
ON FLATNESS OF NONLINEAR IMPLICIT SYSTEMS

Paulo Sergio Pereira da Silva∗, Simone Batista†

∗Escola Politécnica da USP
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Abstract— This work considers a semi-implicit system ∆, that is, a pair (S, y), where S is a explicit system
described by a state representation ẋ(t) = f(t, x(t), u(t)), where x(t) ∈ Rn and u(t) ∈ Rm, which is subject to a
set of algebraic constraints y(t) = h(t, x(t), u(t)) = 0, where y(t) ∈ Rl. An input candidate is a set of functions
v = (v1, . . . , vs), which may depend on time t, on x, and on u and its derivatives up to a finite order. Forgetting
some technical assumptions, one says that this input is proper, if there exists some state z such that the implicit
system admits a proper state representation ż = g(t, z, v). Given an implicit system and an input candidate v,
the problem studied in this paper is the question of verifying if v is proper input and if the corresponding state
representation is linearizable by regular static-state feedback (considering the state z and the input v). Under
some mild assumptions, the main result of this work shows necessary and sufficient conditions for the solution
of this problem. These solvability conditions may be computed without the knowledge of z, and they rely on
an integrability test that regards the explicit system S. The approach of this paper is the infinite-dimensional
differential geometric setting of (Fliess et al., 1999).

Keywords— Nonlinear systems, flatness, exact linearization, state representations, implicit systems, realiza-
tion theory, DAE’s, differential geometric approach, diffieties

1 Introduction

The problem that is considered in this paper is de-
fined in this section. The statement of this prob-
lem is a little bit imprecise for the moment, since
this section concerns only the main ideas.

Let an implicit system ∆ be given by

∆ :
{

ẋ(t) = f(t, x(t), u(t))
y(t) = h(t, x(t), u(t)) = 0 (1)

where1 x(t) ∈ Rn, u(t) ∈ Rm.
Let bse stands for the set {1, 2, . . . , s}. Given

a set of functions v = (v1, . . . , vs), called input
candidate, where vi = φi(t, x(t), u(t), . . . , u(αi)),
αi ∈ N, i ∈ bse, one says that v is a proper input,
if there exists a set z = (z1, . . . , zq) of functions
z = ϑ(t, x(t), u(t), . . . , u(β)) such that the system
∆ admits a state representation

ż(t) = g(t, z(t), v(t)) (2)

The problem studied in this paper regards the
following aspects

(a) To check if v is a proper input.

(b) If (a) is true, then one may try to check if (2)
is locally linearizable by regular static-state
feedback.

1Note that x(t) and u(t) are not necessarily the state
and the input of the implicit system since the algebraic
constraints and their derivatives may induce (differential)
relations linking their components.

Note that static-state feedback of this problem
considers the state z and is applied to the input v,
that is, is of the form v(t) = V(t, z(t), η(t)), where
η(t) is the new input. The closed loop system is
given by the linear controllable time-invariant sys-
tem

ζ̇(t) = Aζ(t) + Bη(t)

where ζ is a new state. Note that v is not nec-
essarily a physical input of the implicit system,
but it may be a virtual input, as in the context of
backstepping (Krstic et al., 1995).

Under some mild assumptions, the main re-
sult of this work shows necessary and sufficient
conditions for the solution of this problem. These
conditions rely on an integrability test that is com-
puted from the explicit system S that is obtained
by disregarding the constraints y ≡ 0. Further-
more, these conditions may be computed without
the knowledge of the state z of (2) .

The problem of verifying if v is a proper in-
put of the implicit system has been solved in
(Pereira da Silva and Batista, 2010). The results
of (Pereira da Silva, 2008) are combined with the
ones of (Pereira da Silva and Batista, 2010) in or-
der to solve this problem.

