give a complete and precise presentation of this
subject and so we will restrict ourselves to the basic ideas. The first
paragraphs of this sections are based in [5].

Let I be a countable set, finite or infinite with cardinal {. Denote by
IR! the set of mappings « : I — IR. For each i € I we can associate the
coordinate function w; : IR’ — IR such that z:i(¢) = #(2). Consider the set
IR with the Fréchet topology [19], i.e., the usual topology of IR' when 1is
finite and the projective limit of the usual topology when [ is infinite. For
any open subset O, write C°°(0O) the set of functions that depend only
on a finite number of variables among the z; and are C'*°.

The concept of infinite dimensional Fréchet C'°° manifolds may be
defined in this context by a topological space M that is equipped with a
C* atlas consisting on IR’ valued charts [19]. The notion of C*° functions,
fields and forms on an open subset of M are defined similarly as in the
finite dimensional case. If {;|1 € I} are local coordinates, we recall that a

vector field f on M has in general an infinite expression f = Zie] ¢t ai,’

whereas one-forms have always finite expressions like Zﬁmte widx;.

The notion of (local) C*° maps (or morphisms) between infinite di-
mensional Fréchet C'°° manifolds is now obvious, as well as the notion of
(local) diffeomorphisms (or isomorphisms). A (local) submersion (resp.
immersion) is a C*° map such that there exist coordinates where its local
expression is a canonical projection (resp. injection)l.

A diffiety is a C°° Fréchet manifold equipped with involutive distrib-
ution A of finite dimension &, called the Cartan dimension. Any (local)
section f of A is called a (local) Cartan field. A diffiety is called ordinary
if 6 = 1, otherwise the diffiety is said to be partial. In this work we restrict
our attention to the ordinary case.

A Lie-Backliind map ¢ : M — M between two diffieties (M,A) and
(M,A) is a C°° map such that (;595A|m C A|¢( where ¢, : ToM +—
Ty(»yM is the tangent mapping.

z)’

1The implicit function theorem do not hold true for infinite dimensional Fréchet manifolds.
As a consequence, the usual (local) characterization of submersions and immersions via the
classification of tangent map is no longer valid



Intrinsic definitions of systems, their state variables representation and
differential flatness are given in [5], [7], [8]. It is not our aim here to give
a complete exposition of these concepts, but only to present the main
ideas. The reader may refer to [5], [8], [7] for a more elegant and intrinsic
presentation.

A system (M, f) is an ordinary diffiety M equipped with a privileged
Cartan field f called the total derivationand a privileged function ¢t : M —
IR called time such that f(t) = (dt, f) = 1. Given a system (M, f), and
a function ¢ : M — IR we will denote the (Lie) derivatives L?((b) = ¢F)
corresponding to the k-fold derivatives of the function with respect to
time.

A Lie-Bdcklund morphism (resp. immersion, submersion) between two
systems (M f) and (M, f) is a Lie Bicklund morphism (resp. immersion,
submerswn) ¥ : M — M such that the Cartan fields f and f are i-related,

e, Yuf = for.

A local state variables representation for a system (M, f) is a set of co-
ordinate functions for M of the form {t, z;, ugk)|z e{l,...,n},7€{1,...,m}k € ﬂV}

in C*°(0), where O is an open region of M. In other words the Cartan
field f is locally given by?

I WM WAL

kEeIN j=1

The set (z1,..., %) is the state and (u1,..., %m) is the input of the state
variables representation.

A system (M, f) is said to be locally differentially flat? if there exists
a set of functions {y1,...,ym} in C°°(O), where O is an open region of

M, called flat outputs, such that the set {t Y; )|] e{l,....mh ke N

is a set of local coordinate functions for M. In other words, the Cartan
field f is locally given by

+ > Z (k+1)a 2

kEeIN j=1
Example 2.0-1 Consider the differential equations®
§=R(q,q) +S(@Or+T(g)r (2.1)

where T'(¢) is a square nonsingular matrix of smooth functions for all
q € IR".

Define a system consisting in the diffiety of global coordinates {q, q(l), ()\(i), 0
i € IN)} and the Cartan field

f= %+q(1)i+[R+SA+TT]%+
+Zk€ﬂ\7[ k+1) y + (kD) (k)]

2Note that the functions f; may dependon z,u, ..., u(a), corresponding to a “generalized”
state variables representation.

3For simplicity, we do not distinguish here the notions of topological (orbital) and differ-
ential flatness [7], [5].

