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This work considers a semi-implicit system D, that is, a pair (S, y), where S is an explicit system described by a
state representation _xðtÞ ¼ f ðt, xðtÞ, uðtÞÞ, where x(t)2R

n and u(t)2R
m, which is subject to a set of algebraic

constraints y(t)¼ h(t, x(t), u(t))¼ 0, where y(t)2R
l. An input candidate is a set of functions v¼ (v1, . . . , vs), which

may depend on time t, on x, and on u and its derivatives up to a finite order. The problem of finding a (local)
proper state representation _z¼ g(t, z, v) with input v for the implicit system D is studied in this article. The main
result shows necessary and sufficient conditions for the solution of this problem, under mild assumptions on the
class of admissible state representations of D. These solvability conditions rely on an integrability test that is
computed from the explicit system S. The approach of this article is the infinite-dimensional differential
geometric setting of Fliess, Lévine, Martin, and Rouchon (1999) (‘A Lie-Bäcklund Approach to Equivalence and
Flatness of Nonlinear Systems’, IEEE Transactions on Automatic Control, 44(5), (922–937)).

Keywords: nonlinear systems; state representations. implicit systems; realisation theory; DAEs; differential
geometric approach; diffieties

1. Introduction

The works of van der Schaft (1987), Crouch and
Lamnabhi-Lagarrigue (1988), Glad (1988), van der
Schaft (1990), Liu and Moog (1994), Moog, Zheng,
and Liu (2002) consider the problem of giving proper
realisations of input–output equations of the form

yðnÞ ¼ �ð y, _y, . . . , yðn�1Þ, u, _u, . . . , uðsÞÞ, ð1Þ

where the highest derivative of y appears linearly. A
comparison between these works can been found in
Kotta and Mullari (2005).

A proper realisation of system (1) is an equivalent
system of the form

_zðtÞ ¼ gðzðtÞ, uðtÞÞ, ð2Þ

where z(t)2R
n is the state and u(t)2R

m is the input of
the realisation.

Strongly related to the input–output realisation
problem is the question of elimination of input
derivatives by generalised state transformation. Let
S be a nonlinear system with state x2R

n and input
v2R

m, given by

_xðtÞ ¼ f ðxðtÞ, vðtÞ, . . . , vð�ÞÞ: ð3Þ

One may seek a generalised (local) state transforma-
tion z¼�(x, v(0), . . . , v(�)) such that the system (3) is

transformed into (2), where z is a new state for the
system, with dim z¼dim x. This transformation is

invertible in the sense that one may locally write
x¼ (z, v(0), . . . , v(�)). The necessary and sufficient
conditions for the existence of such a transformation
are given in Delaleau and Respondek (1995). A state

representation (3) is said to be generalised if f depends
on v(�) for �4 0, whereas the state representation (2)
is said to be classical, or proper.1

Recall that in the behavioural approach of Willems
(1992) the input and the output are not chosen a priori.
The same point of view is shared by the approach of

Fliess, Lévine, Martin, and Rouchon (1999), and this
fact is in accordance with what is found in physical
systems. The results of Delaleau and Respondek (1995)
are generalised in Pereira da Silva and Batista (2009)

for the case where there is freedom to redefine the
input, that is, v it is not necessarily the original input
of the system.

The work of Pereira da Silva and Batista (2009)
considers systems of the form

_xðtÞ ¼ f ðt,xðtÞ, uðtÞÞ, ð4Þ

where x(t)2R
n and u(t)2R

m. A set of functions
v¼ (v1, . . . , vs) is chosen, and it is called the input
candidate. Note that each function vi may depend on t,
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x, u(0), . . . , u(�) where � 2N. The main result of that
paper solves the problem of checking if (4) admits an
equivalent system

_zðtÞ ¼ gðt, zðtÞ, vðtÞÞ, ð5Þ

where z(t)2R
q is a new state for the system obtained

by an endogenous transformation, which is much more
general than the transformation � considered in
Delaleau and Respondek (1995). In this case, the
dimension of the state x is not necessarily equal to the
one of the new state z. To see this, consider the trivial
example _x1 ¼ x2, _x2 ¼ u. If one chooses2 v¼ x1 , this
system admits a state representation _z1¼ v with z1¼ x1.
If v¼ u(1), the system admits a state representation
_z 1¼ z2, _z 2¼ z3, _z 3¼ v, where z1¼ x1, z2¼ x2, z3¼ u1.
This last state representation is nothing less than a
dynamic extension of the original state x.

Here, the results of Pereira da Silva and Batista
(2009) are generalised in order to obtain, under mild
assumptions, necessary and sufficient conditions for
the existence of a proper state representation of
nonlinear implicit systems. As in Pereira da Silva and
Batista (2009), the conditions are constructive, and
provide a test that decides whether a given set of
functions v is an input of the implicit system that
admits a proper state representation. Furthermore, v
is not necessarily coincident with the ‘original’ input
of the implicit system. It is important to stress that,
although the solvability conditions are constructive,
if one wants to compute the corresponding state
representation, then one must apply the Frobenius
theorem to an integrable codistribution. This process is
not constructive, and it may be a very difficult
task in general. Once the choice of v is made, one
may test ‘a posteriori’ whether these conditions hold or
not. However, there is no known method for selecting
the suitable input candidates ‘a priori’. This question
may be the subject of future investigation.

At this point, we give a preliminary statement of
the main problem to be considered3 in this work.

State representation problem for implicit systems. Let an
implicit system D be given by

D :
_xðtÞ ¼ f ðt, xðtÞ, uðtÞÞ

yðtÞ ¼ hðt, xðtÞ, uðtÞÞ ¼ 0,

�
ð6Þ

where x(t)2R
n, u(t)2R

m, and given a set of function
v¼ (v1, . . . , vs), where vi¼�i(t, x(t), u(t), . . . , u(�i)),
�i2N, i2 bse, when there exists an equivalent system4

(5) with a given input v?s
In this article, it will be shown that the solution of

this problem relies on the geometric properties of the
explicit system S given by

S :
_xðtÞ ¼ f ðt, xðtÞ, uðtÞÞ

yðtÞ ¼ hðt, xðtÞ, uðtÞÞ,

�
ð7Þ

where x(t)2R
n, u(t)2R

m. Note that S is obtained from

D by disregarding the algebraic constraints y� 0 and

considering them as outputs y¼ h(t, x(t), u(t)). In

particular, {t, x, u(0), u(1), . . .} are global coordinates

for S, and so, those variables are independent for S

(but not for D). Furthermore, it is clear that it is not

important whether an original input of the implicit

system5 is available a priori or not. The input candi-

date v may be an arbitrary function of system variables

and of its derivatives up to some finite order.
Our approach will follow the infinite-dimensional

geometric setting introduced in control theory by

Fliess, Lévine, Martin, and Rouchon (1993), Pomet

(1995), Fliess et al. (1999), in combination with the

ideas presented in Pereira da Silva and Corrêa Filho

(2001), Pereira da Silva, Silveira, Correa Filho, and

Batista (2008) and Conte, Moog, and Perdon (2007).
We use the standard notations of differential

geometry in the finite and infinite-dimensional case.

A brief overview of the infinite-dimensional approach

of Fliess et al. (1999) is presented in Appendix A. Some

notations and the definitions of Appendix A are used

along this article (e.g. the definition of system as a

diffiety and the definition of (classical) state represen-

tation as a local coordinate system). The survey Pereira

da Silva et al. (2008) presents the results about this

approach that are considered here.
The field of real numbers will be denoted by R. The

matrix MT stands for the transpose of a matrix M. The

set of natural numbers {1, . . . , k} will be denoted by

bke. For simplicity, we abuse notation, letting (z1, z2)

stand for the column vector ðzT1 , z
T
2 Þ

T, where z1 and z2
are also column vectors. Let x¼ (x1, . . . , xn) be a vector

of functions (or a collection of functions). For a finite

set x, card x will denote the cardinal of x, that is, the

number of elements of x. Let M be a module over the

ring R, let N�M be a submodule, and let � : M!

M/N be the canonical projection. A subset

{m1, . . . ,ms}�M is said to be independent modulo N

if the set {�(m1), . . . ,�(ms)} is R-independent.
One may let {dx} stands for the set {dx1, . . . , dxn}.

Let S be a system with Cartan field d
dt (Appendix A).

The Lie derivative L d
dt
� of a function (or a form) � will

be denoted by _� (or �(1)) and the k-fold Lie derivative

Lk
d
dt

� of � will be denoted by �(k). If �¼ (�1, . . . , �m) is
a set of functions (or forms), then �(k) stands for

�ðkÞ ¼ ð�ðkÞ1 , . . . ; �ðkÞm Þ. A codistribution �¼ span{!i,

i2A} is said to be integrable if the exterior derivatives

of each !i can be expressed as d!i¼
P

j2F �j6!j for

convenient one-forms �j, j2F and F is a finite set.6

Cartan’s version of the Frobenius theorem can be used

in the context of diffieties for finite-dimensional

integrable distributions �, when � is nonsingular

(Pomet 1995; Pereira da Silva 2008).

2 P.S. Pereira da Silva and S. Batista
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This article is organised as follows. Section 2
presents some preliminary results about implicit
systems. Section 3 introduces some important results
about derived flags. The main results are presented
in Section 4. Some worked examples are developed in
Section 5. Conclusions and a comparison with the
results of Pereira da Silva and Batista (2009) are stated
in Section 6. Some auxiliary results and their proofs
are presented in Appendices A–E. Finally, Appendix F
presents an algorithm that summarises the main results
from a computational viewpoint.

2. Some facts about implicit systems

Consider an implicit system D of the form (6), and
suppose that all the functions defining (6) are smooth.
One will call x(t)2R

n the ‘pseudo-state’ and u(t)2R
m

will be called the ‘pseudo-input’, a terminology that
will be justified later. Recall from (7) that S is obtained
from D by disregarding the constraints y� 0.
Furthermore, the functions y¼ h(t, x, u) are considered
to be outputs of S. Throughout this article, the system
D is the implicit system defined by (6), and S is the
explicit system given by (7).

System S can be viewed as a diffiety with Cartan
field d

dt and output7 y¼ h(t, x, u), in the framework of
Fliess et al. (1999) that is briefly summarised in
Appendix A. Then y(k) stands for the function Lk

d
dt

y ¼
dk

dtk
y defined on S, which may depend on x, u(0), u(1), . . . .