The approach of this paper is the infinite-
dimensional differential geometric setting of
(Fliess et al., 1999). The survey (Pereira da Silva
et al., 2008) presents the results about this ap-
proach that are considered here. For complete-
ness, a very brief summary of this approach is pre-
sented in appendix A, which introduces some stan-
dard vocabulary and notation of this approach.
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The field of real numbers will be denoted
by R. For simplicity, we abuse notation, letting
(z1, z2) stand for the column vector (zT

1 , zT
2 )T ,

where z1 and z2 are also column vectors. Let
x = (x1, . . . , xn) be a vector of functions (or a
collection of functions). Then {dx} stands for the
set {dx1, . . . , dxn}. Let S be a system with Car-
tan field d

dt (see appendix A). The Lie deriva-
tive L d

dt
η of a function (or a form) η will be de-

noted by η̇ (or η(1)) and the k-fold Lie deriva-
tive Lk

d
dt

η of η will be denoted by η(k). If η =
(η1, . . . , ηm) is a set of functions (or forms), then
η(k) stands for η(k) = (η(k)

1 , . . . , η
(k)
m ). A codis-

tribution Ω = span {ωi, i ∈ A} is said to be inte-
grable if the exterior derivatives of each ωi can be
expressed as dωi =

∑
j∈F ηj ∧ ωj for convenient

one forms ηj , j ∈ F , and F is a finite set2. Car-
tan’s version of the Frobenius theorem can be used
in the context of diffieties for finite dimensional
integrable distributions Γ, when Γ is nonsingular
(see (Pomet, 1995; Pereira da Silva et al., 2008)).

2 Some facts about implicit systems

Consider an implicit system ∆ of the form (1),
and suppose that also that all the functions defin-
ing (1) are smooth. One will call x(t) ∈ Rn

the “pseudo-state” and u(t) ∈ Rm will be called
the “pseudo-input”3. Recall from (3), that S is
obtained from ∆ by disregarding the constraints
y ≡ 0. Furthermore, the functions y = h(t, x, u)
are considered to be outputs of S. Throughout
this paper, the system ∆ is the implicit system
defined by (1), and S is the explicit system given
by

S :
{

ẋ(t) = f(t, x(t), u(t))
y(t) = h(t, x(t), u(t)) (3)

System S can be viewed as a diffiety with Cartan
field d

dt and output4 y = h(t, x, u), in the frame-
work of (Fliess et al., 1999) (see appendix A).
Then y(k) stands for the function Lk

d
dt

y = dk

dtk y de-

fined on S, which may depend on x, u(0), u(1), . . ..
The following codistribution, defined on the

system (diffiety) S given by (3), will be used in
the sequel

Y = span
{

dt, (dy(k) : k ∈ N)
}

. (4)

Definition 1 A local output subsystem5 Y for the
explicit system S with output y defined by (3),
is a diffiety Y and a Lie-Bäcklund submersion

2This means that the differential ideal generated by Ω
is differentially closed).

3This terminology is justified in (Pereira da Silva and
Batista, 2010; Pereira da Silva et al., 2008)

4It must be pointed out again that y = h(t, x, u) is
regarded an output rather than a constraint.

5See (Pereira da Silva and Corrêa Filho, 2001;
Pereira da Silva et al., 2008).

π : U ⊂ S → Y , where U ⊂ S is an open sub-
set, such that π∗(T ∗ξ Y ) = Y|ξ for all ξ ∈ U . A
local state representation ((xa, xb), (ua, ub)) of S
is said to be strongly adapted6 to the output sub-
system Y if
(A) The Lie-Bäcklund submersion π is locally
given by π(t, xa, xb, (u

(j)
a , u

(j)
b : j ∈ N)) =

(t, xa, (u(j)
a , j ∈ N)).

(B) The local state equations of S are of the form

ẋa = fa(t, xa, ua) (5a)
ẋb = fb(t, xa, xb, ua, ub) (5b)

where (5a) are the local state equations7 for Y .
(C) span

{
dxa, (du

(k)
a : k ∈ N)

}
= span {dy(k) :

k ∈ N}.
(D) The set of functions {xa, u

(k)
a : k ∈ N)} is

contained in the set {y(k) : k ∈ N}. ♣

Remark 1 It is important to point out that the
components of the input (ua, ub) are redefined,
that is, they are not necessarily a reordering of
the original input u of S. The same remark ap-
plies to the components of (xa, xb), with respect to
the original state x.