We will see in the section 4 (equation (4.6)) that differential equations of this form may
be useful in Robotics.




corresponding to a state representation of the system, with input (X, 7),
and state (g, q(l)). Note that this system is flat and (},¢) is a possi-
ble choice of a flat output. In fact, the regular static-state feedback
v = R4+ SA\+T7, w = 7 corresponds to a new coordinate system

{q, ¢, (v(i), w' o de IN)} for which the Cartan field is given by

= E?tk'i'lq(l) : +UE}1 (i)+
Zkeﬂv(+) _|_(+) (k)]

3 On a class of constrained systems

Let (M, f) be a flat system with flat output y = (91, ..., ym). Consider the
submanifold M obtained from M by adding r constraints ¢;(y1,...,ym) =
0 (: =1,...r) to the system M. Assume that the Jacobian matrix
Jo = % of the map ¢ = (¢1,...,6,)7 is of full row rank r for all y
in the open domain of ¢. We shall show that the “restriction” f~ of the
Cartan field f to the submanifold M is a Cartan field for 3. Furthermore,
the system (M, f~) is a flat system with flat output (§r41,...,9m), where
g; denotes the “restriction” of the function y; to M, and the canonical
insertion of M in M is a Lie-Backlund immersion. In particular, since
the (implicit) system (M, f~) is flat, this system is well posed as a control
system. So there exists no singularities that could appear in the context
of implicit systems and one can parametrize all the solutions by the choice
of the flat outputs as smooth functions of time.

For what follows in this section, note that the set of smooth functions

t,(y? ie{1,... 1}, 5 € N),
(v ke {r+1,.. m}jeN)}

denoted by {t,Yl,Y2} is a local coordinate system for M and in this
coordinates we have

+Z{Zy(m) FRO] T Z v m}

JEIN k=r41
We begin by considering a more particular situation :

Proposition 3.0-2 Let M C M be the submanifold of M defined by the
set of points of M such that yg]) =...= y(r]) =0 forally € IN. Consider
the canonical insertion mapping 1 : M — M. Then the restriction f~ of f
to M is a Cartan field for M, the system (M,f) is flat with flat output
(Gr41,---,9m), where §; denotes the restriction of y; to M. Furthermore,
i: M — M is a Lie-Backlund immersion.

Proof. Note first that the set {t, 372} is a local coordinate chart for M,
where V2 denotes the restriction of the set of functions Y? = {ygﬂj) cke{r+1,...,m},j€ ﬂV}



to M (by simplicity, the restriction of the function ¢ to M is also denoted
by t).

Note that the restrictions of the functions defined on M to M are ob-
tained by g};]) = y;]) ot. By definition it is clear that in these coordinates,
X2y 2 .9 _ 8 - a8 _ _a . ~(5) 2
i(t,Y*) = (£,0,Y7) and ixg; = 3, G = 5,0 oifor §7) € Y. In
particular the linear mapping 2.(q) : TqM — Ti(qM is injective. So the
equation

f=fo1
defines a unique field f~ on N given by

i_ 9 ST
T=g5i+2 2 0 Prey
k

JEIN E=r+1

and the proposition is proved. Note that we can call f~ by the “restriction”
of f to M by using the usual identification Ty M =2 i.(T,M) C Ty qM,
t.e., TqM can be canonically identified with a subspace of Ty M. a

Now return to the situation where that the constraints added to M are
of the form ¢i(y1,...,ym),t € {1,...,r} where ¢ = (¢1,...,¢r) is such
that =——22—— has rank r.

Y1, ¥m)
Corollary 3.0-3 Let M C M be the submanifold of M defined by the set
of points p of M such that (;5(1])(13) =...= (;S(TJ)(p) =0 forallyj € IN.

Then the restriction [ of f to M is a Cartan field for M, the system
(M, f) is (locally) flat and the canonical insertion map 1 : M — M is a
Lie-Bdcklund immersion.

Furthermore, if we choose a set of functions {¢1,..., ¥m—r} in a way
that the Jacobian matrix J( 3) ) = ( jz ) 18 locally nonsingular,

then the restrictions {1/31, e z/;m_r} of the functions {¢1,...,¢m—r} to
M form a (local) flat output for the system (M, f).