It must be stressed out that u is not necessarily the
input of the implicit system, since the constraints y(k)� 0
may induce relations8 among the components of x, u(0),
u(1) etc. For instance, the implicit system _x1 ¼
u1, _x2 ¼ u2, y ¼ x1 þ x2 ¼ 0 is equivalent to the expli-
cit system _x1 ¼ u1 (and the relationsx2¼�x1, u2¼�u1).
A possible state of the implicit system is x1 and a
possible input is u1. This explains why x and u are called,
respectively, pseudo-input and pseudo-state of (6).

The following codistribution, defined on the system
(diffiety) S given by (7), is used in the sequel

Y ¼ span dt, ðdyðkÞ : k 2 NÞ
� �

: ð8Þ

Definition 2.1: A local output subsystem9 Y for the
explicit system S defined (7), with output y defined by
(7), is a diffiety Y and a Lie–Bäcklund submersion � :
U�S!Y, where U�S is an open subset, such that
��ðT �� Y Þ ¼ Yj� for all �2U. A local state representa-
tion ((xa, xb), (ua, ub)) of S is said to be strongly
adapted10 to the output subsystem Y if:

(A) The corresponding Lie–Bäcklund submersion
� is locally given by

�ðt, xa, xb, ðu
ð j Þ
a , u

ð j Þ
b : j 2 NÞÞ ¼ ðt, xa, ðu

ð j Þ
a , j 2 NÞÞ:

(B) The local state equations of S are of the form

_xa ¼ faðt, xa, uaÞ ð9aÞ

_xb ¼ fbðt, xa, xb, ua, ubÞ, ð9bÞ

where (9a) are the local state equations11 for Y.
(C) span {dxa,ðdu

ðkÞ
a : k2NÞg ¼ span dyðkÞ : k2N

� �
.

(D) The set of functions fxa, u
ðkÞ
a � k 2 NÞg is con-

tained in the set { y(k) : k2N}.

Remark 2.2: It is important to point out that the

components of the input (ua, ub) are redefined, that is,

they are not necessarily a reordering of the original

input u of S. The same remark applies to the

components of (xa, xb), with respect to the original

state x. A common abuse of notation occurs in the

definition above. The same name xa stands for sets of

coordinate functions defined on S and also on Y. It

would be more precise to let xa be a subset of local

coordinates of Y, and ~xa be a subset of local

coordinates of S such that ~xa ¼ xa � �. The same

remark applies to uðkÞa , k 2 N.

Let ~D be the subset of the explicit system (diffiety)

S defined by the points of S for which all the Lie

derivatives yðkÞ ¼ d
dt

k
y vanish

~D ¼ f� 2 S j yðkÞð�Þ ¼ 0, k 2 Ng: ð10Þ

Definition 2.3: An implicit system D (defined by (6)) is

regular if

. ~D 6¼ ;.

. There exists a local output subsystem Y for

system S with output y around all � 2 ~D.
. Around all � 2 ~D, system S admits local state

equations that are strongly adapted to Y.

Sufficient conditions for showing that a given

implicit system is regular are given in Pereira da Silva

and Corrêa Filho (2001), Pereira da Silva et al. (2008).

They are essentially linked to the notion of zero

dynamics that appears in the decoupling theory. For

completeness, these results are re-stated in Appendix E.

The following definition regards an implicit system

as an immersed submanifold.

Definition 2.4: Consider an implicit system D defined

by (6) and the explicit system S defined by (7).

A diffiety G is said to be equivalent to the implicit

system D if:

. There exists a Lie–Bäcklund immersion

	 :G!S.
. For every solution 
(t) of D, there exists a

solution �(t) of G such that 
(t)¼ 	 � �(t).

International Journal of Control 3
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The equivalent system G is said to be canonical if
G�S, the topology of G is the subset topology, 	 is the
insertion map and G is a control system.12

The concept defined above is compatible with the
notion of equivalence by endogenous feedback. In fact,
it is shown in Pereira da Silva et al. (2008) that, if an
implicit system D is equivalent to G1 and D is also
equivalent to G2, then G1 and G2 are equivalent by
endogenous feedback. It can be shown that a regular
implicit system defined by (6) is equivalent to an
immersed system in the explicit system S defined by (7).
This results in Proposition 2.5.

Proposition 2.5 (Pereira da Silva and Corrêa Filho
2001; Pereira da Silva et al. 2008): Let D be a regular
implicit system defined by (6) and let S be the
explicit system associated with (7). Then the subset
~D � S defined by (10) has a canonical structure of
immersed (embedded ) submanifold of S such that the
canonical insertion 	 : ~D! S is a Lie–Bäcklund immer-
sion.13 Furthermore, ~D admits a local classical state
representation around every point � 2 ~D. In particular, ~D
is canonically equivalent to D.

The idea of the proof of Proposition 2.5 is to
consider the local state representation (9) that is
strongly adapted to the output subsystem. It is
shown that {t, xa, xb,Ua,Ub} and {t, xb,Ub} are, respec-
tively, local coordinates14 for S and D, where
Ua ¼ fu

ð j Þ
a : j 2 Ng and Ub ¼ fu

ð j Þ
b : j 2 Ng. In these

coordinates 	(t, xb,Ub)¼ (t, 0, xb, 0,Ub).
It must be pointed out that the proof of

Proposition 2.5 also shows that the local state
equations for D are given by _xb ¼ fbðt, 0, xb, 0, ubÞ. In
particular, the implicit system is equivalent to a kind of
‘zero dynamics’, as pointed out in Byrnes and Isidori
(1991), Krishnan and McClamroch (1994). Note that
these notions of equivalence allow one to define a state
representation of an implicit system D as being a state
representation of an equivalent system ~D.

3. Adapted projections and derived flags

The main results of this article are based on derived
flags, defined on the explicit system S given by (7),
considering the quotient with respect to the codistribu-
tion Y defined in (8). Such kind of construction is
called relative derived flag and it plays an important
role in the theory of implicit systems (Pereira da Silva
and Corrêa Filho 2001).

Given any state representation ð ~x, ~uÞ defined on
U�S, with ~x ¼ ðxa, xbÞ and ũ¼ (ua, ub) of S that is
adapted to the output subsystem Y, it is clear that
the C1(U )-module U ¼ spanfdt, dxa, dxb, ðdu

ðkÞ
a , du

ðkÞ
b :

k 2 NÞg is locally decomposed as U ¼B�Y, where

Y ¼ span dt, dxa, ðdu
ð j Þ
a : j 2 NÞ

� �
and B ¼ spanfdxb,

ðdu
ð j Þ
b : j 2 NÞg. Here one may regard U ¼B�Y, B

and Y as modules over C1(U). Another possible point
of view is to work pointwise at some �2U. Then, Uj�,
Bj�, Yj� become vector spaces over R. Recall that a
one-form defined on U can be written as

! ¼ �0 dtþ
Xna
i¼1

�i dxai þ
Xnb
i¼1

�i dxbi

þ
Xma

j¼0

X1
k¼0

�jk du
ðkÞ
aj
þ
Xmb

j¼0

X1
k¼0

jk du
ðkÞ
bj

ð11Þ

for adequate smooth functions �i, �i, � jk, jk. Around
any �2U, a state representation defines a local
coordinate system, so there exists some open neigh-
bourhood V� of �, such that only a finite subset of
those functions could be nonzero on V�. However, for
the sake of defining our projection �, one may consider
the previous infinite sum without any problem.

One may define locally the projection
� :B�Y!B, called adapted projection, which associ-
ates a one-form ! to its projection

�ð!Þ ¼
Xnb
i¼1

�i dxbi þ
X1
k¼0

Xmb

j¼1

jk du
ðkÞ
bj
: ð12Þ

This projection is clearly a module morphism (or a
linear map between vector spaces, when one works
pointwise). Let G¼ span{!i, i2�} be a given codis-
tribution and define �G¼ span{�(!i), i2�}. Then, by
construction

Gþ Y ¼ �G� Y: ð13Þ

Let ~� : ~B � Y ! ~B be another projection (locally)

constructed from other adapted state representation
that is also defined on U. Since �(!)�!2Y and
~�ð!Þ � ! 2 Y, it follows that �ð!Þ � ~�ð!Þ 2 Y. Let � :
U!U/Y be the canonical projection, i.e. the map
! � ! mod Y. Then

� � ~� ¼ � � �: ð14Þ

Note that B¼ �(U) and ~B ¼ ~�ðUÞ. Furthermore,

�jB!U/Y and �jeB ! U=Y are isomorphisms15 such
that �ð�!Þ ¼ �ð ~�!Þ. In particular, if �G is a nonsingular
finite-dimensional codistribution defined on S, then

dim ~�ðGÞ ¼ dim �ðGÞ: ð15Þ

Proposition 3.1: Let � be any adapted projection
defined on an open set U�S. Let �0 be a codistribution

defined on U and let G0¼ ��0. Let ~G0 ¼ �0 þ Y. Define
the relative derived flags16

Gk ¼ span ! 2 Gk�1j _! 2 Gk�1 þ Yf g, k 2 N

4 P.S. Pereira da Silva and S. Batista
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and

~Gk ¼ span ! 2 ~Gk�1j _! 2 ~Gk�1

� �
, k 2 N:

Then, one has � ~Gk ¼ Gk and Gk � Y ¼ ~Gk, for all k2N.
Furthermore17

Gk ¼ f! 2 Gk�1 j � _! 2 Gk�1g: ð16Þ

Proof: It is clear that Gkþ1�G0, for k¼ 0, 1, . . . . As
G0\Y ¼ {0} it follows that Gk\Y ¼ {0} for
k¼ 0, 1, . . . . By definition, from (13), the properties
hold for k¼ 0. By induction, assume that � ~Gk ¼ Gk and
Gk � Y ¼ ~Gk. Let !2Gkþ1. Then it will be shown that
�(!)¼! and ! 2 ~Gkþ1. In particular, one concludes
that Gkþ1 � � ~Gkþ1. In fact, the first statement is a
consequence of the fact that �jB is the identity map,
where B¼ im � and Gkþ1�G0� ��0. Now let !2Gkþ1.
It follows that _! 2 Gk þ Y ¼ ~Gk. Then ! 2 ~Gkþ1.