Let ∆̃ be the subset of the explicit system
(diffiety) S defined by the points of S for which
all the Lie derivatives y(k) = d

dt

k
y vanish:

∆̃ = {ξ ∈ S | y(k)(ξ) = 0, k ∈ N} (6)

Definition 2 An implicit system ∆ (defined by
(1)) is regular if

• ∆̃ 6= ∅.
• There exists a local output subsystem Y for

system S with output y around all ξ ∈ ∆̃.

• Around all ξ ∈ ∆̃, system S admits local state
equations that are strongly adapted to Y .

♣
Sufficient conditions for showing that a given

implicit system is regular are given in (Pereira da
Silva and Corrêa Filho, 2001; Pereira da Silva
et al., 2008). They are essentially linked to the
notion of zero dynamics that appears in the de-
coupling theory. For completeness, these results
are re-stated in Appendix B, which shows how

6The weaker definition of adapted state equations con-
sidered in Theorem 4.3 of (Pereira da Silva and Cor-
rêa Filho, 2001) is obtained if one replaces the assump-
tions (C) and (D) by the only assumption that Y =

span
{

dt, dxa, (du
(k)
a : k ∈ N)

}
. This last theorem also

shows that the output subsystem is locally unique up to
local Lie-Bäcklund isomorphisms.

7Using (C) and (D), one may show that fa does not
depend on t.
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to compute the strongly adapted state represen-
tation.

The following definition regards an implicit
system as an immersed submanifold.

Definition 3 Consider an implicit system ∆ de-
fined by (1) and the explicit system S defined by
(3). A diffiety Γ is said to be equivalent to the
implicit system ∆ if:

• There exists a Lie-Bäcklund immersion ι :
Γ → S.

• For every solution σ(t) of ∆, there exists a
solution ν(t) of Γ such that σ(t) = ι ◦ ν(t).

The equivalent system Γ is said to be canonical if
Γ ⊂ S, the topology of Γ is the subset topology, ι
is the insertion map, and Γ is a control system8.
♣

The concept defined above is compatible with
the notion of equivalence by endogenous feedback.
In fact, it is show in (Pereira da Silva et al., 2008)
that, if an implicit system ∆ is equivalent to Γ1

and ∆ is also equivalent to Γ2, then Γ1 and Γ2

are equivalent by endogenous feedback. It can be
shown that a regular implicit system defined by
(1) is equivalent to an immersed system in the
explicit system S defined by (3). This result is
the Proposition 1 below.

Proposition 1 (Pereira da Silva and Cor-
rêa Filho, 2001; Pereira da Silva et al., 2008) Let
∆ be a regular implicit system defined by (1) and
let S be the explicit system associated to (3). Then
the subset ∆̃ ⊂ S defined by (6) has a canonical
structure of immersed (embedded) submanifold of
S such that the canonical insertion ι : ∆̃ → S is
a Lie-Bäcklund immersion9. Furthermore ∆̃ ad-
mits a local classical state representation around
every point ξ ∈ ∆̃. In particular, ∆̃ is canonically
equivalent to ∆.

The idea of the proof of Proposition 1 is to
consider the local state representation (5) that
is strongly adapted to the output subsystem. It
is shown that {t, xa, xb, Ua, Ub} and {t, xb, Ub}
are respectively local coordinates10 for S and ∆̃,
where Ua = {u(j)

a : j ∈ N} and Ub = {u(j)
b :

j ∈ N}. In these coordinates ι(t, xb, Ub) =
(t, 0, xb, 0, Ub).

It must be pointed out that the proof of
proposition 1 shows also that the local state equa-
tions for ∆̃ are given by ẋb = fb(t, 0, xb, 0, ub).

8By definition, Γ is a control system if it locally admits
a state representation around every point γ ∈ Γ.

9Since ι∗ injective, it can be shown that Cartan field ∂∆̃

of ∆̃ may be canonically defined by ι∗∂∆̃ = d
dt
◦ ι, where

d
dt

is the Cartan field of S.
10Using the same name of xb as a set of local coordinate

functions of ∆̃ and S is an abuse of notation. One could
write for instance x̃b and consider that x̃b = xb ◦ ι.

