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a b s t r a c t

This work summarizes some results about static state feedback linearization for time-varying systems.
Three different necessary and sufficient conditions are stated in this paper. The first condition is the
one by [Sluis, W. M. (1993). A necessary condition for dynamic feedback linearization. Systems & Control
Letters, 21, 277–283]. The second and the third are the generalizations of known results due respectively
to [Aranda-Bricaire, E., Moog, C. H., Pomet, J. B. (1995). A linear algebraic framework for dynamic feedback
linearization. IEEE Transactions on Automatic Control, 40, 127–132] and to [Jakubczyk, B., Respondek, W.
(1980). On linearization of control systems. Bulletin del’Academie Polonaise des Sciences. Serie des Sciences
Mathematiques, 28, 517–522]. The proofs of the second and third conditions are established by showing
the equivalence between these three conditions. The results are re-stated in the infinite dimensional
geometric approach of [Fliess, M., Lévine J., Martin, P., Rouchon, P. (1999). A Lie–Bäcklund approach to
equivalence and flatness of nonlinear systems. IEEE Transactions on Automatic Control, 44(5), 922–937].

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

This work considers control systems of the form
ẋ(t) = f (t, x(t), u(t)) (1)
where f is smooth with respect to its arguments, x(t) ∈ Rn is the
state and u(t) ∈ Rm is the input. Let ξ = (t0, x0) ∈ R × Rn and
ν = (t0, x0, u0) ∈ R× Rn × Rm.
A local state-transformation is a local diffeomorphism φ : V ⊂

R×Rn → U ⊂ R×Rn, defined around ξ , such that (t, x) 7→ (t, z),
where z = ψ(t, x). Locally, there exists the inverse x = θ(t, z). A
regular static-feedback is a local diffeomorphismα : V ⊂ R×Rn×
Rm → U ⊂ R× Rn × Rm, defined around ν, such that (t, x, u) 7→
(t, z, v), where (t, x) 7→ (t, z) is a local state transformation.
Locally, there exists the inverse (t, x, u) = α−1(t, z, v). The closed
loop equations are given by

ż(t) = f̃ (t, z(t), v(t)) (2)

where f̃ (t, z, v) =
[
∂ψ

∂t +
∂ψ

∂x f (t, x, u)
]
|(t,x,u)=α−1(t,z,v). The time-

varying static-feedback linearization problem seeks a local regular
static-feedback such that the closed loop system locally reads a
controllable linear system
ż = Az(t)+ Bv(t).
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This problem was completely solved in its time-invariant version
for affine systems (see Jakubczyk and Respondek (1980) and Hunt,
Su, and Meyer (1983)). The dynamic version of this problem
remains open (see Charlet, Lévine, and Marino (1989, 1991) for
some sufficient conditions). Closed related to the dynamic version
of this problem is the notion of flatness (see Fliess, Lévine, Martin,
and Rouchon (1999)), which considers a class of transformations,
called endogenous feedback. An endogenous feedback is more
general than a static-feedback, but it is a particular case of dynamic
feedback. The techniques of exterior calculus1 are useful on the
study of flatness and exact linearization (see Aranda-Bricaire,
Moog, and Pomet (1995), Gardner and Shadwick (1992), Martin
and Rouchon (1994), Shadwick (1990), Shadwick and Sluis (1994),
Sluis (1992, 1993), Tilbury, Murray, and Sastry (1995) and van
Nieuwstadt, Rathinam, and Murray (1998)).
Thiswork shows the equivalence of three conditions of solvabil-

ity of the time-varying static-feedback linearization problem. The
conditions of Aranda-Bricaire et al. (1995) and Jakubczyk and Re-
spondek (1980) are generalized, and the generalized versions are
shown to be equivalent to the ones of Sluis (1992, 1993) and Shad-
wick and Sluis (1994).
The field of real numbers will be denoted by R. The set of real

matrices of n rows andm columns is denoted by Rn×m. The matrix
MT stands for the transpose of M . The set of natural numbers
{1, . . . , k} will be denoted by bke. For simplicity, we abuse
notation, letting (z1, z2) stand for the column vector (zT1, z

T
2)
T,

1 See for instance Dieudonneé (1974).
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where z1 and z2 are also column vectors. Let x = (x1, . . . , xn) be a
vector of functions (or a collection of functions). Then {dx} stands
for the set {dx1, . . . , dxn}.
Onemay associate to system (1), its infinite prolongation, called

diffiety (see Fliess et al. (1999), Vinogradov (1984) and Zharinov
(1992)):

ṫ = 1
ẋ = f (t, x, u(0))
u̇(0) = u(1)

u̇(1) = u(2)

...
...
...