Now let ~! 2 ~Gkþ1. Then, _! 2 ~Gk. Since �!¼!þ �
for some �2Y, then d

dtð�!Þ ¼ _!þ _�. As _� 2 Y and
Gk � Y ¼ ~Gk, then d

dtð�!Þ 2 Gk þ Y. Hence �!2Gkþ1

and so, Gkþ1 	 � ~Gkþ1. Now, as Gkþ1 ¼ � ~Gkþ1, by (13),
it follows that � ~Gkþ1 þ Y ¼ Gkþ1 � Y ¼ ~Gkþ1 þ Y.
Since ~G0 	 Y, it is easy to see that ~Gk 	 Y for k2N.
In fact, this follows from the fact that !2Y implies
that _! 2 Y. Hence, Gkþ1 � Y ¼ ~Gkþ1. Equation (16)
can be proved in a similar way and is left to the
reader. œ

Given a control system S, assume that G¼ span
{!1, . . . ,!s} is a smooth codistribution defined on an
open set U�S. One may define the first term of the
derived flag in two different forms. The first one, when
one regards G as a C1(U)-submodule

�1 ¼ span ! 2 G j _! 2 Gf g: ð17Þ

The second one is when one regards things pointwise.
At a point �2U, Gj� is a R-subspace of T ��U and then

G1j� ¼ span !j� 2 G j _!j� 2 Gj�
� �

: ð18Þ

The following proposition states that, under some
regularity assumptions, the pointwise definition (18)
coincides (locally) with (17). The technique that is used
in its proof is useful for the computation of derived
flags.

Proposition 3.2: Define G1j� for �2U by (18). Assume
that the family {!1, . . . ,!s} is pointwise independent on
U. Let � 2U be a regular point of G1. Then, G1 is locally
smooth around � and the two definitions (18) and (17) are
locally equivalent.

Proof: The proof is deferred to Appendix D. œ

Now let � : B�Y!B be an adapted projection.
Let G¼ span{!1, . . . ,!s}�B. Then, analogously to the

definitions above, one may define the relative derived
flags in two different ways. The first one regards
codistributions as C1(U )-modules

�1 ¼ span ! 2 G j _! 2 G� Yf g: ð19Þ

The second one is the pointwise definition. At a point
�2U, Gj� is a R-subspace of T ��U and then

G1j� ¼ span !j� 2 G j _!j� 2 Gj� � Yj�
� �

: ð20Þ

The following proposition generalises Proposition 3.2
to relative derived flags. As the proof is essentially the
same, it furnishes an algorithm for computing relative
derived flags.

Proposition 3.3: Define G1j� for �2U by (20). Assume
that the family {!1, . . . ,!s} is pointwise independent on
U. Let �2U be a regular point of G1. Then, G1 is locally
smooth around � and the two definitions (20) and (19) are
locally equivalent.

Proof: It is not difficult to show from (16) that the
proof of the proposition can be obtained from the
proof of Proposition 3.2 if one replaces _!j� by � _!j�
in that proof. œ

4. Classical state representations of implicit systems

The state representation problem studied in this article
is now stated in a precise manner.

Definition 4.1 (State representation problem for
implicit systems): Assume that a implicit system (6)
is regular. Consider the explicit system S with output y
defined by (7). Let v¼ (v1, . . . , vs) be a set of functions
defined around a point � 2 ~D � S, where ~D is defined by
(10).18 The set v is the input candidate of the implicit
system. The state representation problem for an implicit
system with input v around some point � 2 ~D is the
problem of finding a proper state representation ((za, z),
(va, v)) for the explicit system S, defined around �, that is
strongly adapted to subsystem Y, if one exists.

Remark 4.2: Roughly speaking, v is the data of the
problem, and the question is to verify the existence of
such z. By Definition 2.3, system S admits (locally)
a state representation ((xa, xb), (ua, ub)) with state rep-
resentation (9). If ub coincides with v in (9), then the
problem is solved. However, this is not necessarily
the case.

In fact, the problem is locally solvable around some
� 2 ~D, according to Definition 2.1, if and only if S
admits local state equations that are strongly adapted
to Y, given by

_za ¼ faðt, za, vaÞ ð21aÞ

_z ¼ fbðt, za, z, va, vÞ: ð21bÞ
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Furthermore, it follows by the proof of Proposition 2.5,

that ~D is locally equivalent to the implicit system (6),

(z, v) is a local state representation of ~D and the

implicit system admits local proper state equations of

the form

_z ¼ fbðt, 0, z, 0, vÞ: ð22Þ

The following theorem gives necessary and suffi-

cient conditions for the solution of the state represen-

tation problem for regular implicit systems.

Theorem 4.3: Let ((xa, xb), (ua, ub)) be a local proper

state representation of system S defined by (7) that is

adapted to Y. Let � be the associated adapted projection

(Section 3). Let Y be the codistribution, defined on S

by (8). Let � be the least nonnegative integer19

such that one may locally write that span dvf g �

spanfdxb, du
ð0Þ
b , . . . , du

ð�Þ
b g � Y.

Then the state representation problem for the

implicit system (6) with input v is solvable around

some �2S if and only if there exists a nonnegative

integer � such that, for the codistribution G0 defined by

G0 ¼ span dxb, du
ð0Þ
b , . . . , du

ð�Þ
b , � dvð0Þ

� �
, . . . , � dvð�Þ

� �n o
ð23Þ

and for the codistributions Gk defined by

Gk ¼ span ! 2 Gk�1j _! 2 Gk�1 þ Yf g ð24Þ

one has:

(i) Gk is finite-dimensional and nonsingular and

dimGk�1� dimGk¼ dim v for k¼ 1, . . . , �þ 1.
(ii) G�þ1�Y is integrable.
(iii) G0¼G1� span{� (dv(�))}.
(iv) The set V

(k)
¼ {�(dv(k))} is locally linearly

independent for k¼ 0, . . . , �.

The proof of Theorem 4.3 is based on the following

auxiliary results.

Lemma 4.4: Let S be the system (7). Let Y be the

codistribution defined by (8). Let ð ~z, ~vÞ ¼ ððza, zÞ, ðva, vÞÞ

and ð ~x, ~uÞ ¼ ððxa, xbÞ, ðua, ubÞÞ be two local proper state

representations of S that are strongly adapted to

subsystem Y around some point �2S.

(1) If one has20 span dvf g � spanfdxb,

dub, . . . , du
ð�Þ
b g � Y for �2N then

span dzf g � spanfdxb, dub, . . . , du
ð��1Þ
b g � Y.

(2) Let �2N be the smallest integer for which one

may locally write, span d ~uf g � spanfdt, d ~z, d ~vð0Þ,

. . . , d ~vð�Þg. If span d ~z, d ~vf g � spanfdt,

d ~x, d ~uð0Þ, . . . , d ~uð�Þg then �
 nþm�, where

n ¼ card ~x and m¼ card ũ.

Proof: See Appendix B. œ

The following corollary21 depends on the technical
conditions for the existence of strongly adapted state
equations given in Theorem E.2 of Appendix E.

Corollary 4.5: Let S be the explicit system with state
representation (x, u) defined by (7). Assume that the
conditions of Theorem E.2 hold. Let x¼ (xa, xb) and
u¼ (ua, ub) be strongly adapted state representation
constructed by Theorem E.2. Let ((za, z),(va, v)) be a
local proper state representation around �2S that is
also strongly adapted to the output subsystem Y. Let
�2N be an integer such that span{dv}� span{dt, dx,
du, . . . , du(�)}�Y. Then span{dz}� span{dt, dx,
du, . . . , du(��1)}�Y.

Proof: By Theorem E.2, span{dx}þY¼ span
{dxb}�Y and span{dx, du}þY¼ span{dxb, dub}�Y.
By differentiation of the last condition, it follows that
span dx,du,. ..,duð�Þ

� �
þY¼ spanfdxb,dub, ... ,du

ð�Þ
b g�Y

for �2N. The corollary then follows from Lemma 4.4.
Note that the (local) existence of such � is
implied by the fact that ft,xa,xb,ðu

ðkÞ
a ,u

ðkÞ
b :k2NÞg

is a local coordinate system for which Y¼

span t,xa,ðu
ðkÞ
a :k2NÞg

� �
. œ

Lemma 4.6: Assume that the local state representation
((z, za), (v, va)) of S is a solution of the state represen-
tation problem for a given implicit system (S, y).
Let �2N, and let Y be given by (8). Define
~G0 ¼ span dz, dvð0Þ, . . . , dvð�Þ

� �
� Y and ~Gk ¼ f! 2 ~Gk j

_! 2 ~Gkg, for k2N. Then,

~Gk ¼ span dz, dvð0Þ, . . . , dvð��kÞ
� �

� Y for 0 
 k 
 �:

ð25aÞ

~G�þ1 ¼ span dzf g � Y: ð25bÞ

Now, let � be an arbitrary adapted projection
(Section 3). Let Gk ¼ � ~Gk, and Lk¼ {�(dz),
�(dv(0)), . . . , �(dv(��k))}. Then Lk is linearly independent,
Gk¼ span{Lk} and ~Gk ¼ Gk � Y for k¼ 0, 1, . . . , �þ 1.

Proof: Some calculations show (25a) and (25b). Let ~�
be the adapted projection associated with the adapted
state representation ((z, za), (v, va)). Then ~�ðdzÞ ¼ dz
and ~�ðdvðkÞÞ ¼ dvðkÞ for k2N. In particular, the set
~Lk ¼ f ~�ðdzÞ, ~�ðdvð0ÞÞ, . . . , ~�ðdvð��kÞÞg is linearly indepen-
dent. The proof may be completed using (15) and
Proposition 3.1. œ

Lemma 4.7: Let � : B�Y!B be an adapted projec-
tion associated with some (strongly) adapted state
representation ((xa, xb), (ua, ub)) that is defined in some
open neighbourhood U of �. Assume that G�B is
nonsingular and finite-dimensional and suppose that
G�Y is integrable. Then there exists a set

6 P.S. Pereira da Silva and S. Batista
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z¼ {z1, . . . , zs} of s smooth functions that are locally
defined on some open neighbourhood V�U of �
such that, on V one has G¼ �(span{dz}), G�Y¼
span{dz}�Y, and the set {�dz1, . . . , �dzs} is linearly
independent pointwise.

Proof: Since G is nonsingular and finite dimensional,
one locally has G¼ span{!1, . . . ,!s} for convenient
one-forms !i defined on U. To say that G�Y is
integrable is equivalent to writing

d!i ¼
Xs
p¼1

�p ^ !p þ
Xna
j¼1

j ^ dxaj

þ
Xma

k¼1

X�
l¼1

�kl ^ duðl Þak þ � ^ dt

for convenient one-forms �p, j, �kj and � defined on U,
for p¼ 1, . . . , s, j¼ 1, . . . , na, k¼ 1, . . . ,ma and l¼
1, . . . ,�. This means that the finite-dimensional codis-
tribution G�Y� is integrable, where Y� ¼

spanfdt, dxa, du
ð0Þ
b , . . . , du

ð�Þ
b g. An application of finite-

dimensional Frobenius theorem constructs a local
basis W¼ {dw1, . . . , dwr} of G�Y�, where the wi are
smooth functions defined on some open neighbour-
hood of �. Hence we may locally complete the set
fdt,dxa,du

ð0Þ
a , . . . ,duð�Þa g with elements {dwi1

, . . . ,
dwis

}�W, forming a local basis of G�Y�. In
particular, one may chose z¼ (wi1

, . . . ,wis
).