In particular, the implicit system is equivalent
to a kind of “zero dynamics”, as pointed out in
(Byrnes and Isidori, 1991; Krishnan and McClam-
roch, 1994). Note that these notions of equiva-
lence allow one to define a state representation of
an implicit system ∆ as being a state representa-
tion of an equivalent system ∆̃.

3 Adapted projections

Given any state representation (x̃, ũ) defined
on U ⊂ S, with x̃ = (xa, xb) and ũ =
(ua, ub) of S that is adapted to the output
subsystem Y , its clear that the C∞(U)-module
U = span

{
dt, dxa, dxb, (du

(k)
a , du

(k)
b : k ∈ N)

}
is

locally decomposed as U = B ⊕ Y, where
Y = span

{
dt, dxa, (du

(j)
a : j ∈ N)

}
and B =

span
{

dxb, (du
(j)
b : j ∈ N)

}
. Here one may regard

U = B⊕Y , B, and Y as modules over C∞(U). An-
other possible point of view is to work pointwise
at some ξ ∈ U . Then, U|ξ, B|ξ, Y|ξ become vector
spaces over R. Recall that a one-form defined on
U may be written as

ω = α0dt +
na∑

i=1

αidxai +
nb∑

i=1

βidxbi (7)

+
ma∑

j=0

∞∑

k=0

γjkdu(k)
aj

+
mb∑

j=0

∞∑

k=0

εjkdu
(k)
bj

for adequate smooth functions αi, βi, γjk, εjk.
Around any ν ∈ U , a state representation defines
a local coordinate system, so there exists some
open neighborhood Vν of ν, such that only a fi-
nite subset of those functions could be nonzero on
Vν . However, for the sake of defining our projec-
tion θ, one may consider the previous infinite sum
without any problem.

One may define locally the projection θ :
B⊕Y → B, called adapted projection, which asso-
ciates a one-form ω to its projection

θ(ω) =
nb∑

i=1

βidxbi +
∞∑

k=0

mb∑

j=1

εjkdu
(k)
bj

. (8)

This projection is clearly a module morphism (or a
linear map between vector spaces, when one works
pointwise).

4 Proper Inputs

The notion of a proper input v is now stated in a
precise manner.

Definition 4 (Proper input) Assume that a im-
plicit system (1) is regular. Consider the ex-
plicit system S with output y defined by (3).
Let v = (v1, . . . , vs) be a set of functions defined
around a point ν ∈ ∆̃ ⊂ S, where ∆̃ is defined
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by (6)11. The set v is the input candidate of the
implicit system. The input candidate v is said
to be a proper input around some point ν ∈ ∆̃
if there exists a local proper state representation
((za, z), (va, v)) for the explicit system S, defined
around ν, that is strongly adapted to subsystem
Y . ♣

Remark 2 Roughly speaking, in the problem of
testing if v is proper, note that the input candidate
v is the data, and the question is to verify the
existence of such z.

The following theorem gives necessary and
sufficient conditions for the solution a input can-
didate v to be a proper input.

Theorem 1 (Pereira da Silva and Batista, 2010)
Let ((xa, xb), (ua, ub)) be a local proper state rep-
resentation of system S defined by (3) that is
adapted to Y . Let θ be the associated adapted pro-
jection (see section 3). Let Y be the codistribu-
tion, defined on S by (4). Let γ be the least non-
negative integer12 such that one may locally write
that span {dv} ⊂ span

{
dxb, du

(0)
b , . . . , du

(γ)
b

}
⊕Y.

Then v is a proper input around some ν ∈ S if and
only if there exists a non-negative integer δ such
that, for the codistribution Γ0 defined by

Γ0 = span
{

dxb, du
(0)
b , . . . , du

(γ)
b ,

θ
(
dv(0)

)
, . . . , θ

(
dv(δ)

)}
(9)

and for the codistributions Γk defined by

Γk = span {ω ∈ Γk−1 | ω̇ ∈ Γk−1 + Y} (10)

one has:
(i) Γk is finite dimensional and nonsingular and
dimΓk−1 − dimΓk = dim v for k = 1, . . . , δ + 1.
(ii) Γδ+1 ⊕ Y is integrable.
(iii) Γ0 = Γ1 ⊕ span

{
θ
(
dv(δ)

)}
.

