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Abstract

This paper is the first part of a survey about an infinite dimensional dif-
ferential geometric approach of nonlinear control systems. It summarizes
the basic definitions and the fundamental results about IR*-manifolds,
diffieties and control systems that are used in the second part of this
work.
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1 Introduction

The aim of the Part I of this paper is to present an exposition of the main
facts about IR* manifolds and diffieties that are needed in Part II of this work
(Pereira da Silva 2008). The text is written in a very elementary style, and is
conceived for students and researchers that have some knowledge about finite



dimensional manifolds, but are not acquainted with the difficulties and par-
ticularities that appears in the context of infinite dimensional manifolds. The
classical constructions using projective (and inductive) limits have been avoided.
Instead of using those elegant tools, one will find explicit constructions of the
topologies and maps. This point of view is suitable for such a basic introduction
to IR“*-manifolds and diffieties. The authors believe that the great majority of
the results of the first part of this work are obvious for specialists on diffieties.
However, many results that have been stated in the literature without proof are
certainly not so trivial for the novice on the subject. For more advanced exposi-
tions, one may refer to (Alekseevskij, Vinogradov & Lychagin 1991, Anderson &
Ibragimov 1979, Golubitsky & Guillemin 1973, Ibragimov 1985, Krasil’shchik,
Lychagin & Vinogradov 1986, Olver 1993, Vinogradov 1984, Zharinov 1992,
Tsujishita 1990).

1.1 Organization

1.2 Notations

The field of real numbers will be denoted by IR. The set of natural numbers
{0,1,2,...} will be denoted by IN, the set {1,2,3,...} is denoted by IN*, and
the set of integers is denoted by Z. If H is a finite set then card H stands
for the cardinal of H. If H is finite, then card H is the number of elements of
H. We will use the standard notations of differential geometry in the finite and
infinite dimensional case (Warner 1971, Zharinov 1992). If M is a matrix (or
a vector), then M7 stands for its transpose. Let z; and 2z be column vectors.
For simplicity, we abuse notation, letting (21, z2) stand for the column vector

(2f,23)"

2 The space R4

Following (Bernstein & Rosenfel’d 1973), a smooth infinite-dimension manifold
is usually understood to be a space obtained by pasting together open subsets of
a “model” topological vector space (most frequently a Banach or a Hilbert space)
by means of isomorphisms satisfying certain smoothness conditions. In what
follows, one is interested in a geometry that is adapted to infinite prolongations
of differential equations, that is, the geometry of infinite jets (Saunders 1989,
Krasil’shchik et al. 1986, Zharinov 1992). Hence one must consider manifolds
whose “model” is a Fréchet space, or a IR“*-space, that is also denoted by IR>.
This kind of linear vector spaces are equipped with a topology (the Fréchet
topology) that is not defined from a norm, and so, those manifolds do not
present all the nice features of the manifolds that are modeled by Banach spaces
(Lang 1995, Abraham & Marsden 1988). In fact, many difficulties arise when
one is trying to consider versions of the inverse function theorem, the flow-box
theorem etc (Zharinov 1992).



2.1 IR“-spaces, continuity and smoothness

Let A be a countable set. The space IR = [loca Eo, where E, = IR is the set
of functions & : A — IR. A point £ € IR* may be denoted by (2% a € A). The
coordinate function z,, : R4 — IR maps £ = (2%, a € A) to 2® = £(a).

The space IR“ is a IR-linear vector space with the following definition

e (£+0)(a)=¢&(a)+¢(a) foralla € A4, €,¢ € RA.
e (c&(a)=cé(a), for all « € RA and c € IR.

In other words, these operation are defined in the usual, componentwise way,
that is, (2%, a € A) + (2%, a € A) = (z* + 2%« € A), and c(z*,a € A) =
(cz™, a0 € A).

The set IR* can be endowed with the Fréchet topology & (it is the product,
or Tychonoff topology). A basis 9B of this topology is the collection of subsets of
R4 of the form B = {¢ € R | £ = (2%, € A), |2™ — §%| < €*,a € F}, where
F is a finite subset of A , §¢ € IR and € is a positive real number for a € F.
Remember that an open set U of § is an arbitrary union ;. B; of basic open
sets B; € B.

It can be shown that IR is a projective limit and the Fréchet topology is
the corresponding projective limit topology.

Let o : A — IN* be a bijection. One denotes IR™N" = IR>, and this bijection
induces an isomorphism between IR4 and IR*, namely, (2% :a € A) — (2°:
i € IN*), where 2° = z°(®). In particular one may denote a point & of R4
by an infinite vector (x!,2% 23, ...), where z¢ = £(i),i € IN*. In particular,
coordinate functions may be denoted by x;. A common abuse of notatiorﬂ is to
consider z;(§) = ;.

The projection 7, stands for the map (x1, 2, x3, ..., Tk, Thy1,-..) — (21, T2,
x3,...,2k). It is a simple exercise to show that 7 is an open map, i. e. , m;(U)
is an open subset of IR* for every open set U C IR4.

The following definition is the classical definition of continuity in General
Topology.

Definition 1 (Continuous Map) Let U C IR*, where U is an open set of IR,
and V. C RB. A map g:U C RA — V C IRP is continuous, if g~*(W) is an
open set of IRA for every open set W of IRP.