Note that span{dz}�Y�¼G�Y�. In particu-
lar one has dimG¼ dim span {dz}¼ card z and
span{dz}þY¼G�Y. Since G�B, �jB is the identity
map, and ker �¼Y, then �(G� Y)¼G. Note also that
�(span{dz}þY)¼ � span{dz}. Hence G¼ � span{dz}.
Since dimG¼ dim span{dz}¼ card z, it follows that
the set {�dz1, . . . , �dzs} is independent. To con-
clude the proof, note that

Ps
i¼1�i dzi þ �i ¼ 0 for

some �i2Y implies that
Ps

i¼1�i� dzi ¼ 0. Hence
span{dz}\Y ¼ {0}. œ

Lemma 4.8: Let (x, u)¼ ((xa, xb), (ua, ub)) be a state
representation that is defined in some open neighbour-
hood U of � and assume that it is strongly adapted to the
output subsystem Y. Let z, v be sets of smooth functions
defined on U such that

(1) {dz, dv(0), . . . , dv(�)} is linearly independent
modulo Y at every point � of U.

(2) span{d _z}� span{dz, dv}�Y.
(3) span{dxb}� span{dz, dv(0), . . . , dv(��1)}�Y and

span{dub}� span{dz, dv(0), . . . , dv(�)}�Y for
some �2N.

Let c2N. Let ~xa ¼ ðxa, u
ð0Þ
a , . . . , uðc�1Þa Þ and ~ua ¼ uðcÞa .

There exists a convenient c2N and an open neighbour-
hood V�U of � such that, ðð ~xa, zÞ, ð ~ua, vÞÞ is also a local

state representation that is (strongly) adapted to Y on V
with local state equations given by

_xa ¼ faðt, ~xa, ~uaÞ ð26aÞ

_z ¼ fzðt, z, v, ~xa, ~uaÞ: ð26bÞ

Proof: See Appendix C. œ

Proof (of Theorem 4.3):
(Necessity).ByDefinition 4.1, there exists a local proper
state representation ((za, z), (va, v)) of S that is strongly
adapted toY. In particular ft, z, za, ðv

ðkÞ
a , v(k) : k2N)} is a

local coordinate system of the diffiety S. LetY be given by
(8). Then, by part (1) of Lemma 4.4, one has span{dxb}�
span{dz, dv(0), . . . , dv(��1)}�Y, and span{dub}�
span{dz, dv(0), . . . , dv(�)}�Y, for � big enough. In the
same way, one may locally write22 span dzf g � spanfdxb,
du
ð0Þ
b , . . . , du

ð��1Þ
b g � Y and span dvf g � spanfdxb,

du
ð0Þ
b , . . . , du

ð�Þ
b g � Y for some convenient �. Now take

�¼ �þ �. Since

span d _xbf g � span dxb, dubf g � Y, ð27Þ

by derivation, it follows that

span dxb, du
ð0Þ
b , . . . , du

ð�Þ
b

n o
� Y

� span dz, dvð0Þ, . . . , dvð�Þ
� �

� Y: ð28Þ

Let B ¼ spanfdxb, ðdu
ðkÞ
b : k 2 NÞg. Let � : B�Y!B

be the corresponding adapted projection. Recall that
�jB is the identity map and �(Y)¼ 0. Let G0 be defined
by (23). Then it is clear that �(G0�Y)¼G0.

Now define �0 ¼ spanfdxb, dub, . . . , du
ð�Þ
b , dz,

dvð0Þ, . . . , dvð�Þg. It is clear that G0¼ ��0. By
Proposition 3.1 for k¼ 0, G0�Y¼�0þY. By (28),
one has �0þY¼ span{dz, dv(0), . . . , dv(�)}�Y. By
Definition 4.1 (see also Definition 2.1), one notes that
{t, z, za, (v

(k), va(k) : k2N)} is a local coordinate system
and Y ¼ span{t, za, (va(k) : k2N)}. It follows that
span{dz, dv(0), . . . , dv(�)}\Y ¼ 0. Then �0þY¼

span{dz, dv(0), . . . , dv(�)}�Y. In particular, from
Proposition 3.1 for k¼ 0, one shows that, for � and �
previously constructed, then G0�Y¼ span{dz,
dv(0), . . . , dv(�)}�Y.

The proof of necessity can be reached using
Lemma 4.6.

(Sufficiency). It will be shown first that

� span dvð0Þ, . . . , dvð��kÞ
� �� �

� Gk, k ¼ 0, . . . , � ð29aÞ

and that

Gk ¼ Gkþ1 � � span dvð��kÞ
� �� �

, k ¼ 0, . . . , �: ð29bÞ

Take �0 ¼ spanfdxb, du
ð0Þ
b , . . . , du

ð�Þ
b , dvð0Þ, . . . , dvð�Þg.

Note that G0¼ ��0. Then, the condition (29a) is a
straightforward consequence of the definition of (23),
(24) and Proposition 3.1. Equation (29b) will be shown
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by induction. Note that (29b) coincides with (iii) for
k¼ 0. Assume that it holds for some k,
with 0
 k
 �� 1. Let V��k�1¼ �(span{dv

(��k�1)}).
By contradiction, assume that {Gkþ2\V��k�1}j� 6¼ {0}
for some � in the neighbourhood of definition of the
state representation ((xa, xb), (ua, ub)). By (iv), (29a)
and the nonsingularity of Gkþ1, one may construct a
local basis of Gkþ1 of the form {!1, . . . ,!s,
�(dv(��k�1))}. Let !2Gkþ2þV��k�1 be a smooth one
form locally defined on S such that !�¼!(�) 6¼ 0 and
!�2 {Gkþ2\V��k�1}j�. Since Gkþ2�Gkþ1, this is equiv-
alent to say that ! ¼

Ps
i¼1 �i!i þ

Pdim�
j¼1 �j�ðdv

ð��k�1Þ
j Þ,

where �ij�¼ 0 for all i¼ 1, . . . , s, but some �ij� 6¼ 0. It
follows from (24) that

_! ¼
Xs
i¼1

½ _�i!i þ �i _!i� þ
Xdim v

i¼1

½ _�j�ðdv
ð��k�1Þ
j Þ

þ �j�ðdv
ð��kÞ
j Þ� 2 Gkþ1 þ Y:

Note that
Ps

i¼1 _�i!i þ
Pdim v

i¼1
_�j�
�
dv
ð��k�1Þ
j

�
2 Gkþ1.

It follows that �j� ¼
�Pdim v

i¼1 �j�ðdv
ð��kÞ
j Þ

�
j� 2 Gkþ1j��

Yj�. But �j� is in the image of � and hence it is easy to
show23 that �j�2Gkþ1j�. Hence, �j�2Gkþ1j�\V��kj�,
with �j� 6¼ 0 and this contradicts the induction
hypothesis.

Now it is easy to see that (29b) is a consequence
of (29a), of (iv), of the fact that Gkþ1\

span{�(dv��k)}¼ 0, and of the fact that dimGk� dim
Gkþ1¼ dim v, for k¼ 0, 1, . . . , �þ 1. Applying Lemma
4.7 to G�þ1, one may write G�þ1¼ � (span{dz}), where
the set �(dz)¼ {�(dz1), . . . , �(dzs)} is linearly indepen-
dent. From (29b) it follows that the set Lk¼ {�(dz),
�(dv(0)), . . . , �(dv(��k))}, k¼ 0, . . . , � is linearly indepen-
dent and Gk¼Lk for k¼ 0, . . . , �.

By (23), one may write

span dubf g � G0 ¼ L0: ð30Þ

Now, by (27) and (24) with k¼ 1, it follows that

span d _xbf g � G1 ¼ L1: ð31Þ

Let Hk¼ span{dz, dv(0), . . . , dv(��k)}. Hence Lk¼ �Hk

and from (13), it follows that

Hk þ Y ¼ Lk � Y, k ¼ 0, . . . , �þ 1: ð32Þ

Now note that

(1) Since L0 is linearly independent,24 then {dz,
dv(0), . . . dv(�)} is linearly independent modulo Y.

(2) span d _zf g � span dz, dvf g � Y (by the definition
of Gk in (i), from the fact that Gk¼Lk, and
from (32)).

(3) span{dxb}� span{dz, dv(0), . . . , dv(��1)}�Y and
span dub� span{dz, dv(0), . . . , dv(�)}�Y (by
(30)–(32)).

The proof of sufficiency then follows from
Lemma 4.8. œ

The next result is an ‘intrinsic’ version of
Theorem 4.3. It is not suitable for computations,
because it deals with rather abstract, infinite-
dimensional objects. However, it is useful in order to
compare the main result with the ones of Pereira da
Silva and Batista (2009) (Section 6).

Theorem 4.9: Assume that the conditions of
Theorem E.2 hold (Appendix E ). Consider the explicit
system (6). Let Y be the codistribution, defined on S by
(8). There exists � 2N such that � is the least integer for
which span{dv}� span{dt, dx, du, . . . , du(�)}�Y. Then
the state representation problem for the implicit system
(6) with input v is solvable if and only if there exists a
non-negative integer � such that, for the codistribution
~G0 defined on S by

~G0 ¼ span dx, duð0Þ, . . . , duð�Þ, dvð0Þ, . . . , dvð�Þ
� �

þ Y

and for ~Gk ¼ span ! 2 ~Gk�1 j _! 2 ~Gk�1

� �
, we have

(i) ~Gk=Y is finite dimensional and nonsingular for
k¼ 0, . . . , �þ 1, and dim

~Gk�1

Y
� dim

~Gk

Y
¼ dim v

for k¼ 1, . . . , �.
(ii) ~G�þ1 is integrable.
(iii)

~G0

Y
¼

~G1

Y
� ~Vð�Þ, where ~Vð�Þ ¼ span dvð�ÞmodY

� �
.

(iv) The set {dv(k) modY} is locally linearly inde-
pendent for k¼ 0, . . . , �.