(iv) The set V(k) = {θ(dv(k))} is locally linearly
independent for k = 0, . . . , δ.

An intrinsic version of the last theorem13 can
be found in (Pereira da Silva and Batista, 2010).
However, the presented version is much more suit-
able for computations.

5 A sufficient condition of
feedback-linearizability

This section presents the main result of this pa-
per. One will combine the results of (Pereira da

11Recall that the components of v may depend on
t, x, u, u(1), . . .

12The existence of the integer γ is assured by the fact
that a state representation is a local coordinate system.

13Intrinsic in the sense that it does not depend on the
choice of a particular adapted state representation.

Silva, 2008) with the ones of (Pereira da Silva and
Batista, 2010) in order to obtain a sufficient con-
dition of flatness of the implicit system (1).

Theorem 2 Let v be an input candidate that is a
local proper input of the regular implicit system 1
around some ξ ∈ ∆̃ (see (6)). Assume that δ is the
corresponding integer, whose existence is assured
by Theorem 1, and let Γδ+1 be the corresponding
codistribution that is defined in that Theorem. Let
D0 = Γδ+1 and let Dk = span {ω ∈ Dk−1 | ω̇ ∈
Dk−1}. Assume that
(a) The codistributions Dk are nonsingular at ξ
for k ∈ N.
(b) There exists k∗ ∈ N big enough, such that
Dk∗ = {0}.
(c) The codistributions Dk + Y are locally inte-
grable around ξ, for k ∈ N. Let (2) be local state
equations for the implicit system (1). Then this
state representation is linearizable by a regular
static state feedback of the form v = V(t, z, η).

Proof (Sketch): According to (Pereira da
Silva and Batista, 2010), the explicit system S de-
fined by (3) admits a strongly adapted local state
representation ((xa, z), (ua, v)) with local state
equations given by

ẋa = fa(t, x̃a, ũa) (11a)
ż = fz(t, z, v, x̃a, ũa) (11b)

Recall the context of the proof of proposition 1
(see (Pereira da Silva et al., 2008)). Let ι : ∆ → S
be the Lie-Bäcklund immersion that is locally de-
fined by (t, z, (v(k) : k ∈ N)) 7→ (t, z, (v(k) :
k ∈ N), xa, (u(k)

a : k ∈ N)), where (xa, (u(k)
a :

k ∈ N)) = 0. Since the state representation
is strongly adapted, then Y = span

{
dy(k)

}
=

span
{

dxa, (du
(k)
a : k ∈ N))

}
. Then it is easy to

show that ι∗Y = 0. From this, it is easy to show
from the fact that Γδ+1 + Y = span {dt, dz} + Y
(see (Pereira da Silva and Batista, 2010)) that

ι∗(Γδ+1 + Y) = span {dt, dz} . (12)

From the fact that ι is Lie-Bäcklund, it follows
that, locally, L∂∆ι∗ω = ι∗L d

dt
ω for every one-

form ω defined on S, where ∂∆ is the Cartan
field of ∆ and d

dt is the Cartan-field of S. From
this, and from (12) it follows that, if one defines
Ek = ι∗Dk, k ∈ N, then it is easy to show that

Ek = span {ω ∈ Ek−1 | ω̇ ∈ Ek−1}, k ∈ N.

Then, from the fact that ι∗ is an isomorphism
(pointwise) when restricted to D0 + span {dt}, it
is easy to see that conditions (a), (b), (c) implies
that
(A) The codistributions Ek are locally nonsingular
at for k ∈ N.
(B) There exists k∗ ∈ N big enough, such that
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Ek∗ = span {dt}.
(C) The codistributions Ek are locally integrable
around ξ, for k ∈ N. The desired result follows
easily, since (A), (B), and (C) are the static lin-
earizability conditions of (Pereira da Silva, 2008,
Theo. 2). 2

Remark 3 It is shown14 in (Pereira da Silva
and Batista, 2010) that, under the assump-
tions of Theorem 3 (see Appendix B), the
codistribution Γ̃0 = Γ0 + Y is given by
Γ̃0 = span

{
dx, du(0), . . . , du(γ), dv(0), . . . , dv(δ)

}
+

Y and it is also shown that the codistributions
Γk + Y, k ∈ N do not depend on the particular
(strongly) adapted state representation that is cho-
sen. In particular, it is easy to show that the con-
ditions of theorem 2 are also independent of this
choice.