Proof. By the inverse function theorem, it is clear that the map (y1,..., ¥, Yrt1,-- -, ¥m) —
(¢1,-.-,Ir,¥1,...,Ym—r) is alocal diffeomorphism. In particular, we see
that (¢1,...,¢r,¥1,...,¥m—_yr) is also a (local) flat output for the system
(M, f). Hence the proposition 3.0-2 can be applied, showing the desired
result. a

The following result is a generalization of the canonical form (23) and
(26) of [12], at least whwn the “zero dynamics” is not present :

Corollary 3.0-4 Consider the analytic system

& = flz)+g(z)u
yo= h(e) (3.2)
v = k(o)
with input v = (u1,...,um), state & = (z1,...,2n) and output y =
(y',9%), where y* = (y1,...yx) and y* = (yr41,-..,Yp). Consider that we
add to the system the constraint
¥y =0 (3.3)



Let{o1,...,0n} the algebraic structure at infinity [4] of the nonconstrained
system (3.2) with input u, state v and output y. Assume that the sys-
tem is right invertible (i.c., the rank of this system is 6, = p) and that
Z:‘;o o; = (n+ 1)p. Then the constrained system (3.2)-(3.3) is flat, with
flat output y*.

Proof. Using the extension algorithm of [4] one verifies easily that y is a
flat output for the nonconstrained system 3.2. The result follows from the
proposition 3.0-2. a

4  Control of Constrained Robots

In this section we study the control of constrained robots. We restrict our-
selves to the case of rigid robots, although it is not difficult to adapt these
techniques to more complex models, taking into account elastic joints
and/or actuator dynamics.

It 1s well known that rigid robots can be modeled by equations of the
form

M(q)i+H(q, 4)=r (4.4)
where ¢ = (q1,...,¢n)7 is the vector of generalized displacements, M (gq)
is the inertia matrix, which is symmetric and definite positive, H(q,q)
represents the Coriolis, centripetal and gravity forces, and T the vector of
generalized forces applied to each joint.

Constrained robots are robots for which their displacements are re-
stricted by some physical contact surface. This is equivalent to add r
holonomic constraints ¢;(¢) =0 (¢ =1,...,r) to its original equations.
The following model can be obtained, by taking into account the contact
forces [14], [12] :

M(g)i+H(q,d) = w (4.5a)

v = (IO @A +7 (4.5b)

di(q) = 0 (=1,...,7) (4.5¢)

where J¢(q) = g—‘g, A= (A1,..., X)) is a vector of multipliers that para-
metrizes the effect of contact forces. We will assume that ﬁ has

rank r for all ¢ in the operation region of the robot.
Now consider the system

M(g)i+ H(g,¢) = w

u o= (6 (A4 (*6)

obtained from the system (4.5a)-(4.5b) by disregarding the constraints
(4.5¢). For this (nonconstrained) system (4.6), with state (g, ¢) and in-
put (A, 7) it is easy to verify (see example 2.0-1) this system is flat and
(A, ¢) is a flat output for this system. Now choose a set of functions
J¢
T
singular. It is now clear that (X, ¢, %) is also a flat output for the non-
contrained system (4.6). In particular, the corollary 3.0-3 may be applied

¥ = (¥1,...,¥n—r) in a way that the Jacobian matrix is non-



and one concludes that ¢ = (X, %1,...,%n—r) is a local flat output for the
constrained robot (4.5a)-(4.5b)-(4.5¢) (by simplicity we do not distinguish
¥ from z/; in the notation of this section). Hence, one can fix a reference
trajectory (ref(t) and construct a control law in order to track (rey(t)
asymptotically.

It is convenient to re-write the nonconstrained robot equations consid-
ering the new flat output (A, ¢,4). For this note that b = (J¢)q¢ and so

¢ =(Jp)G+ F(q,q), where F(q, ¢) is a vector with r components given by

_ .7 . _ 82¢j(q) . . . .
Fj = ¢ H;q and H; = -5~ is the Hessian matrix of ¢;, j € {1,...r7}.