Proof: If the conditions of Theorem E.2 hold, then
one may construct the strongly adapted state repre-
sentation ((xa, xb), (ua, ub)) following the steps (A),
(B), (C) and (D) at the end of that theorem. By
construction, span{dx}þY¼ span{dxb}�Y and
span{dx, du}þY¼ span{dxb, dub}�Y. By differentia-
tion, span dx, duð0Þ, . . . , duðkÞ

� �
þ Y ¼ spanfdxb, du

ð0Þ
b ,

du
ðkÞ
b g � Y. The existence of � is a simple consequence

of the last equality and the fact that
ft, xa, xb, ðu

ðkÞ
a , u

ðkÞ
b : k2NÞg is a local coordinate

system such that Y ¼ span dt,xa,ðu
ðkÞ
a : k2NÞ

� �
(see the

Proof of Corollary 4.5). The result follows easily from
the proof of Theorem 4.3, Proposition 3.1 and the
properties of adapted projections (Section 3). œ

Remark 4.10: The conditions of the Theorems 4.3
and 4.9 are equivalent. However, the conditions of
Theorem 4.9 are more intrinsic than the ones of
Theorem 4.3, since they do not rely on a particular
choice of the adapted state representation, but only on
some geometric properties of the original state repre-
sentation (x, u) of S. Theorem 4.3 is more suitable
for the computations of a given example, to verify the
solvability of the state representation problem, and to
construct solution, if one can integrate G�þ1þY. Note
also that part (2) of Lemma 4.4 may furnish a bound
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for �. In fact, in the proof of Theorem 4.3, one takes
�¼ �þ �, and so as � is bounded by Lemma 4.4, then �
is also bounded by nþ (mþ 1)�, where n¼ dim x and
m¼ dim u.

5. Examples

Example 1: Consider the implicit system

_x1ðtÞ ¼ u1 þ 2x3u2

_x2ðtÞ ¼ tx3 þ 2ðx1 þ 1Þu1 þ 4x1x3u2

_x3ðtÞ ¼ u2ðtÞ

yðtÞ ¼ x1 � x23 ¼ 0:

Let x¼ (x1, x2, x3) and u¼ (u1, u2). The input candidate
for this example is v ¼ tx3 þ u1 x1 � x23

� �
. First apply

Theorem E.1 of Appendix E. In fact, if one writes
differentials in the basis {dt, dx, du}, representing them
as row vectors, one may compute the 6� 9 matrix
M1 ¼ ½ðdyÞ

T
ðd _yÞTðdtÞTdxT�T.

It can be shown that the assumptions of
Theorem E.1 hold for �¼ 1. In fact, (2) is consequence
of the fact that the submatrix of M1 formed, respec-
tively, by 1st, 3rd, 4th, 5th and 6th rows has constant
rank and equal to 4. Note that (3) is consequence of
the fact that M1 has constant rank, equal to 7. It is
easy to deduce from the rows of M1 that (4) follows.
Furthermore, note that dim span dxf g\

�
span dt, dy

� �
Þ �

dimðspanfdxg \ spanfdt, dy, d _yg
�
¼ dimðspanfdxgþ

dim(span{dt , dy}) � dim(span{dt , dx, dy}) �dim�
spanfdxg

�
� dim

�
spanfdt,dy,d _yg

�
þ dim

�
spanfdt,dx,

dy,d _yg
�
¼ 3þ 2� 4� 3� 3þ 5¼ 0. Hence, (1) holds.

Following the steps (A), (B), (C) and (D) at the end of
Theorem E.1, it is possible to choose xa¼ y¼ x1�x23,
ua¼ _y¼ u1, xb¼ (x2, x3) and ub¼ u2. If one replaces ub
by v, then condition (D) will be not respected any
more. Then one may proceed with the algorithm of
Appendix F.

In order to perform the next computations, it
is useful to write the one-forms in the basis B2 ¼

fdt, dxb, dub, d _ub, d €ub, dxa, dua, d _ua, d €uag, instead of
considering the original basis B1 ¼ fdt, dx, du,
d _u, d €ug. This allows one to compute the adapted
projection � concerning the adapted state representa-
tion ((xa, xb), (ua, ub)).

Writing dv in the basis B2, one obtains dv¼
x3 dtþ t dxb2. From this, one concludes that �¼ 0.
Now choose �¼ 2, and construct25

G0 ¼ span dt, dxb, dub, � dv, � d _v, � d €vf g

For a one-form !, the adapted projection �! is
obtained by writing ! in the basis fdt, dxb,
ðdu
ðkÞ
b : k 2 NÞ, dxa, ðdu

ðkÞ
a : k 2 NÞg and by deleting the

components in dt, dxa, ðdu
ðkÞ
a : k 2 NÞ (Section 3).

Note that � dv¼ txb1, � d _v ¼ dxb2 þ t dub, and � d €v ¼

2dub þ td _ub.
In particular, for26 t 6¼ 0, one obtains G0 ¼

span dt, dxb, dub, d _ubf g. From (9), it is clear that

span d _xbf gmodY � span dxb, dubf gmodY. It follows

from (16) that G1¼ span{dt, dxb, dub}, and that

G2¼ span{dt, dxb}. To compute G3, note that:

� dxb1¼� dxb2þ 4x3x1 dub, and that � dxb2¼ dub.

Then, one may show from (16) that G3¼ span{dt,

dxb1� 4x3x1dxb2}¼ span{dt, dx2� 4x3x1dx3}. Now, as

G3þ span{dy} is integrable, all the assumptions of

Theorem 4.3 hold. To see that G3þ span{dy} is

integrable, it suffices to notice that dy¼dx1� 2x3 dx3,

hence G3 þ span dy
� �

¼ span dt, dx2 � 2x1 dx1, dy
� �

¼

span dt, d ðx2 � x21Þ, dy
� �

. Thus, one may choose

z ¼ x2 � x21. Now, after some computations27, it

follows that _z ¼ _yþ v� y _y. Remember that, by the

proof of Theorem 4.3, ((z, xa), (v, ua)) is a strongly

adapted state representation with state equations

given by

_xa ¼ ua

_z ¼ vþ xa � xaua:

Hence, a state representation of the implicit system is

obtained by taking y¼xa¼ 0 and _y ¼ ua ¼ 0 (Remark

4.2). In particular, one gets the state representation

_z ¼ v:

Example 2: Consider the input–output equations

(with output w¼ (w1,w2) and input v¼ (v1, v2))

given by:

�v1 _w1þ e _w1 þ1
� �

€w1�w1 _v1þ e _w1þ _w1�w1v1
� �2

þv2¼ 0

_w2þw2 e _w1þ _w1�w1v1
� �

v1¼ 0:

One may convert these equations into a system of

the form (6) in the following way. Choose x ¼

ðx1, . . . , x8Þ ¼ ðw1, _w1, €w1,w2, _w2, v1, _v1, v2Þ and let

u ¼ ðu1, u2, u3, u4Þ ¼ ðw
ð3Þ
1 , _w2, v

ð2Þ
1 , _v2Þ. The input–

output equations can be written as

_x¼ f ðx,uÞ

y1¼�x6x2þðe
x2 þ1Þx3�x1x7þðe

x2 þx2�x1x6Þ
2
þx8

¼ h1ðx,uÞ ¼ 0

y2¼x5þx4x6ðe
x2 þx2�x1x6Þ ¼ h2ðx,uÞ ¼ 0

with f (x, u)¼ (x2x3u1x5u2x7u3 u4)
T which is in the form

(6). Note that w1¼ x1, w2¼ x4, v1¼ x6 and v2¼x8.

Now, after some symbolic computations,28 one can

show that the assumptions of Theorem E.1 hold for

�¼ 1. Since @y1
x8
¼ 1 and @y2

x5
¼ 1, it is possible to choose

xa¼ y¼ ( y1, y2), ua ¼ _y and xb¼ (x1, x2, x3, x4, x6, x7).

Since @ _y1
u4
¼ 1 and @ _y2

u2
¼ 1, then one can choose
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ub¼ (u1, u3). Since o ub cannot be replaced by v (while

respecting the construction of the step (D) of Theorem

E.1), one must proceed with Algorithm F. As in the

previous example, it is easy to show that �¼ 0. One will

choose29 �¼ 2. Denote xb¼ (xb1, xb2, xb3, xb4, xb5, xb6)

and ub¼ (ub1, ub2). After some symbolic computations,

one obtains

G0¼ span dxb,dub, ð�1� ex2Þd _ub1 þx1 d _ub1
� �� �

G1¼ span dxb, ð�1� ex2 Þdub1 þx1 dub1
� �� �

G2¼ span dxb1 ,dxb2 ,dxb4 ,dxb5 , ð�1� ex2Þdxb3 þx1 dxb6
� �� �

G3¼ span dxb1 ,dxb4 , ð�1�ex2 Þdxb2 þx1 dxb5
� �� �

:

Note that G3¼ span{dx1, dx4,[(�1� ex2)] dx2þ

x1dx6]}¼ span{dx1, dx4, d(�x2�e
x2þ x1x6)}. In parti-

cular, G3 is integrable.
30 One may take z¼ (z1, z2, z3)¼

(x1, �x2�e
x2þ x1x6, x4). Note that the function � :

R!R defined by x2 � [x2þ ex2] is invertible with

inverse  : R!R. In particular, one may write

x2¼ (�z2þ x1x6). After some computations one

obtains the strongly adapted state representation:
_xa ¼ ua, _z1 ¼  ð�z2 þ z1v1Þ, _z2 ¼ z22 þ v2 � xa1 , _z3 ¼

z2z3v1 þ xa2 . Taking y¼xa� 0, one obtains the follow-

ing (classical) realisation for the original input-output

equations (with input (v1, v2) and output (w1, w2)):

_z1 ¼  ð�z2 þ z1v1Þ

_z2 ¼ z22 þ v2

_z3 ¼ z2z3v1

w1 ¼ z1

w2 ¼ z3:

Example 3: Consider the implicit system:

_x1 ¼ u1 þ ax4 þ ax6 þ ðax1 � ax3Þ
2
þ ðax2 � ax6Þu3

_x2 ¼ eðax3þax5Þu1 þ u2 þ u4

_x3 ¼ �u1 þ ax4 þ ax6 þ ðax1 � ax3Þ
2
þ ðax2 � ax6Þu3

_x4 ¼ �e
ðax3þax5Þu1 þ u2 þ u4

_x5 ¼ u1 þ ax4 þ ax6 � ðax1 � ax3Þ
2
� ðax2 � ax6Þu3

_x6 ¼ eðax3þax5Þu1 þ u2 � u4

_x7 ¼ ax1 � ax3 þ ðax2 � ax4Þu2

y1 ¼ ax1 � ax3 ¼ 0

y2 ¼ ax2 � ax4 ¼ 0,

where a¼ 1/2. Let v¼ [u3, u4]. Computations with

MATLAB/MAPPLE shows that the assumptions of

Theorem E.1 holds for �¼ 3 (but they hold neither for

�¼ 1 nor for �¼ 2). From steps (A) to (D) at the end

of that theorem, it is possible to show that one may

choose xb¼ (x5, x6,x7), ub¼ v¼ [u3, u4], xa¼ y and

ua ¼ _y. In particular, the problem of state representation

with input v for this implicit system is solvable and one
may take z¼ xb¼ (x5, x6, x7) (Remark 4.2).