Proposition 1 Let A,B be countable sets. Let y7,j € IN* be the coordinate
functions of RB. Let U ¢ R and V C RB. A map g: U Cc R* -V Cc RP
is continuous, if and only if the “component functions” g; : U — IR defined by
g; = yj o g are continuous for j € IN*.

Proof. The proof is an easy exercise that is left to the reader. O

LA more precise notation should be x;(¢) = x. Note that x’ is a real number, whereas z;
is the coordinate function z; : R4 — IR.

{sFrechet}

{pContinuousMap}



Definition 2 (Smooth Map) Let A,B be countable sets. Let U be an open set
of R*. A map f : U — IR is smooth if, for every € € U there exists some
open neighborhood V-C U of € such that f|y = fowk, for a convenient smoot
function f : W C R* — IR, where W = 71 (V). Lety?,j € IN* be the coordinate
functions of RP. A map g: U — IRP is smooth if yjog:U — IR is smooth.

Remark 1 The following affirmations are straightforward to verify:

o A map g: U — IRP is smooth if and only if, for every smooth function
¢ : IRP — IR then ¢ o g is smooth (and this may be an alternate definition
of smooth maps).

o Let S be a topological space and let { By : A € A} be a basis of this topology.
Since every open set of S is an arbitrary union of basic open sets, when
one wants to show that a map ¢ : T — S is continuous, it suffices to show
that ¢~1(By) is an open subset of T for every X € A.

o Let U = Jycp Va, where Vy is an open set for all X € A. Note now that,
if ¢ : U C R — IRP is such that ¢y, is continuous, then ¢ : U C R —
IRB is continuous. In fact, if ¢pp = ¢|v,, for every open set W C IRB,

W) = Uyen &5 (W).

Locally speaking, a smooth function must depend only on a finite number of
variables. Hence, around a point &, there exists a neighborhood such that this
number of variables is minimal. This is the idea of the next definition.

Definition 3 (Minimal Index and Minimal Neihghborhood of a Smooth Func-
tion) Let {x; : i € IN} be the set of canonical coordinate functions of IR*. Let
U C IR be an open set. Let ¢ : U — IR be a smooth function. Let § € U
and let Ve be an open neighborhood of & such that f|Ve = ¢ o m,. Among all
the open neighborhoods V¢ with this property, there exists Vg*, called a minimal
neighborhood of ¢ at &, such that the k = k* is minimal. Such k* is called the
minimal index of ¢ at §. For a constant function on V¢ one defines k* = 0.

Remark 2 Note that k* € IN is a unique, well defined integer. However any
open subset of V¢ is also a minimal neighborhood of ¢ at £&. This explains why
one says a minimal neighborhood at & instead of the minimal neighborhood at
§ If Ve and W¢ are minimal neighborhoods, then it is clear that V' U W¢ s
also a minimal neighborhood at £&. Note that the minimal indez is a property of

the gerwﬂ of ¢.

Definition 4 The union of all minimal neighborhoods of ¢ at £ is called the
minimal neighborhood at &.

2Smooth in the usual sense of finite dimensional analysis.
3See section for the definition of germ of a function.

{dSmooth}

{r1}

{dMinimalIndex}



Proposition 2 Let X = {z; :€ IN} be the set of canonical coordinate functions
of RA. Let X = {iy,...,i} C IN with 0 < iy < iy < ... < i}. Define
the projection T% : U C R* — IRF by x — (x4, (v),..., 7 (x)). Then ng is
continuous.

Proof. Take a basic open set V = {w € RF | |w; — ;| < €j,j =1,...,k} of IRF
and observe that W;—(l(V) =U\B, where B={z € R* | |z;,(z) — §;| < €;,j =
1,...,k} is a basic open set of IRA. O

Proposition 3 Let U C IR be an open set. Every smooth function ¢ : U C
R4 — IR is continuous.

Proof. Let £ € U and let Ve C U an open neighborhood of ¢ such that
¢|v§ = fomy |V5 . Then ¢|V§ is continuous since it is the composition of continuous
maps. As U = UgeU Ve, then ¢ is continuous (see Remark . O

Proposition 4 Let A, B be countable sets (finite or infinite). Let U C IRA be
an open set. Every smooth map ¢ : U C R* — IRP is continuous.

Proof. Consider the case where both A, B are infinite (other cases are left to the
reader). Denote the coordinate functions of IR? by y;,j € IN*. Let V C IRP be
the basic open set V = {y € R? | |y;(y) — ;| < €;,7 € F}, where F C IN* is a
finite subset. Let ¢; = y; o ¢. Then ¢~ (V) = Njer qﬁ;l[(éj —€;,0; +¢5)]. By
the last proposition, each ¢; is continuous and this concludes the proof. O

Remark 3 One may show that the Fréchet topology is the weaker one such
that the projections w5 are continuous. In (Bernstein & Rosenfel' d 1973) one
may found an equivalent definition of smooth function and smooth maps. Such
elegant definition is based on projective limits.

Proposition 5 Let f: U C IR? and g : V C IR® — U be smooth maps, where
U and V are open sets. Then fog:V — IR is smooth.