6 Example

Consider the following academic example (see
(Pereira da Silva and Batista, 2010))

ẋ1(t) = u1 + 2x3u2

ẋ2(t) = tx3 + 2(x1 + 1)u1 + 4x1x3u2

ẋ3(t) = u2(t), y(t) = x1 − x2
3 = 0

Let x = (x1, x2, x3) and u = (u1, u2) The in-
put candidate for this example is v = tx3 +
u1

(
x1 − x2

3

)
. In (Pereira da Silva and Batista,

2010) it is shown fr this example that is pos-
sible to choose xa = y = x1 − x2

3, ua =
ẏ = u1, xb = (x2, x3) and ub = u2. It
is also shown that Γ0 = span {dxb, dub, du̇b}.
Γ1 = span {dxb, dub}, and that Γ2 = span {dxb}.
Γ3 = span {dt, dx2 − 4x3x1dx3}. To see
that Γ3 + span {dy} is integrable, it suffices
to notice that dy = dx1 − 2x3dx3, hence
Γ3 + span {dy} = span {dt, dx2 − 2x1dx1, dy} =
span

{
dt, d(x2 − x2

1), dy
}
. It follows that all the

assumptions of Theorem 1 holds.
Further computations15 shows that D1 = {0}.

In particular the conditions of Theorem 2 holds.
In this relatively simple example, it was possible
to compute the state representation 2, obtaining
(see (Pereira da Silva and Batista, 2010))

ż = v (13)

where z is given by x2−x2
1. It is obvious that (13)

is feedback linearizable and so z is a flat output of
the implicit system. It is important to say that,
in some cases, it may be very hard to integrate
the codistributions in order to obtain z and (2),
that is, an explicit state representation of the im-
plicit system. However, the existence conditions
of Theorems 1 and 2 are always checkable.

14See the proof of Theorem 4.9 of (Pereira da Silva and
Batista, 2010)

15These computations have been performed using
Matlabr / Mapler.

A Diffieties and Systems

This appendix is a very brief summary of some
facts about the infinite dimensional approach of
(Fliess et al., 1999). A survey about this subject
can be found in (Pereira da Silva et al., 2008).

RA-Manifolds, Diffieties and Systems.
An ordinary diffiety is an RA manifold for

which there exists a field d
dt , called Cartan field.

A system S is a pair (S, t), where S is an or-
dinary diffiety, and t : S → R is a function , called
time, such that d

dt (t) = 1 and such that around
any point ξ ∈ S there exists local coordinates of
S of the form (t, η)16.

State Space Representation and Out-
puts. A local state representation of a system
(S, t) is a local coordinate system ψ = {t, x, U},
where x = {xi, i ∈ bne}, U = {u(k)

j |j ∈ bme, k ∈
N}. The set of functions x = (x1, . . . , xn) is called
state and the set u = (u1, . . . , um) is called in-
put. In these coordinates the Cartan field is locally
written by

d

dt
=

∂

∂t
+

n∑

i=1

fi
∂

∂xi
+

∑

k∈N,
j∈bme

u
(k+1)
j

∂

∂u
(k)
j

(14)

It follows from (14) that L d
dt

u(k) = d
dt (u

(k)) =
u(k+1). So the notation u(k) is consistent with
the fact that, along a solution17, it represents the
differentiation of u(k−1) with respect to time.

A state representation of a system S is com-
pletely determined by the choice of the state x and
the input u and will be denoted by (x, u). An out-
put y of a system S is a set of functions defined on
S. A state representation is said to be classical (or
proper) if fi does not depend on u(α) for α > 1. A
control system S is a system such that there exists
a local state representation around every ξ ∈ S.

System associated to differential equa-
tions. Now assume that a control system is given
by a set of equations

ṫ = 1
ẋi = fi(t, x, u, . . . , u(αi)), i ∈ bne
yj = ηj(x, u, . . . , u(αj)), j ∈ bpe

(15)

One can always associate to these equations a diffi-
ety S of global coordinates ψ = {t, x, U} and Car-
tan field given by (14).