Example 4: Consider the same system of Example 3,
but include the new component y3¼x7 to the output.
Now, choose �y ¼ ð y1, y2Þ and by ¼ y3. Since
dim span dt, dy, d _y, d €y

� �
¼ dim span dt, d �y, d_�y, d€�y

� �
, it

is easy to show that the assumptions of Theorem E.2
hold. One may show that, in this case, the steps (A) to
(D) at the end of that theorem are satisfied for
xb¼ (x5, x6), ub¼ v, xa ¼ �y, ua ¼ �yð1Þ. In particular,
from Remark 4.2 the problem of state representation
with Input v for this implicit system is solvable and one
may take z¼ xb¼ (x5, x6).

Example 5: Recall that the proof of Theorem 4.3
shows that system (7) admits (locally) a strongly
adapted state representation (21). From this, one
may take za� 0 and va� 0, obtaining the state repre-
sentation of the implicit system given by (22).

The present example shows that the conditions of
Theorem 4.3 are not necessary for the existence of a
classical state representation of the implicit system with
input v. In fact an implicit system (6) may admit a
classical state representation (5) that is not associated
to any strongly adapted state representation (21) of (7).

For instance, consider the system _x1¼x2, _x2¼
x3þu2, _x3¼ u1, _x4¼ x3þx1u

2
1, y¼x1� ¼ 0, with

2R. Considering the explicit system S (by disregard-
ing the constraint y� 0), let xa¼ðx1,x2Þ, va¼ _x2¼
x3þu2, xb¼ (x3, x4), ub¼ u1. Then it is possible to show
that Theorem E.1 holds with �¼ 2. So ((xa,xb), (ua,
ub)) is a strongly adapted state representation of S with
state equations given by

_x1 ¼ x2

_x2 ¼ va

_x3 ¼ u1

_x4 ¼ x3 þ x1u
2
1:

One concludes that the implicit system admits the state
representation

_x3 ¼ u1

_x4 ¼ x3 þ u
2
1:

Considering ¼ 0, simple computations show that the
implicit system admits a proper state representation
with input v¼ x3, namely, _x4 ¼ v. However, it is not
difficult to show that the assumptions of Theorem 4.3
are not satisfied for any �2N (for any 2R).

6. Conclusions

The main result of this article may be interpreted in the
following way. Recall that the conditions obtained in

10 P.S. Pereira da Silva and S. Batista
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Pereira da Silva and Batista (2009) rely on an
integrability test based on a derived flag obtained
from the codistribution G0¼ {dt, dx, du(0), . . . , du(�),
dv(0), . . . , du(�)}, where � and � are convenient integers.
Theorem 4.3 of this article can be viewed as a
generalisation of Pereira da Silva and Batista (2009,
Theorem 1), by taking quotients with respect to the
codistribution Y ¼ span{dt, (dy(k) : k2N}, that is gen-
erated by the differentials of time and the constraint
functions y and their derivatives. When there are no
constraints, then Y ¼ span{dt} and Theorem 4.3
reduces to Theorem 1 of Pereira da Silva and
Batista (2009).

The class of systems of the form (6) include input–
output equations (Example 2) and implicit systems of
the form31

Fðt,wðtÞ, _wðtÞÞ ¼ 0: ð33Þ

In fact, given the system (33), let x¼w and u ¼ _w.
Then the system _xðtÞ ¼ uðtÞ, yðtÞ ¼ FðxðtÞ, uðtÞÞ ¼ 0 is
of the form (6).
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Notes

1. See Appendix A for a definition of classical state
representation in the context of diffieties that holds for
time-varying systems.

2. This choice may be regarded as a virtual input, as in the
context of back-stepping, see Krstic, Kanellakopoulos,
and Kokotovic (1995).

3. The statement as it stands is imprecise in the sense that
some technical assumptions are deferred to Section 4
and also because the word ‘equivalent’ is yet to be
defined (Definition 2.4).

4. The class of state representations of D that are consid-
ered in this article are restricted to the ones that are
induced from a state representations of S that is strongly
adapted to the output subsystem Y (Definitions 2.1, 4.1
and Remark 4.2).

5. The original input is not necessarily coincident with v.
6. This means that the differential ideal generated by � is

differentially closed (Warner 1971).
7. It must be pointed out again that y¼ h(t, x, u) is

regarded as an output rather than a constraint.
8. The definition of state representation given in

Appendix A considers that {t, x, u(0), u(1), . . .} is a local
coordinate system, and so the variables t, x, x, u(0),
u(1), . . . must not be linked by any relation.

9. See Pereira da Silva and Corrêa Filho (2001), Pereira da
Silva et al. (2008).

10. The weaker definition of adapted state equations con-
sidered in Theorem 4.3 of Pereira da Silva and Corrêa
Filho (2001) is obtained if one replaces the assumptions
(C) and (D) by the only assumption that Y ¼
span dt, dxa, ðdu

ðkÞ
a : k 2 NÞ

� �
. This last theorem also

shows that the output subsystem is locally unique up
to local Lie–Bäcklund isomorphisms.

11. Using (C) and (D), one may show that fa does not
depend on t.

12. By definition, G is a control system if it locally admits a
state representation around every point � 2G.

13. Since 	* injective, it can be shown that Cartan field @ ~D of
~D may be canonically defined by 	�@ ~D ¼

d
dt � 	, where

d
dt is the Cartan field of S.

14. Using the same name of xb as a set of local coordinate
functions of ~D and S is an abuse of notation. One could
write for instance ~xb and consider that ~xb ¼ xb � 	.

15. Isomorphisms of modules, or isomorphism of vector
spaces, depending on the case.

16. In the context of exterior differential systems, derived
flags are defined by ~Gk ¼ f! 2 ~Gk j d! 2 ð ~GkÞg. Such
derived flags are considered in Pereira da Silva and
Corrêa Filho (2001). Under the assumption of the
integrability of the members of the derived flag,
Equation A.4 of that paper shows the equivalence
between the last definition and the one considered in
this work. See also Pereira da Silva (2008) for a similar
situation.

17. Equation (16) is a suitable form for computations, since
it refers only to finite-dimensional objects.

18. Recall that the components of v may depend on t, x, u,
u(1), . . . .

19. The existence of the integer � is assured by the fact that a
state representation is a local coordinate system.

20. If �¼ 0, then spanfdxb, dub, . . . , du
ð��1Þ
b g stands for

span{dxb}.
21. This corollary is used only in Theorem 4.9.
22. If �¼ 0, one assumes that span{dz}� span{dxb}�Y.
23. Since Gkþ1�B, �jB is the identity map, ker �¼Y,

�(�j�)¼ �j�2 �(Gkþ1j�þYj�)¼Gkþ1j�.
24. If ! ¼

P
i�i dzi þ

P
j, k �jkdv

ðkÞ
j þ � ¼ 0, where �2Y, for

convenient smooth functions �i, �ij, then �!¼ 0 and
ker �¼Y implies that L0 is linearly dependent.

25. The reader may verify that the assumption (iii) of
Theorem 4.3 fails for �¼ 0 and �¼ 1.

26. Note that every point of S such that t¼ 0 is a singular
point of G0.

27. These computations were performed by Matlab/Maple�.
28. These symbolic computations were also performed by

Matlab/Maple�.
29. The reader may verify that the assumption (iii) of

Theorem 4.3 does not hold for �¼ 0 and �¼ 1.
30. Without the need of summation with Y.
31. Explicit systems can be also converted to the form (33)

(Lévine 2006).
32. This is equivalent to saying that the function t is a

submersion, and the fact that d
dt ðtÞ ¼ 1 is equivalent to

saying that that the function t is Lie–Bäcklund, when R

is regarded as a diffiety with trivial Cartan field.
33. See the definition of solution given in this section.
34. Since ft, xa, uaðu

ðkÞ
a , u

ðkÞ
b : k 2 NÞg is a local coordinate

system, such � always exists (locally).
35. Complete locally the independent one-forms of B,

regarded as column vectors, to a local basis of T ��U
forming a locally invertible matrix T (one may need to
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restrict the open set V�). The coefficients a j
i and b j

l may
be computed from the first sþ k components of T�1 _!jþk,
locally around �.

36. From (7), it is clear that the state representation (x, u)
is classic (that is, span d _xf g � span dt, du, dxf g)
and the output is also classic (that is
span{dy}� span{dt, du, dx}).

37. As in Theorem E.1, the state representation (x, u) is
classical and span{dy}� span{dt, dx, du}.

38. It shows that the result of Theorem 4.3 is independent of
the adapted state representation (9) that is chosen.

39. In this algorithm, one will call the problem of state
representation for the implicit system D with input v
simply by problem.

40. As Theorem E.1 is a particular case of Theorem E.2, and
the assumptions of Theorem E.2 are generically implied
by the properties of the dynamic extension algorithm,
if those theorems do not work for �
 n, then � is not a
generical point (Pereira da Silva et al. 2008). In this case
it is not known if it is useful to try to choose �4 n.

41. See Remark 4.2.
42. See Remark 4.10.
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‘Linéarisation Par Bouclage Dynamique Et
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Appendix A. Diffieties and systems

This appendix is a very brief summary of some facts about
the infinite-dimensional approach of Fliess et al. (1993),
Pomet (1995), Fliess et al. (1999). A survey about this subject
can be found in Pereira da Silva et al. (2008).
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R
A-Manifolds, diffieties and systems. The infinite-dimen-

sional approach of Fliess et al. (1999) relies on R
A manifolds.

For an introduction to this kind of manifolds the reader may
refer to Zharinov (1992).

An ordinary diffiety is an R
A-manifold for which there

exists a field d
dt, called Cartan field.

A system S is a pair (S, t), where S is an ordinary diffiety
and t :S!R is a function, called time, such that d

dt ðtÞ ¼ 1
and such that around any point � 2S there exists local
coordinates of S of the form (t, �).32

State space representation and outputs. A local state repre-
sentation of a system (S, t) is a local coordinate system
 ¼ {t, x,U}, where x¼ {xi, i2 bnc},U ¼ fu

ðkÞ
j j j 2 bme,

k 2 Ng. The set of functions x¼ (x1, . . . , xn) is called state
and the set u¼ (u1, . . . , um) is called input.