Proof. Let £ € V and v = ¢g(§) € U. Since the notion of smoothness is a
componentwise notion, without loss of generality, assume that f is a function
f:U — IR, and write f|ly = fo 7k |w, where W is an open neighborhood of
v (see Definition [2). As g is continuous, then Y = g t(W) is open. On Y, one
may locally writdY fog(z) = fom,og(z) = fo(g91(z),...,9x(x)). Now, let
| = max{kj,..., k;}, where k} is the minimal index of g; at £&. Let V;* be the
cooresponding minimal neighborhods of g; at £&. Let Z = ﬂle V*. By using
the idea of Remark on Z, one may write fomog(x) = f(gi(x),...,gr(x)) =

40n g=t(W).



f(gom(x),...,gr om(x)). Defining g : m(Z) C R' — IRF by 5 — (41(s)
m(8), ..., gr 0 m(s)), one gets fog = (fog)om, which is the composition of
the smooth function (f o g) with m;. Hence, by definition, f o g it is smooth.
O

Remark 4 Let k* be the minimal index of a smooth function ¢ : U C IR* — IR
at &, and let V¢ be a minimal neighborhood of ¢ at {. Then one may write
Blve = OTe ve- So for every k > k* one obtains ¢y, = ((i;owkyk*)owﬂvg, where
T k= s the map defined by (x1,..., Tk, ..., Tx) — (T1,...,Tk=). In particular,
for all k > k* there exists a smooth map <£ : W C IRF, where (]3 =do Tk, and
W = m(Ve), such that ¢|y, = éo Tk

Definition 5 Let U ¢ IR and let f : U — IR be a smooth function. The
differential df : R* — IR is the linear map defined in the following way. As f is
smooth, one may locally write f = f omy (see definition é} Then, for x € R4
one sets df (z) = df (my(z)) o m), where df : IR¥ — IR is the standard differential
of the smooth function f that is defined in finite-dimensional analysis. Let
¢ : U — IRP be a smooth map. Let x € U. Let y; 1 J € B bee the coordinate

functions of IR . Deﬁnﬁ do(x) : R* — IRB by y; o dp(z) = d(y; o ¢)(z).

Remark 5 It is easy to show that the last definition does not depend on a
particular representation of a function, i. e. , if a function admits two different
representations f = f1 om = fo 0 ma, then the differential defined with these
different representations must coincide (see Appendiz E[)

The proof of the following proposition is straightforward and is left to the
reader.

Proposition 6 Let ¢ : Z : R* — IR be an smooth function, where Z is a
minimal neighborhood of ¢ at &. Let k* be the minimal index of ¢ at €.

Let £ = (£1,62,83,...) € Z and let ¥ : IR — IR be such that ¥(t) =
(&1,82,8&3,. ., &—1, &+ at, &1, &40, - . ). By continuity of U, there exists € > 0
such that that O[(—e,e)] C Z. If poWU(t) is not constant for |t| < e , then k* > 1.

2.2 The tangent bundle T/R4 and fields

Definition 6 Let U C IR* be an open subset. The tangent bundle TU is the
triple (U x R, U, ) where 7 : U x IR* — U s the canonical projection.

Definition 7 A field 7 on an open set U C IR is a smooth section of the
bundle T, that is, a map 7 : U — U x IRA of the form x — (x,7(x)), where the
map 7 : U — IR* is smooth.

Remark 6 For convenience, one may identify T with T.

50ne may give a more intrinsic definition using projective limits (see (Bernstein &
Rosenfel’d 1973)).

{rX}

{dDifferential}

{pMinimal}



Let 7 be a vector field, and let f : U — IR be a smooth function. Let
(z;,i € IR™N") be the canonical coordinate functions of R*. Then 7(x) =
(z,(ri(z) i € IN*)). If f:U — IR is is smooth, for all £ € U there exists an
open neighborhood V¢ of £ and a local representation f = f o7y, defined on V.

Definition 8 The Lie-derivative L f, also denoted by (f), is the smooth func-
tion L, f : U — IR defined by the rule

k
L f(x) = Zﬁ(ﬂﬂ)*(m(ﬂﬂ)) (1)

It is a simple exercise to show that the definition above do not depend on the
particular representation of f that is chosen.

The set of fields on U has a structure of C°°(U)-module defined by the
operations (11 + 72)(x) = (z,71(x) + 2(z)) and (f7)|. = (=, f(x)7(x)), where
71 and 7y are arbitrary fields on an open subset U € R4 and f: U — R is a
smooth function.

2.3 Derivations and the tangent space T, IR"

Let » € IRA. Let C>={z} be the set of smooth functions f : V, — IR, where
V, C IR* is an open neighborhood of z. In C>°{x} one may define the following
equivalence relation, denoted by ~. Given two functions f1, fo C C°°{¢}, then
fi ~ foif filw. = falw,, where W¢ is some open neighborhood of x. The
equivalent class of f € C°°{z} is denoted by [f], and is called the germ of f
at x. The set of all germs at z is denoted by C*°(z). Clearly, one may define
a structure of IR-vector space on C*®(z). If f1 : U, — IR and f> : V, — IR,
let W = U, (\Vz. Then define [fi] + [f2] = [fi|lw + f2|lw] and for a € IR, let
alfi] = [afi]. Note also that C°°(z) has also a structure of a ring, if one defines

[Allf2] = [(filw) (falw)]-
Definition 9 A derivation at z € IR4 is a map v, : C®(x) — IR such that

o The map v, is linear, that is, vy ([f1] + [f2]) = v=([f1]) + v=([f2]) and
vz(alf]) = ava([f]),a € R.

o v([f1lf2]) = fa(@)va([f1]) + fr(@)va ([f2])-

By convenience one may let v, (f) stands for v, ([f]). In this way one may regard
vy as a map from C>®{z} to R. A derivation v, is also called a tangent vector
at x. Clearly, the set T,U of all tangent vectors at x is a IR-vector space with
the operations (vi 4+ v2)(f) = vi(f) +v2(f) and (av.)(f) = a(ve(f)), @ € R.