This system evolves on the diffiety S = R × Rn × (Rm)∞ with
coordinates {t, x, (u(k) : k ∈ N)}. One may define on S, the Cartan
Field

d
dt
=
∂

∂t
+

n∑
i=1

fi(t, x, u)
∂

xi
+

∑
k∈N

m∑
j=1

u(k+1)j
∂

u(k)j
. (3)

Given a function ξ(t, x, u(0), . . . , u(α)), defined on S, then d
dt ξ =

ξ̇ = ξ (1) stands for the Lie-derivative L d
dt
ξ =

∂ξ

∂t +
∂ξ

∂x f (t, x, u) +∑
k∈N

∂ξ

∂u(k)
u(k+1). Given a 1-form ω = α0dt +

∑n
i=1 αidxi + · · ·

defined on S, then d
dtω = ω̇ stands for the Lie-derivative L d

dt
ω =

α̇0dt +
∑n
i=1[α̇idxi + αidẋi] + · · · .

Recall that, if S is a manifold (or a diffiety), thenΛk(S) denotes
the bundle of k-forms over S and Λ(S) = Λ0(S) ⊕ Λ1(S) + · · ·
stands for the bundle of forms defined on S (see Warner (1971)
and Zharinov (1992)). If Ω ⊂ Λ1(S) is a codistribution defined
on S, then (Ω) denotes the algebraic ideal generated by Ω , i. e.,
(Ω) = {θ ∈ Λ(S) | θ =

∑k
j=0 ηk ∧ ωk, ωk ∈ Ω, ηk ∈ Λ(S)}.

2. Static-linearizability conditions

In this section we shall state the generalizations of the known
conditions for the time varying static-linearization problem.
In Sluis (1992, 1993), the following necessary and sufficient
conditions for static-feedback linearizability are given.2 In this
section, system S stands for the diffiety with Cartan field d

dt that
is associated to system (1).

Theorem 1. Consider the codistributions defined on S, given by
Ω(0)

= span {ωi = dxi − fi(t, x, u)dt | i ∈ bne}.3 Consider the
derived flag Ω(k)

= span {ω ∈ Ω(k−1)
| dω ∈ (Ω)}, k ∈ N. Then

the system is locally static-feedback linearizable around ξ ∈ S if and
only if:

(1) The codistributionsΩ(k) are nonsingular at ξ for k ∈ N.
(2) There exists k∗ ∈ N big enough, such that Ω(k∗)

= {0}.
(3) The codistributionsΩ(k)

⊕span{dt} are locally involutive around
ξ , for k ∈ N.

The following conditions generalizes the ones of Aranda-
Bricaire et al. (1995) for the time-varying case.

Theorem 2. Consider the codistributions defined on S given by∆0 =
span {dt, dx} and∆k = span {ω ∈ ∆k−1|ω̇ ∈ ∆k−1}. Then system S
is locally static-feedback linearizable around ξ if and only if:

2 See Pereira da Silva (1997) for another point of view. The proof of Sluis (1992,
1993) does not consider infinite prolongations. The statement presented here is a
particular case of the results of Pereira da Silva and Corrêa Filho (2001) that hold
also for implicit systems.
3 Note thatΩ(0)

⊂ span
{ d
dt

}⊥
. The formsof span

{ d
dt

}⊥
are called contact forms.

(1) The codistributions∆k are nonsingular at ξ for k ∈ N.
(2) There exists k∗ ∈ N big enough, such that ∆k = span{dt}.
(3) The codistributions∆k are locally involutive around ξ , for k ∈ N.

The following conditions generalize the ones of Jakubczyk and
Respondek (1980) for time-varying systems. These conditions are
related to the ones of Fliess, Lévine, Martin, Ollivier, and Rouchon
(1997) for checking controllability.

Theorem 3. Consider the canonical coordinates {t, x, u(0), . . .} of S.

Let G0 = span
{

∂

∂u(k)i
| i ∈ bme, k ∈ N

}
. Define Gk = Gk−1 +

[
d
dt ,Gk−1]. Then the system is static-feedback linearizable if and only
if the codistributions G⊥k are smooth, non-singular and involutive, and
Gk∗ = span{dt}⊥ for k∗ big enough.

Remark. It is important to point out the following:

(a) In Theorem 3 above, note that G⊥0 = span {dt, dx}. In
particular, G⊥k ⊂ G

⊥

0 is always finite dimensional.
(b) Note that our time-varying results are local in time. It is not
known if a time-invariant system may admit a time-varying
flat output without admitting a time-invariant one (see Pereira
da Silva and Rouchon (2004) and van Nieuwstadt et al. (1998)).
However, if one restricts the class of transformations to static-
state feedbacks, then there is no advantage in seeking time-
varying static-state feedbacks (or time-varying flat outputs)
for time-invariant systems (see Pereira da Silva (1997) and
van Nieuwstadt et al. (1998)). In particular, for time-invariant
systems, the results are global in time.