In these coordinates the Cartan field is locally written by

d

dt
¼
@

@t
þ
Xn
i¼1

fi
@

@xi
þ
X
j2bme
k2N,

uðkþ1Þj

@

@uðkÞj
:

ðA1Þ

It follows from (A1) that L d
dt
uðkÞ ¼ d

dt ðu
ðkÞÞ ¼ uðkþ1Þ. So the

notation u(k) is consistent with the fact that, along a
solution,33 it represents the differentiation of u(k�1) with
respect to time.

A state representation of a system S is completely
determined by the choice of the state x and the input u and
will be denoted by (x, u). An output y of a system S is a set of
functions defined on S. A state representation is said to be
classical (or proper) if fi does not depend on u(�) for �4 1. A
control system S is a system such that there exists a local state
representation around every � 2S.

System associated with differential equations. Now assume
that a control system is given by a set of equations

_t ¼ 1

_xi ¼ fiðt, x, u, . . . , uð�iÞÞ, i 2 bne

yj ¼ �j ðx, u, . . . , uð�j ÞÞ, j 2 b pe: ðA2Þ

One can always associate with these equations, a diffiety S
of global coordinates  ¼ {t, x,U } and Cartan field given
by (A1).

Solutions. A solution of a system S with Cartan field d
dt is

a smooth map 
 : (a, b)!S, where (a, b)�R, such that
_
ðtÞ ¼ d

dt ð
ðtÞÞ.

Subsystems. A (local) subsystem Sa of a system S with time
notion t is a pair (Sa, �), where Sa is a system with a time
notion �a and Cartan field @a, and � is a Lie–Bäcklund
submersion � : U�S!Sa between the system U�S and Sa

such that �a ��¼ t. A local state representation x¼ (xa, xb),
u¼ (ua, ub) is said to be adapted to a subsystem Sa if we
locally have

_xa ¼ faðt, xa, ubÞ ðA3aÞ

_xb ¼ fbðt, xa, xb, ua, ubÞ ðA3bÞ

and (xa, ua) is a local state representation of Sa with state
equations (A3a).

Equivalence. Two systems S1 and S2 with time notions,
respectively, given by �1 and �2 are said to be equivalent by
endogenous feedback if there exists a Lie–Bäcklund diffeo-
morphism � : S1!S2 (also called Lie–Bäcklund

isomorphism), such that �1¼ �2 ��. Recall that this notion
does not imply input–output equivalence. If yi and ui are,
respectively, an output and an input for Si, i¼ 1, 2, then �
preserves the output and the input if y1¼ y2 �� and u1¼ u2 ��.
Clearly, if S1 and S2 are equivalent by endogenous feedback
and � preserves the output and the input, then S1 and S2 are
also input–output equivalent. In fact, a solution 
(t) of S1,
corresponding to an initial condition 
(t0) and an input
u1 � 
(t), is transformed into a solution � � 
(t) of S2

corresponding to the initial condition � � 
(t0) and the same
input–output behaviour.

Appendix B. Proof of Lemma 4.4

To prove part (1), let a2N and let Ha stand for

spanfdxb, du
ð0Þ
b , . . . , du

ðaÞ
b g. If span{dz}� span{dxb}�Y, one

may take �¼ 0. So assume that span{dz} 6� span{dxb}�Y.

Let �2N be such that span{dz}�H��Y, but span{dz} 6�

H��1�Y, where Y is defined by (8). Since ft, xa, xb,

ðuðkÞa , uðkÞb : k 2 NÞg is a local coordinate system and

Y ¼ span dt, dxa, ðdu
ðkÞ
a : k 2 NÞ

� �
, as one assumes that and

span{dz} 6� span{dxb}�Y, it is clear that there exists such �

(locally). As ((za, z), (va, v)) is proper, then span d _zf g �

span dz, dvf g � Y. Note that

dz ¼
Xnb
i¼1

�i dxbi þ
X�
j¼0

Xmb

k¼1

jk du
ð j Þ
bk
þ �,

where �2Y and � i, jk are smooth functions defined on
U�S. Since span{dz} 6�H��1�Y, then some function �j is
not identically zero for some j2 {1, . . . ,mb}. So,

d _z ¼
Xnb
i¼1

ð _�i dxbi þ �i d _xbi Þ þ
X�
j¼0

Xmb

k¼1

_jk du
ð j Þ
bk
þ jk du

ð jþ1Þ
bk

	 

þ _�:

The properness of the state representation implies that
span d _xbf g � span{dxb, dub}�Y. It follows that span d _zf g �
H�þ1 � Y, but span d _zf g 6� H� � Y. Since span d _zf g �
span dz, dvf g � Y, it follows that span{dv} 6�H��Y.

Now assume that for some34 �2N, one has
span{dv}�H��Y. Assume by contradiction that
span{dz} 6�H��1�Y. Then �
�, with � defined above.
Then, from the reasoning above, span{dv} 6�H� and so
span{dv} 6�H�(�H�), which is an absurd. Part (2) is a direct
consequence of Pereira da Silva et al. (2008, Lemma 1,
part 2).

Appendix C. Proof of Lemma 4.8

The following two results are instrumental for the proof of
Lemma 4.8.

Lemma C.1 (Lemma 2 of Pereira da Silva et al. (2008): Let
(x, u) be a local proper state representation of a system S
around some � 2S and let �x ¼ ð �x1, . . . , �xsÞ and �v ¼ ð �v1, . . . , �vmÞ
be sets of functions defined on the diffiety S. Suppose that
span d �x, d �vf g � span dt, dx, duf g. Then ð �x, �vÞ is a local state
representation of S around � if and only if there exist �2N

such that

. The set S ¼ fdt, d �x, d �v, . . . , d �vð�Þg is linearly inde-
pendent pointwise in an open neighbourhood of �.
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. One has span dxf g � span dt, d �x, d �vð0Þ, . . . , d �vð��1Þ
� �

,
in an open neighbourhood of �.

. One has span d _�x,du
� �

� span dt,d �x,d �vð0Þ, . . . ,d �vð�Þ
� �

in an open neighbourhood of �.

Lemma C.2: Let S be a R
A manifold and let �2S. Let

 ¼ {(xi, i2A), (yj, j2B)} be a local coordinate system defined
in an open neighbourhood V� of �. Let Y ¼ span{dyj, j2B} and
let {!1, . . . ,!s} be a set of one-forms defined on V�. Let ! be
a one-form such that !2 span{!1, . . . ,!s}þY. Then there
exists a finite subset F�B such that !2 span{!1, . . . ,!s}þ
span{dyj, j2F }.

Proof: One may locally write

!l ¼ ~!l þ
X�i
j¼1

�ij dyj,

~!l ¼
Xl
i¼1

�li dxi:

ðA4Þ

In particular, ! 2 span ~!1, . . . , ~!sf g þ Y as C1(V�)-module.
Hence, for convenient smooth functions al, l¼ 1, . . . , s and bj,
j2B, one may write

! ¼
Xs
l¼1

al ~!l þ
X
j2B

bj dyj ¼
Xs
l¼1

Xl
i¼1

ðal�
l
i Þdxi þ

X
j2B

bj dyj:

ðA5Þ

One may locally write, perhaps after restricting the open
neighbourhood of � to some W��V�:

! ¼
X
i2F1

ei dxi þ
X
j2F2

~bj dyj ðA6Þ

for convenient finite subsets F1�A and F2�B. On W�, as  
is a local coordinate system, the expression (A6) is unique.
In particular, subtracting (A6) from (A5) on W� gives zero.
From the independence of the differentials of a local
coordinate system, one concludes that ! ¼

Ps
l¼1al ~!lþP

j2F2
bj dyj. The proof is concluded from the last equa-

tion and (A4). œ

Proof (of Lemma 4.8): FromAssumptions 1–3 and LemmaC.2
it is clear that there exists c2N big enough such that

(A) span d _zf g � span dt, dz, dvð0Þ, dxa, du
ð0Þ
a , . . . , duðcÞa

� �
.

(B) span dxbf g�spanfdt,dz,dvð0Þ,...,dvð��1Þ, dxa,du
ð0Þ
a ,...,

duðc�1Þa }.
(C) span dubf g � span dt, dz, dvð0Þ, . . . , dvð�Þ, dxa,

�
duð0Þa , . . . , duðcÞa g.

By Assumption 1 and from the fact that Y ¼
span dt, dxa, ðdu

ðkÞ
a : k 2 NÞ

� �
, it also follows that

(D) The set fdt, dz, dvð0Þ, . . . , dvð�Þ, dxa, du
ð0Þ
a , . . . , duðcÞa g is

locally linearly independent.

Now let �x ¼ fz, vð0Þ, . . . , vð��1Þ, xa, u
ð0Þ
a , . . . , uðc�1Þa g and �v ¼

ðvð�Þ, uðcÞa Þ. By (A), (B), (C), (D) it is clear that

. span d _�x
� �

� span dt, d �x, d �vf g.
. span dxf g�span dt,d �xf g and span duf g�

span dt,d �x,d �uf g

. fdt, d �x, d �vg is linearly independent.

Hence, by Lemma C.1, it follows that ð �x, �vÞ is also a local
state representation around �. Since fð ~xa, zÞ, ð ~u

ðkÞ
a , vðkÞ, k 2 NÞg

is a local coordinate system around �, it is then clear that
ðð ~xa, zÞ, ð ~ua, vÞÞ is also a local state representation. By (A) it
follows that the state equations are of the form (26). As the
original state representation((xa, xb), (ua, ub)) is (strongly)
adapted to the subsystem Y, it follows easily from
Definition 2.1 that ðð ~xa, zÞ, ð ~ua, vÞÞ is also (strongly) adapted
to the subsystem Y. œ

Appendix D. Proof of Proposition 3.2

Proof: Write the one-forms !i and _!i in local coordinates
x¼ {xi, i2A} defined around �. One obtains !i¼P

i2F�i (x)dxi, _!i ¼
P

i2F �iðxÞ dxi, i ¼ 1, . . . , s. The subset
F can be chosen finite for a convenient open neighbourhood
V� of �. Without loss of generality, assume that
F¼ {1, . . . , k}. Hence one may identify !i(�) and _!ið�Þ,
respectively, with the row vectors !i(�)¼ (�1(�), . . . ,�k(�))
and _!ið�Þ ¼ ð�1ð�Þ, . . . ,�kð�ÞÞ. Define the 2s� k matrix

N� ¼

!1ð�Þ

..

.

!sð�Þ

_!1ð�Þ

..

.