Let T,U stand for the elements 7, of TU = U x IR of the form

T2 = (,(71,72,73,...)).

{eLtau}

{ssTangent}



Given f € C°{z}, it is easy to verify that one may regard 7, as a tangent
vector v, at z, with the action of v, defined (see Definition , by:

w(lf) = 3 7 (ma(a) ©)

The following theorem shows that one may identify 7,U with T,,U by the
rule (2).

Theorem 1 The map o : T, U — T, such that 1, — v,, where the action of v,
is defined by , s an isomorphism of IR-vector spaces.

Proof. The linearity of v, is clear. Now, given two functions f; and f5 belonging
to C>{x}, if K = max{ky, ka2}, where k; is the minimal index of f;,i = 1,2 at z,
and V = Vi (| Va, where V; is the minimal index of f; at x, one may write f;|y =
fiowkh/. Note that fi fa|y = (flfz)owkh/. then, one may apply the last formula
for the product [f,][fz] showing that v, ([f1][f2]) = fa(2)va([Fi]) + f1 (2)0a ([fa)):
This shows that 7, may be regarded as a tangent vector, and so « is well defined.

Now one has to show that any tangent vector v, € 7T, U € is the image «(7;,)
for a convenient 7, € T,U. Let {x;,i € IN*} be canonical coordinates for IR*.
Let 7; = v, (z;) and define 7,, = (11, 72, 73, . ..). It will be shown that a(7,) = v,
showing our claim.

Note first that, if f = f1 fo with f1(z) = fo(z) = 0 then v, (f) = f1(x)v.(f2)+
f2(x)vw(f1) =0. Iff(.’l?) = 1, for every z, then 'Uw(fQ) = f(w>vm(f>+f<x)vw(f) =
2v,(f) implies that v, (f) = 0 for every z. By linearity, for every constant func-
tion f, one has v, (f) = 0.

Let f : B{(#) ¢ IR" — IR, be a smooth function, where B (&) = {z €
R"™||lx — Z|| < €}. Then, by the fundamental theorem of Calculus and the
chain rule, one may write for all x € B.(Z)

In particular

F@) = (@) = g lalwi— 7+ Y i) i) ®)

where f} = {( 01 g—j[i—i—t(a: - i)}dt) - gj \5;} and f? = (v; — 7).
Now, given f € C*(x), let fly = fomyv. Let & = mp(x). Abusing notation,
one may write f|y = f(z1,...,25). From (3), one may write f(zy,..., ;) =

S ai(wi— &)+ 30 fifs, where fi(Z) = 0 and f§ = (#) = 0 and a; = %b-

{eRule}

{t1}

{eProductZero}



From this, one gets v, ([f]) = Zle vy (zi)a; and, by , this concludes the
proof (compare also with ) O

Let 2;,4 € IN be canonical coordinate functions of IR4. By the Proof of
Theorem one may define the tangent vector (%ih € T, such that a%i\z(xj) =
dij, where 6;;5 = 0, if 4 # j and §;; = 1, if ¢ = j. Given 7, € T,U, with
vy = a(Ty), one may identify 7, € T, U with v,.

Abusing notation, one writes

oo 8

Ty = § T; ‘z
ox;
i=1 v

where
Ti = To(x;)

From Theorem one may regard T'U as the union of all tangent spaces | J, ., 72U,
where T, U is the linear space of tangent vectors (or derivations) at z. In finite
dimensional theory, the set {%u,i € n} form a basis of T,U. In our infinite
dimensional setting, one may say that every tangent vector 7, is an inﬁniteﬂ
sum Y .o, Tia%i\m. Note that the action of 7, on a function is always a finite
sum, and so this notation has a precise sense, without the need of establishing
any convergence result.

Using this notation, one may prove the following straightforward conse-
quence.

{eFieldRA}
Proposition 7 Let U C IR and let 7 : U — TU be a field. Let x;,i € IN be
canonical coordinate functions of IR”. Then
= 0
T(z) = ; Ti (x)aixl‘x (4a) {eTauxA}
where
Ti(z) = 7(2)(2:) (4b) {eTauxB}
and 7; : U — IR are smooth functions. Conversely, every section T defined on
U by , where T; are smooth functions, is a field.
The inverse ( of the linear map a may be regarded as a map that associates
vy € T,IR? to a vector of IRA. This map induces an isomorphism between IR“
and T,IR* = T,IR*. Hence one may write the following obvious result.
{pIdentifyTxRA}

Proposition 8 The map 3 : T,IR* — IR* defined by
> 0
;Tzafxlh = (71, T2, T3, - - )

is an isomorphism. In particular one may endow TR with the Fréchet topol-
0gy.