Solutions. A solution of a system S with
Cartan field d

dt is a smooth map σ : (a, b) → S,
where (a, b) ⊂ R, such that σ̇(t) = d

dt (σ(t)).
Subsystems. A (local) subsystem Sa of a

system S with time notion t is a pair (Sa, π), where
Sa is a system with a time notion τa and Cartan

16This is equivalent to saying that the function t is a
submersion, and the fact that d

dt
(t) = 1 is equivalent to

saying that that the function t is Lie-Bäcklund, when R is
regarded as a diffiety with trivial Cartan field.

17See the definition of solution given in this section.
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field ∂a, and π is a Lie-Bäcklund submersion π :
U ⊂ S → Sa between the system U ⊂ S and Sa

such that τa ◦ π = t. A local state representation
x = (xa, xb), u = (ua, ub) is said to be adapted to
a subsystem Sa if we locally have

ẋa = fa(t, xa, ub) (16a)
ẋb = fb(t, xa, xb, ua, ub) (16b)

and (xa, ua) is a local state representation of Sa

with state equations (16a).

B Existence of strongly adapted state
equations

Theorem 3 (Pereira da Silva et al., 2008) Let
S be the system with classical state representation
(x, u) and classical output y, defined18 by (3). Let
ν ∈ ∆̃, where ∆̃ ⊂ S is defined by (6). Assume
that there exists a partition y = (ȳ, ŷ), where ȳ
is called the independent part, and ŷ is called
dependent part of the output. Assume also that
there exists some α ∈ N such that, locally around
ν, one has
1. span {dx} ∩ span

{
dt, dȳ(0), . . . , dȳ(α−1)

}
=

span {dx} ∩ span
{

dt, dȳ(0), . . . , dȳ(α)
}
.

2. span
{

dt, dx, dȳ(0), . . . , dȳ(α−1)
}

is locally
nonsingular around ξ.
3. span

{
dt, dx, du, dȳ(0), . . . , dȳ(α)

}
is locally

nonsingular around ξ.
4. The set {dt, dȳ(0), . . . , dȳ(α)} is pointwise
independent in an open neighborhood of ξ.
5. span

{
dy(0), . . . , dy(α−1)

}
⊂

span
{

dt, dx, dȳ(0), . . . , dȳ(α−1)
}
.

6. span
{

dt, dy(0), . . . , dy(k)
}

is nonsingular for
k = α and k = α− 1.
7. span

{
dy(α)

} ⊂
span

{
dt, dy(0), dy(1), . . . , dy(α−1), dȳ(α)

}
.

8. span
{
dy(0), dy(1), . . . , dy(k)

}
is nonsingular

around ν for k = α− 1 and k = α.

Then there exists a local output subsystem Y
defined around ν that admits a strongly adapted
state representation (x̃, ũ), where x̃ = (xa, xb)
and ũ = (ua, ub). Moreover:
(A) One may choose ua = ȳ(α).
(B) One may choose xa ⊂ {y(0), . . . , y(α−1)}
such that {dt, dxa} is a local basis of
span

{
dy(0), . . . , dy(α−1)

}
.

(C) One may chose xb in a way that
dxb completes {dt, dxa} to a local basis of
span

{
dt, dx, dy, . . . , dy(α−1)

}
.

(D) One may chose ub in or-
der to complete {dt, dxa, dxb, dua}

18The state representation (x, u) is classical if
span {dẋ} ⊂ span {dt, dx, du} and the output y is
classical if span {dy} ⊂ span {dt, dx, du}.

to a basis {dt, dxa, dxb, dua, dub} of
span

{
dt, dx, du, dy, . . . , dy(α)

}
.

In particular, if ∆̃ is nonempty and these as-
sumptions hold around all ξ ∈ ∆̃, then the cor-
responding implicit system (1) is regular. Fur-
thermore, span {dx} + Y = span {dxb} ⊕ Y and
span {dx, du}+ Y = span {dxb, dub} ⊕ Y.

Proof: The proof of the theorem is an easy con-
sequence of the proof of Theorem 5 of (Pereira da
Silva et al., 2008). 2
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