(c) Linearization by static feedback is related to differential
flatness. If one admits simultaneous time scaling (see Sampei
and Furuta (1986)), then the underlying concept is Orbital
Flatness (see Fliess et al. (1999) and Guay (1999)). It is easy
to verify that the example of Sampei and Furuta (1986) does
not obey the conditions of Theorems 1–3 of this work, but it is
linearizable by static-feedback and simultaneous time scaling.

3. Equivalence of solvability conditions

For the proof of Theorem 1 in the form stated in this work, the
reader may refer to Pereira da Silva and Corrêa Filho (2001). We
shall prove Theorems 2 and 3 by showing that both are equivalent
to the Theorem 1.

Proposition 1. The conditions of Theorem 1 are equivalent to the
ones of Theorem 2.

Before proving Proposition 1 consider the following lemma4

Lemma 1. Let Ω(k) be the nonsingular smooth codistribution defined
in the statement of Theorem 1. If Ω(k) is nonsingular, with
dim = Ω(k)

= r and Ω(k)
⊕ span{dt} is involutive, then

there exists a set of smooth functions {θ1, . . . θr} such that, locally,
Ω(k)

= span
{
dθ1 − θ̇1dt, . . . , dθr − θ̇rdt

}
, Ω(k)

⊕ span{dt} =
span {dt, dθ1, . . . , dθr}. Furthermore

ω ∈ Ω(k+1)
⇔ ω̇ ∈ Ω(k)

⊕ span{dt} (4)

4 See Pereira da Silva and Corrêa Filho (2001) for a similar result that holds in the
context of implicit system.
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Proof of Lemma 1. Note first that, for all k ∈ N, Ω(k)
⊂

Ω(0)
⊂ span

{ d
dt

}⊥
. In particular, if ω ∈ Ω(k)

∩ span{dt},
then ω = αdt , and so 0 = 〈ω, ddt 〉 = α. Hence, Ω(k)

∩

span{dt} = {0}. If for some k, J (k) = Ω(k)
⊕ span{dt} is involutive

and nonsingular, by the Frobenius Theorem, one locally has
J (k) = span {dt, dθ1, . . . , dθr}, for convenient smooth functions
θ1, . . . , θr , where {dt, dθ1, . . . , dθr} is locally independent. Note
now that (Ω(k)

⊕ span{dt}) ∩ span
{ d
dt

}⊥
= Ω(k). In fact, ω ∈

(Ω(k)
⊕ span{dt}) ∩ span

{ d
dt

}⊥
is of the form ω = ω̃ + αdt with

ω̃ ∈ Ω(k). SinceΩ(k)
⊂ span

{ d
dt

}⊥
, it follows that α ≡ 0. Now, it

will be shown that Ω(k)
= span

{
dθ1 − θ̇1dt, . . . , dθr − θ̇rdt

}
. In

fact, note thatωi = dθi− θ̇idt ∈ (Ω(k)
⊕span{dt})∩span

{ d
dt

}⊥
=

Ω(k). Hence, Ω(k)
⊃ span

{
dθ1 − θ̇1dt, . . . , dθr − θ̇rdt

}
. Now, as

dim(Ω(k)
⊕ span{dt}) = dimΩ(k)

+ 1 = r + 1, it is easy to see
that the equalityΩ(k)

= span
{
dθ1 − θ̇1dt, . . . , dθr − θ̇rdt

}
holds.

Now assume thatΩ(k)
= span {dθ1− θ̇1dt, . . . , dθr − θ̇rdt}. It will

be shown that (4) holds.5 For this, let ωi = (dθi − θ̇idt) and let
ω =

∑r
i=1 αiωi ∈ Ω

(k). Notice that ω̇i = dθ̇i − θ̈idt . Note also that
ω̇ =

∑r
i=1(α̇iωi+αiω̇i). Then dω =

∑r
i=1[dαi∧ωi−αidθ̇i∧dt] =∑r

i=1[dαi∧ωi−αi(dθ̇i−θ̈idt)∧dt] =
∑r
i=1[dαi∧ωi−αiω̇i∧dt] =∑r

i=1[dαi ∧ωi+ α̇iωi ∧ dt − α̇iωi ∧ dt −αiω̇i ∧ dt] =
∑r
i=1[dαi ∧

ωi+ α̇iωi∧dt− ω̇∧dt]. Since dαi∧ωi and α̇iωi∧dt are in the ideal
(Ω(k)), then it follows that dω mod (Ω(k)) = ω̇ ∧ dt mod (Ω(k)).
In particular, if dω ∈ (Ω(k)) then, 0 = ω̇ ∧ dt +