60ne may note that an infinite sum of vectors is not a linear combination in linear algebra.
Hence {8%,2 € IN*} is not a basis from the linear-algebraic viewpoint.
K



The next definition establishes the concept of tangent maps. This concept
will be generalized to IR“-manifolds (see Definition . For the moment, only
the following definition is needed.

Definition 10 Let g : U € IR* — IRE be a smooth map. The tangent map
g+(x) : ToU — Ty S is the IR-linear ma]ﬂ defined by g.(x)(ve)(N) = vz(Aog).

Let (z;,% € IN*) and (y;,j € IN*) be canonical coordinates respectively
of R* and IRB. Now, it is easy to obtain the expression of g,v,. In fact, if

Ve =D e aia%ih, then, by —7 it is easy to show that

> 0
g+ (2)v, = ; bj@b@) (5a)
where
bj = (9«(2)v2)(y;) = va(y; 0 9) = v (9g5) (5b)

2.4 Lie Derivatives and Lie-Brackets on R4

In finite dimensional differential-geometry, a field 7 is associated to a flow ¢;(x)
by the flow box theorem. For instance, the Lie-derivative L. of the field # may
be defined by (or at least interpreted) as

(@—1)+(0(e(x)) — O(x))
t )

Lol = i

which is a nice geometrical way of regarding the Lie-Bracket (Warner 1971).
However, a field on R4 is not necessarily associated to a flow (see (Zharinov
1992)). Hence, Lie-derivatives and Lie-brackets may not be interpreted as limits,
and the definitions of such objects are purely algebraic, although those defini-
tions implies, at least in some situations, the usual properties that are found in
finite dimensional geometry.

Definition 11 (Lie-derivative of a function, and Lie-brackets of fields) Let T
and 0 be fields on IR?, and let f : R* — IR be a smooth function.

e The Lie-derivative L. f : R* — IR is the smooth function defined by
L f(z) =7(f)(2).
e The Lie-bracket [1,0] (also denoted by L.0) is the field on IR defined by

[7,01(f) = L (Ly(f)) = Ln(L+(f))- (6)

Given two smooth functions f; and fo, by definition, as 7(x) is a tangent
vector, one may write

L:(fi+f2) =L:(f1) + L:(f2) (7a)
L:(f1f2) = foL-(f1) + f1iL-(f2) (7b)

Tt is an easy exercise to show that gs(z) : ToU — Ty(z)S is a well defined linear map.

10
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{eProductTau}



The next result shows that the previous definition of Lie-Bracket defines a
field.

Proposition 9 The definition of Lie-bracket stated in 1s well posed, that
1s, the Lie-Bracket of two vector fields is a vector field. Furthermore, if T =
S (@) e and 0 = Y02, 04(2) N, then [7,0]() = 300 i) |,
where o; = T(n(xz;)) — n(r(x;)).

Proof. See appendix O

2.5 The cotangent bundle T*R* and one-forms

The set of continuous linear functionals v : IR* — IR is denoted by (IR“)*. Let
x = (r;,j € IN*) € R*. Let dz; : IR* — IR stand for the coordinate function
dz;(z) = x;. The notation dz; is used because dx; coincides with the differential
of z;.

Proposition 10 An element v € (IRA)* is of the form v = Zle adx; for
convenient oi; € IR, =1,...k.

Proof. Sec appendix O

Let (Z1,...,4%) be canonical coordinates of IRF. Let & = Zle o;dT; be
a linear functional of (R*)*. Let 2 € IR*. Denote by 7} : (R*¥)* — (R4)*
the linear functional defined by 7 (©)(x) = @(mk(x)). Then it is clear that
T Zle o;dx; = Zle a;dx;. The last proposition says that an element ~ €
(IRA)* is of the form 7}®, where & is a linear functional belonging to (IR*)*.
In particular, one may identify (IR4)* with the subspace of IR4 formed by the
vectors x = (z;,i € IN*) for which only a finite number of components x;
are nonzero. It can be shown that (IR4)* is an inductive limit (Bernstein &
Rosenfel’d 1973). One will adopt a topology of (IR*)* for which the corre-
sponding basis are the sets of the form B = {(x;,i € IN*) € R” | |z; — ;| <
€i,i € IN*,¢; > 0}. Note that, when one regards (IR4)* as a subset of IR, this
topology does not coincide with the subset topology. For instance, the open set
U= {z € RA||x;| < 1,i € IN*} is an open set of (IR*)* that is not an open set
of IRA.

Definition 12 The cotangent bundle T*U on U is the triple (U x (IR4)*,U, ),
where ™ : U x (IRA)* — U is the canonical projection. A smooth section
of T*U is a map w : U — T*U such that x — (z,0(x)) where o(x) =
(wi(z),wa(x),...) € (RM)* and each w; : U — IR is a smooth function, i € IN*.
The set of smooth sections of T*U s denoted by Q(U).

The map x — (x,dx;), where dz; is the differential of the coordinate function

x; (which coincides with the coordinate function itself), is an example of a
smooth section of T*U that is denoted by dx;,.
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Clearly dz;|x maps z into (z, (wi(z),ws(x),...)), where w; = 0 if j # ¢, and
w; = 1. Hence, abusing notation, given a section z — (z, (w1 (z), wa(x),...)) of
T*U, one may write

w(z) = Z wi(z)dz;|,.
k=1

It is important to be pointed out that, at every fixed € U, then w;(x) # 0
only for 7 belonging to a finite subset F' C IN*.