Analogously, ¥ = (J¢)q and ¥ = (J¢¥)§ + G(q, q). Hence

6 = AW@A+B(@)(—H(g,d)+ 1)+ F(g,4)
¥ C()(—H (g, )+ (J)" A+ 1)+ Glg,9)

where A(q) = (JO)M(J§)T, B(q) = (J6)M~" and C(q) = (J)M ™.
Let

(4.7)

76 - (4.8)
+(J¢ M*m)—m%®+(m)]
It follows that . @
¢ = AlQr+n
b= C@)6) A+, ()

Now note that, adding the constraint ¢(g) = 0 to the equations (4.7)
implies that ¢ = 0. In other words, one obtains :

A=_A"1 (g)vs

Note that the matrix A(q) = (J¢)M ~*(J¢)T is invertible because M (q)
is symmetric and positive definite and J¢(g) is full row rank. So the
dynamics of the constrained robot is given by

¢ = 0 (4.10a)
A = —A'(¢n (4.10b)
o= =) (J) AT (g + v (4.10¢)

By the implicit function theorem, the solution of the equation (4.10a) is
locally given by ¢ = 5(¢) for a convenient smooth map 5. Hence, the
equation (4.10c) for ¢ = n(9) is a (nonconstrained) state representation
of the dynamics of the constrained robot, with state (z/J,z/J) and input
(v1,v2). In particular the equation (4.8) with ¢ = n(¢) defines a regular
state feedback for the constrained robot.

Now let (ref(t) = (Ares(t), ¥reyp) be a reference trajectory of the con-
strained system.

Let e(t) = ¢res — ¥. Then, letting

v1 = —A(g)Arey (4.11a)
vy = —C(@)(JE) Ares + tres + (4.11b)
+ Aa(dres = P) + Ao(Wres — 1) (4.11c)



where A; and Ay are symmetric and definite positive matrices. Then it
follows that the variables {(¢) = (A(t), ¥(t)) will converge asymptotically
to the reference trajectory. In fact :

)\(t) — )\ref = 0
E(t) + Aré(t) + Ase(t) = 0

Remark. When the model of the robot or the real shape of the
constraint surface are not precisely known, such a method may produce
bad results. Note that small errors in the constraint map ¢ may produce
big deviations in the expected value of J¢. The choice of the functions ¥
should be made in a way to have, locally, a nonsingular Jacobian matrix

J¢

T

“»” and switch the corresponding control law according the operation

. In many cases one may choose more than one local flat output

region.

5 Example

In this section we will apply the technique of the last section to an acad-
emic example.

Figure 1: Two link robot arm.

Consider the equations of the two link robot arm of figure 1 [10] .
The constraint surface is represented by the horizontal dashed line. The
two dark disks represents unit masses and we can apply control torques
to each degree of freedom corresponding to 61 and #>. The contact force
is represented by the vector A and the two arm lenghts are equal to one
meter. The corresponding model of the nonconstrained robot is giving by

(0 _ 0
@ ( 6 ) —MO‘1(9) [C(6,6) + K(6)] )+ (5.12)
+ M~1(9) ) T

where § = (81, 62) is the vector of angular displacements, ™ = (71, 72) is
the vector of torques and

_ 34+2cosfy 14 cosbs
M(H)_< 1+ cosfs 1 )



. —é2(26.1 —|— 62) SiIl 62
Cc(4,0)= .
( ’ ) ( 9% sin 82

ey 2gsin gy + gsin(61 + 62)
K (9)_ ( gsin(91 +92)

and g is the gravity constant. Consider constraint function
0=¢(f) =cosby +cos(f1+62)— L (5.13)

corresponding to restrict the trajectory of the end of the second arm to
the dashed straight line of figure 1. Note that L is the vertical distance of
the dashed line from the first joint from the top to the bottom of figure
1. The corresponding constrained robot equations are :

d {6 _ é
dt \ 6 - —M7(8) [C(8,8) + K ()] +
T 0
+ (Jo) A+ ( M=1(8) )r (5.14)
0=¢(f) = cosfy+cos(b1+62)—1L (5.15)

where J¢ = ( —sinfy —sin(f; + 62) —sin(f; + 62) ) and X\ is the con-
tact force between the robot and the constraint surface. We can choose
¢ = sin(61) + sin(61 + 62 ), corresponding to the position along the con-
straint of the system. Note that the coordinates (¢, —¢ + L) corresponds
to cartesian coordinates (z, y) for the figure 1. A control system using the
previous development was constructed and some computer simulations are
now presented. For all the plotted curves, the x-axis represents time in
seconds.
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Figure 2: Reference position ,.;(t) Figure 4: Control torques 74 and 7 in
(continuous line) and trackink error N x m.
e(t) (dashed line) in meters.

Figure 5: Contact force A(?) in N.

Figure 3: Angular positions #; (con-
tinuous line) and f2 (dashed line) in

radians.
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