_!sð�Þ

2
66666666666664

3
77777777777775

and let M� ¼ NT
� , the transpose of M�. Let �1 : R

s
�R

s
!R

s

the projection (z1, z2) � z1. To say that !�2G1j� is equiva-
lent to say that !�¼

P
i2F �i!i(�), where (�1, . . . ,�s)

T
2

�1(kerM�). Hence, G1 is nonsingular around � 2 u if and only
if �1(kerM�) is locally constant dimensional around �. As the
family {!1, . . . ,!s} is pointwise independent, then kerMv\

ker�1¼ {0}. Hence, the map �1 restricted to kerM� is an
isomorphism into its image and so dim kerM�¼ dim
�1(kerM�). Hence � is also a regular point of kerM�. As
dim im M�þ dim kerM�¼ 2s, � is also a regular point of
imM�. Note that one may identify im M� with �j�¼
span Gþ _G

� �
j�¼ span !1, . . . ,!s, _!1, . . . , _!sf gj�. Without loss of

generality, one may construct a local basis B¼ f!1, . . . ,!s,
_!1, . . . , _!rg of �, where sþ k¼ dim imM�¼ dim��, �2V�.
In particular

_!kþj ¼
Xs
i¼1

a j
i!i þ

Xk
l¼1

b j
l _!i, j ¼ kþ 1, . . . , s,

where the coefficients a j
i and � j

l depend smoothly35 on the
point �.

Note now that dimG1j�¼ dim kerM�¼ 2s� s� k¼ s� k.
In particular, it follows from a dimensional argument, that
the set {�1, . . . , �s�k} is a local basis of G1, where

�j ¼ !kþj �
Xk
l¼1

�kl !l:

This shows the smoothness of G1 on some open neighbour-
hood W� of �.

Now, it is clear from smoothness of �j that �j2�1

(when one restricts the open neighbourhood of definition
to W�) and so G1��1. By (17) and (18) it follows that
�1�G1. œ

14 P.S. Pereira da Silva and S. Batista
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Appendix E. Existence of strongly

adapted state equations

The following result gives sufficient conditions for the
existence of output subsystems and strongly adapted state
equations in the invertible case. It generalises previous results
whose proofs were based on the properties of the dynamic
extension algorithm (Pereira da Silva and Corrêa Filho
2001). Theorem E.2 is a generalisation of this result for the
noninvertible case. These two results allows also the appli-
cation of Theorem 4.3 from the algorithmic point of view
(Appendix F).

Theorem E.1 (Existence of strongly adapted state equations –
invertible case): Let S be a system with state representation
(x, u) and output y defined36 by (7). Assume that there exists
some �2N such that, locally around some �2S, one has

(1) span dxf g \ span dt, dyð0Þ, . . . , dyð��1Þ
� �

¼ span dxf g \
span dt, dyð0Þ, . . . , dyð�Þ

� �
.

(2) span dt, dx, dyð0Þ, . . . , dyð��1Þ
� �

is locally nonsingular
around �.

(3) span dt, dx, du, dyð0Þ, . . . , dyð�Þ
� �

is locally nonsingular
around �.

(4) The set fdt, dyð0Þ, . . . , dyð�Þg is pointwise independent
in an open neighbourhood of �.

Then there exists a local output subsystem Y defined around
� that admits a strongly adapted state representation ð ~x, ~uÞ,
where ~x ¼ ðxa, xbÞ and ~u ¼ ðua, ubÞ. Moreover:

(A) One may choose ua¼ y(�).
(B) One may choose xa� {y(0), . . . , y(��1)} such that {dt,

dxa} is a local basis of span {dy(0), . . . , dy(��1)}.
(C) One may chose xb in a way that dxb completes {dt,

dxa} to a local basis of span {dt, dx, dy, . . . , dy(��1)}.
(D) One may chose ub in order to complete {dt, dxa, dxb,

dua} to a basis {dt, dxa, dxb, dua, dub} of span {dt,
dx, du, dy, . . . , dy(�)}.

In particular, if ~D is nonempty and these assumptions hold
around all � 2 ~D, then the corresponding implicit system (6)
is regular. Furthermore, span{dx}þY¼ span{dxb}�Y and
span{dx, du}þY¼ span{dxb, dub}�Y.

Proof: The proof of the theorem is an easy consequence of
the proof of Theorem 3 of Pereira da Silva et al. (2008). œ

The next theorem is a generalisation of Theorem E.1.
One considers that the output y is partitioned into two parts
ð �y, ŷÞ in a way that the given system S with output �y obeys the
assumptions of Theorem E.1, that is, �y is such that the system
with input u and output �y is right invertible, that is the output
rank coincides with card �y. The subset ŷ of the output y
represents the ‘dependent’ part of the output, that is, it does
not contribute to the output rank.

Theorem E.2 (Existence of strongly adapted state equations –
non-invertible case): Let S be the system with state repre-
sentation (x, u) and output y, defined37 by (7). Let � 2 ~D, where
~D � S is defined by (10). Assume that there exists a partition
y ¼ ð �y,by Þ, where �y is called the independent part and ŷ is
called dependent part of the output. Assume also that there
exists some �2N such that, locally around �, one has

(1) span dxf g \ span dt, d �yð0Þ, . . . , d �yð��1Þ
� �

¼ span dxf g \
span dt, d �yð0Þ, . . . , d �yð�Þ

� �
.

(2) span dt, dx, d �yð0Þ, . . . , d �yð��1Þ
� �

is locally nonsingular
around �.

(3) span dt, dx, du, d �yð0Þ, . . . , d �yð�Þ
� �

is locally nonsingular
around �.

(4) The set fdt, d �yð0Þ, . . . , d �yð�Þg is pointwise independent
in an open neighbourhood of �.

(5) span dyð0Þ,...,dyð��1Þ
� �

� span dt,dx,d �yð0Þ,...,d �yð��1Þ
� �

(6) span dt, dyð0Þ, . . . , dyðkÞ
� �

is nonsingular for k¼� and
k¼�� 1.

(7) span dyð�Þ
� �

� span dt, dyð0Þ, dyð1Þ, . . . , dyð��1Þ, d �yð�Þ
� �

(8) span dyð0Þ, dyð1Þ, . . . , dyðkÞ
� �

is nonsingular around �
for k¼�� 1 and k¼�.

Then there exists a local output subsystem Y defined around �
that admits a strongly adapted state representation ð ~x, ~uÞ,
where ~x ¼ ðxa, xbÞ and ũ¼ (ua, ub). Moreover:

(A) One may choose ua ¼ �yð�Þ.
(B) One may choose xa� {y(0), . . . , y(��1)} such that {dt,

dxa} is a local basis of span{dy(0), . . . , dy(��1)}.
(C) One may chose xb in a way that dxb completes {dt,

dxa} to a local basis of span{dt, dx, dy, . . . , dy(��1)}.
(D) One may chose ub in order to complete {dt, dxa, dxb,

dua} to a basis {dt, dxa, dxb, dua, dub} of span {dt,
dx, du, dy, . . . , dy(�)}.

In particular, if ~D is nonempty and these assumptions hold
around all � 2 ~D, then the corresponding implicit system (6)
is regular. Furthermore, span{dx}þY¼ span{dxb}�Y and
span{dx, du}þY¼ span{dxb, dub}�Y.

Proof: The proof of the theorem is an easy consequence of
the proof of Theorem 5 of Pereira da Silva et al. (2008). œ

Appendix F. Algorithmic issues

This section is devoted to the algorithmic aspects of the main
result, namely, Theorem 4.3. It is important to stress that
Theorem 4.9 is an ‘intrinsic’ interpretation38 of Theorem 4.3,
and it is not suitable for computations. One may summarise
the theoretical results presented in this article in the following
algorithm,39 which verifies the solvability conditions of
Theorem 4.3.

Algorithm.

Preparation process I. Let � be a point of S defined by (7).
Verify for �2 {0, 1, . . . , n} if the assumptions40 of
Theorem E.1 hold. Construct xa, xb, ua, ub as described in
the steps (A)–(D) in end of the Theorem E.1. If one may
choose ub¼ v, then the Problem is solvable, then stop.
(Remark 4.2). If it is not the case, then continue.

Preparation process II. If the assumptions of Theorem E.1 do
not hold for �2 {0, 1, . . . , n} then choose a partition ð �y, ŷÞ of
y, and verify if the assumptions of Theorem E.2 hold for
some �2 {0, 1, . . . , n}. If it is the case, construct xa, xb, ua, ub
as described in the steps (A)–(D) in end of the Theorem 4.2.
If one may choose41 ub¼ v, so the Problem is solvable with
za¼ xa, va¼ ua and z¼ xb. Stop. If it is not the case, then
continue.

Step 0. Let �¼ 0. Let ! be a one-form given by (11) and let �
be the map defined by (12).
Step 1. Compute � in the following way. Let

�ðdvÞ ¼
Xnb
i¼1

�i dxbi þ
Xmb

j¼0

X�j
k¼0

jk du
ðkÞ
bj
:

Then �¼maxj2{0,1,. . .,mb}
{�j}.
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Step 3. Compute G0 given by (23).
Step 4. Compute the relative derived flag Gk for
k¼ 1, . . . , �þ 1, using (16) and the idea of the proof of
Proposition 3.3.
Step 5. Verify the assumptions (iii), and (iv) of Theorem 4.3
by direct computation. If these conditions hold, go to step 6.
If at least one of these condition fails and �5 nþ �(mþ 1),
then increment � and go to step 1. If at least one of these
conditions fails and �¼ nþ �(mþ 1), then the assumptions of
Theorem 4.3 fail42 for all possible values of �. Stop.
Step 6. Verify the assumption (i) of Theorem 4.3 by
computing the dimensions of the (finite dimensional)
codistributions Gk. If this condition holds, go to step 7. If
this condition fails and �5 nþ �(mþ 1), then increment �

and go to step 1. If this condition fails and �¼ nþ �(mþ 1),
then the assumptions of Theorem 4.3 fail for all possible
values of �. Stop.
Step 7. Verify the assumption (ii) by applying the idea of the
proof of Lemma 4.7. If the codistribution G�þ1þY is
integrable, it may be possible to compute z by the idea of
the proof of Lemma 4.7. If this condition holds, go to step 8.
If this condition fails and �5 nþ �(mþ 1), then increment �
and go to step 1. If this condition fails and �¼ nþ �(mþ 1),
then the assumptions of Theorem 4.3 fail for all possible
values of �. Stop.
Step 8. The problem is solvable by choosing
za ¼ ðxa, u

ð0Þ
a , . . . , uðc�1Þa Þ and va ¼ uðcÞa , where c2N can be

computed as in the proof of Lemma 4.8. Stop.

16 P.S. Pereira da Silva and S. Batista
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