Definition 13 Let U C IR* be an open set, and let 7 : U — TU be a field
such that © — (z,7(x)), and a section w : U — T*U such that  — (z,o(x))
of T*U. Then define the function (w,7) : U — IR (also denoted by w(T)) by
z — o(z) (1(x)). Since o(z) € (IRY)* and 7(z) € IRA, then (w,7)(v) is always
well defined by a finite sum Zfio w; ()i (x), where k, may depend on x.

Definition 14 A 1-form on U is a section w on T*U such that the function
(w,7) : U — IR is smooth for every field T defined on U.

Let (#1,...,%x) be canonical coordinates of IR¥ and {x;,i € IN*} the canon-
ical coordinates of IR*. Let V be an open set of IRF and let U = 7r,;1(V). Let
o(z) = Zle @;(%)dZ;|z be a one-form on V. Let (7 )*® stand for the one-form
w on U defined by w(z) = Zle(&)i o m)dx;|,. Later, such notation will be
generalized and it will be redefined in a more intrinsic manner.

Theorem 2 Let U be an open subset of IRY. The following affirmations holds:
1. A one-form w on U is a smooth section of T*U.

2. A smooth section of T*U is a one-form if and only if, for every x € U,
there exists an open neighborhood V,, of x, and k € IN* such that, for all
x € V one has w(zx) = Zle a;(z)dx;|,, where oy 1V — Ryi=1,...,k

are smooth functions. defined on V C IR*, where V = m,(V,), and k* €
IN* big enough, such that wl|y, = (7~ )*@.

Proof. The proof of this theorem is deferred to Appendix [C] O

The proof of the following proposition is straightforward, and is left to the
reader.

Proposition 11 (The differential of a smooth function is a one-form) Let ¢ :
U — IR be a smooth function. Let dé(x) : IR* — IR be the differential of ¢ (see
Def. @ The map d¢ : U — U x (IRA)* defined by x +— (x,do(z)) is a one
form. Furthermore, if 7: U — U x (IR?) is a field, then 7(f) = (d¢, 7).

Proof. By Def. if one may locally write ¢ = ¢ o m, then dg(z) =
Zk @Hk(z)d%b. In particular, it follows that d¢ is a one form. The other

i=1 z

affirmation follows from . O

The differential d¢ of a smooth function is also a smooth section of T*U.
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2.6 The Cotangent Space 1)U

Fix some € U C IR*. The set of points of T*U = U x (IR*)* of the form
(z,0), with @ € (IR*)*, is denoted by T*U. Now the IR-vector space T;U is
generated by the basis {dx;|, : i € IN*}.

Remember that (IR*)* may be identified with the subspace of IR* formed
by the elements v = (v,, @ € A) such that v, # 0 for a € F, where F C A is
finite. The “natural” topology 7 of (IR?)* is the one induced by an injective
limit (Bernstein & Rosenfel’d 1973). The basis of this topology contains the
sets of the form B = {(va,a € A) € RA | |y — Va| < €, € A}, where
U= (Vg,a € A) € (R?)* and €, > 0,a € A. This topology is stronger than
the Fréchet topology, since an infinite product of open intervals of IR can be an
open set of 7.

The map 3 : T} R* — (IR4)* by Zle a;dx; — (a1, a9,...,05,0,0,...) is
easily seen to be an isomorphism. In particular one may endow T} IR with the
topology induced by 7.

The next definition establishes the concept of cotangent maps. This concept
will be generalized to IR“-manifolds in section For the moment, only the
following definition is needed.

Definition 15 Let g : U C IR* — V C IRP be a smooth map. The cotangent
map g*(x) : T;(x)V — T, U is the IR-linear ma]ﬂ defined by the following rule:
one maps w € Tg*(x)V to g*w € TrU, where (g*(x)w,T) = (w,g*T) for every
TeT,U.

Proposition 12 Given a one-form w on V', then define the section g*w of T*U
by the rule (g*(x)w(x), 7(z)) = (w(g(z)), g*(x)7(x)), where T(x) is a field on U.
Then g*w is a one-form.

Proof. 1t is clear that g*w is a section of T*U. To show that g*w is a one-form,
it suffices to show that (g*w, 7) is a smooth function for every field 7 on U. One

locally has w = Z§:1 a;(y)dy;|y. Note that (g*w, 7)(x) = (w(g(x)), g« (z)7(x)).
From —, it follows that g.(x)7(z) = Zj’;l T(gj(sr:))a%j\g(w), where g; =
y;j o g. Hence (g*w,7)(x) is locally given by Z?:l a;(g;(x))7(gj(z)), which
depends smoothly on . O

2.7 p-forms, wedge product, and exterior differentiation
on R4

One has shown that a one form w on IR is locally the pull-back 7;@, where
@ is a one-form on IR*. (see Theorem . One can define a p-form on R4 by
generalizing this propert

81t is an easy exercise to show that g*(z) : T;‘(m)V — T, U is a well defined linear map.
9 A more intrinsic way for defining a p-form can be found in (Bernstein & Rosenfel’d 1973).
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Definition 16 Let V C IR and U C IR? be open sets. Let y € U and define

% (y) = T,U x T,U x ... x T,U

p times

Consider the fiber bundle T'7; = U, e T (y). Let w : I, — IR be a map. Let
g:U C RB -V C IR* be a smooth map. Let y = g(x) Define the pull back

g*|ow : TV, () — R by the rule
G |zw(T1, ..., Tp) = w(gsT1, . .., guTp), for every {mi,...,Tp} in F%(y)

Define the pull-back g*w : T, — IR, pointwise, by the same rule above.