∑
ηi ∧ ωi

for convenient one forms ηi. As the set {dt, ω1, . . . , ωr} is linearly
independent, by the Cartan Lemma (see Warner (1971, p. 80)), it
follows that ω̇ ∈ span {dt, ω1, . . . , ωr} = Ω(k)

⊕ span{dt}. If ω̇ ∈
Ω(k)
⊕span{dt}, then ω̇∧dt ∈ (Ω(k)), and hence, dω ∈ (Ω(k)). �

Proof of Proposition 1. Itwill be shown first that the assumptions
of Theorem 1 imply that ∆k = Ω(0)

⊕ span{dt}. In
particular, the assumptions of Theorem 2 also hold. In fact,
note that, by construction, ∆0 = Ω(0)

⊕ span{dt}. Assume
by induction that ∆k = Ω(k)

⊕ span{dt} and suppose that
Ω(k) is nonsingular and Ω(k)

⊕ span{dt} is involutive. Hence,
by Lemma 1, ∆k = span {dt, dθ1, . . . , dθr} and Ωk =

span
{
dθ1 − θ̇1dt, . . . , dθr − θ̇rdt

}
and (4) holds. Now let ω̃ ∈

∆k+1. Since ω̃ ∈ ∆k, then ω̃ = ω + αdt , with ω ∈ Ω(k). Note that
ω̇ ∈ ∆k is equivalent to have ˙̃ω ∈ ∆k = Ω(k)

⊕ span {dt}. By (4), it
follows that this is equivalent to have ω̃ ∈ Ω(k+1). Hence ∆k+1 =
Ω(k+1)

⊕ span{dt}. Now it will be shown that the assumptions of
Theorem 2 imply that ∆k = Ω(k)

⊕ span{dt}. In particular, the
assumptions of Theorem 2 imply that the ones of Theorem 1 hold.
Now assume by induction that∆k = Ω(k)

⊕ span{dt} and suppose
that ∆k is nonsingular and involutive (as seen above, it is true for
k = 0). Let ω ∈ ∆k+1. By definition ω̇ ∈ ∆k. As ω ∈ ∆k ⊃ ∆k+1,
ω = ω̃ + αdt . Then, ω̇ = ˙̃ω + α̇dt . Hence ω̇ ∈ ∆k implies
˙̃ω ∈ Ω(k)

⊕ span{dt}. By condition (4) of Lemma 1, it follows
that ω ∈ ∆k+1 is equivalent to have ω̃ ∈ Ω(k+1). In particular,
∆k+1 = Ω

(k+1)
⊕ span{dt}. �

The next Proposition is an indirect proof of Theorem 3.

Proposition 2. The conditions of Theorem 2 are equivalent to the
ones of Theorem 3.

Proof. To show that the conditions of Theorem 2 holds, it suffices
to show that ∆k = G⊥k for all k ∈ N. This is true for k = 0.
By induction, assume that this is true for some k. Let ω ∈ ∆k+1.
Then ω̇ ∈ ∆k. To show that ∆k+1 ⊂ G⊥k+1, it suffices to show

5 See Eq. (A.3) in page 1947 of Pereira da Silva and Corrêa Filho (2001).

that 〈ω, τ 〉 = 0 for all τ ∈ G⊥k+1. Since τ ∈ Gk+1 is of the form
τ1 + [

d
dt , τ2] for τ1 and τ2 in Gk and∆k+1 ⊂ ∆k, it suffices to show

that 〈ω, [ ddt , τ ]〉 = 0 for for all τ in Gk. In fact, this follows from the
identity

〈L d
dt
ω, τ 〉 = L d

dt
〈ω, τ 〉 −

〈
ω,

[
d
dt
, τ

]〉
. (5)

To show the inverse inclusion, take ω ∈ G⊥k+1 ⊂ G
⊥

k . Then, by the
same identity, for all τ ∈ Gk one has 〈ω̇, τ 〉 = 0. Assume now that
the conditions of Theorem 2 hold. Then the nonsingularity of ∆k
implies that∆⊥k is smooth for all k ∈ N. To show that the conditions
of Theorem3holds, it suffices to show that∆⊥k = Gk for k ∈ N. This
is true for k = 0. By induction, assume that this is true for some k.
Let τ ∈ ∆⊥k and let ω ∈ ∆k = G

⊥

k . Then, from the identity (5), it
follows that ω̇ ∈ ∆k if and only if ω ∈ G⊥k+1. �
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