We are ready to define a p-form.
Definition 17 (p-forms on U C IR*)

e Ap-formw on U is a map w : I'Y; — IR such that, around every y € U
there exists an open neighborhood W, of y such that wlg; = (7x)* @, where

@ is a p-form on V, V = mp(W,) C IR*, and W= F{;Vy.

o The set of p-forms on U will be denoted by A,(U), where Ag(U) denotes
the set of smooth functions f:Y — IR.

o The exterior dem‘vativﬂ is the map d : Ap(U) — Apia (U) defined in the
following way. For p = 0, the map df = d(f) is the differential of the
function f. For p > 0, as one locally has w|W = mw, then one may
locally define d(w)|y, = m;(dw), where W and & are defined above.

o The wedge product “N\” is deﬁneﬂ in the following way. Let w, : I (z) —
R and n, : T%(x) — R be two maps. Let T = (T1,...,Tprm) € Th ™ (y).

then
we Aa(T) = Y sen(0) wo(T)0e (Tt prym) (8)
oc€Shp,m
where 'Tlc)fp = (Tg(l), ce ,Ta(p)), %ﬂijLm = (TU(erl), . ,Tg(p+m)), Shpﬂn

denotes the (p,m)-shuffles, that is, the permutations o of the set |p + m]
such that o(1) < ... < o(p) and o(p+1) < ... < o(p+m) and sgn(o)
denotes the sign of the permutation.

Consider now a p-form w and a m-form n defined on U. Then, w A7 :
F’[’]er — IR is the map that is pointwise defined by w(x) A n(x).

10Tt will be shown that this definition does not depend on the chosen representation T

(see )
1 This definition mimics the standard definition of wedge product that appears in finite
dimensional exterior algebra (see (Warner 1971)).
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The following Proposition is instrumental in the sequel. From this result,
one may show that the wedge product commutes with ¢g* (that is, g*(w A n) =
(g*w) A (g*n) in the general situation

Proposition 13 Consider the notation of Prop. [I7 Given a p -form w, and
and m-form n on U, assume that w = ;@ and n = w7, where © and 7 are
convenient forms on V = m,(U) C IR*. Then,

T(MAT) = T AT, (9)
Proof. Note that
sgn
wAn(T) = Z () W(To1)s -+ > To)IMN To(kt1)s - - - 5 To(ktm))
o€Shy m
sgn

{pWedgePi}

{eComuta}

= Z (@) O((Tk)wTo(1)s - - s (Th)wTo () )N(Th )« To(kr1)s - - + 5 (Th) 5T (kt-m) )

oc€Shy m
= AAT(TR)eT1s s (Tk)sTpm) = (k)4 (1 A T)
In particular, @D follows. O

Definition 18 A vector I = (iy,...,ip), where i; € {1,...,k},j = 1,...,p,
and i1 < iz < ... < i, is called a p-multiindex of class k. One may define the
class of I, denoted by |I| and given by |I| = max;e|p{i1,d2,...,ip}. The set of
p-multiindeces I such that |I| < k is denoted by H,(k). By definition, Hy,(k) is
the set of p-multiindeces of class that is not greater than k.

It will be shown that one may compute exterior derivatives and wedge prod-
ucts of p-forms on R4 in the same way that one computes those objects in
finite dimensional differential geometry. All the properties of finite dimensional
geometry are transfered via the pull-back 7} in the expected way.

For this consider that the canonical coordinates of IR¥ are {1,...,7x}. Let
VIR* be an open subset. Let H = (hi,...,h,) be a p-multiindex. One consider

the standard notation dipg = dZp, A dTp, A ... A dTp, of finite dimensional
geometry. Given tangent vectors {Xl, . ..Xp} C T3V, recall tha one has
dig(X1,... X,) = det(din,, X;), where det(dZ,,, X;) denotes the determinant
of the p x p matrix whose (i, j)-element is (dZp,, X;).

It is well known that a p-form on V C IR* is given by

o= Y ay(@)dig. (10)
HEH,(k)
Let U be an open set of IR4. Let V = m1,(U). Define the p-form on U C R4
given by
dryg = WZ(diH)

120ther suitable definitions of the action of dZ g on tangent vectors may be found in (Warner
1971)
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Given a set of p fields {X1,... X,} on U, one has

deg(X1,...,Xp) = dip((me)«X1,. .., () Xp)
= det(dZp,, (m)«X;)
= det(dzp,, (7r)«X;)
= det {(m)e X, (@)}
= det{X;(Zp, o)}
= det{(dxp,,X;)}.

This last equality does not depend on the chosen projection 7. In other words,
the notation dxy makes sense without the need of specifying the corresponding
projection that was originally used to define dx . In particular, it follows easily
that, all p-forms on R4 may be locally written in the form.

wy= Y. apdig= > wi(Gpdipg)=mo (11)

HeH, (k) HeH, (k)

where ooy = @y o7y, and @ is given by (10). Conversely, given a form , it is
clear that, for any m > k, one may writd" |

wy=m | Y. andiy (12)
HeHp,(m)

where the functions &y = 0 coincides with the ones of for |H| < k and
apy = 0 for |H| such that k < |H| < m. From this arguments, one have shown
the following Proposition.

Proposition 14 Given a p-form wy and a g-form wo on IR, choosing k* big
enough, one may locally write w;, = T = ZHeH (k) agdry andwy = Ty =
ZJeH Bydxy. It follows from Proposition that the wedge product wi Awa

of two forms is locally the pull-back (mp=)* (01 A ©2) of a form &1 A &, defined
on an open set of IR*. In particular, the definition of wedge product given in
Def. well posed in the sense that it is a p + q-form in the sense of the same

Def. [17

Now, one computes the expression of the wedge product:

w1 Nwy = WZ(
= 71']1< (@1/\ ~2) (13)

= agfBydryg Ndxy.

13From now on, for simplicity of notation, one will not mention the restriction to W= F€V
in the local expressions of the forms (see Def. .
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Note that the last expression do not depend on the chosen local projection
that was used to represent w locally. Now given a p-form @ on V C IR* given

by . Then
do= Y dag A (@)dig. (14)
HeH,(k)

Now by definition, note that, given a p-form , by one may locally write

do=mpdo =my | Y dag(d)Adig
HeH, (k)

From , it follows that

dw = Z s (dag (Z)) A (n)dZm)
HeH, (k)

In particular, given a p-form w given by , then

dw = Z dog(xz) ANdry (15)

It is clear from the last formula that the concept of exterior differentiation,
that is stated in Definition [I7, does not depend on the chosen local projection
7y, that was used to represent w locally. Furthermore, given w = m{@, as dw =
mrdo, then d?(w) = mjd*® = 0.

3 Internal product, and the Lie derivative of p-
forms on R4

Definition 19 Let X,Y1,...,Y,_1 be fields on an open set U C R”. Letw be
a p-form on U. Define the interior product i(X) : A,(U) — Ap_1(U) by the
p—1 form defined by @(Y1,...,Yp—1) =w(X,Y1,...,Y,1). The Lie-derivative
of w along X is the p-form Lxw defined by Lxw = i(X) o d(w) + d o i(X)(w).

One must show that the last definition is well posed in the sense that both
objects #; = i(X)w and #; = Lxw locally coincide respectively with (m)*6;
and (ﬂ'k)*ég, where 6; are forms defined on some open subset of IRF. For this,
let w be locally given by (11). Let Y = (Y3,...,Y,)I'};(z) and let (7%).Y stands
for ((mg)«Y1,..., (mk)«Yp). Then, if X € T,,U one may write

i(X)W) = Y 7 (andin) (X,Y)
HeHyp(k)
= Y ((agomp)din) ((mk)eX, (m).Y)

HeH, (k)
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Let H = (h1,...,h,) be a multiindex, and let )},3717...,)7]0 € T3V, where

V = m(U) C IRF is an open set. Let Y stands for (Y3,...,Y,). Then,

i(X)dip(Y) = i(X)(dip, A...NdEy,) (V)

p
= Y (1) (di,, X) (d;ihl Aodim A A dihp) (Y),
=1

where the notation cﬁ; means that the differential dzj,; is omitted. Now take
X = (mp)«X and Y; = my,).Y; for ¢ = 1,...,p. Since (dZp,, 7}Y;) = (dzp,,Y;),
one gets

P
i(X)(agdry) = ag Z(—l)i+1<dl‘hi,X> (dxp, Ao Ndxp, Ao A dxhp) (16) {eIXmrA}

=1

It is now clear that, for k big enoug then i(X)w = 71'2@1, for a convenient

one-form ; locally defined on IR*. Now, as d : Ax(S) — Agy1(S) is well posed,
it is clear that the operator Lx is well posed.

For a function ¢ : U ¢ IR — IR and a field X on U, remember that, by
definition Lx¢ = X(¢) = (dp, X). Then Lx(dp) = d(i(X)do) + i(X)(d*¢) =
d{d¢, X) = dLx ¢.

Let w be a p-form w given by (L1]). Then dw is given by (I5]), and i(X)(w) can
be easily determined by . These expressions are the same that are found in
finite dimensional geometry. As Lx (w) is defined by i(X) (dw)+d (i(X)w), then
it is not difficult to show from and , that the expression of Lx (agdz)
for H = (hq,...h,) € Hi(p) also coincides with the finite dimensional formula
(Warner 1971, Dieudonneé 1974):

p
LX(adeH) = (LXaH)dxH + Zadehl VANPIAAN Lx(dmhl) N ..d.’L'hp

i=1
For one-forms, the last expression implies that

k

k
LX(Z aldxz) = ZLx(az)del + aZLX(de)
=1 i=1

Proposition 15 Let X,Yp,Y1,...,Y, be fields on an open subset U C RA. Let
w be a p-form on U. Then

dLxw = Lx(dw) (17a)
YO(w(H7_._’Y;J>) = (LYOW)(Y17~--,Yp)+
p
w(YI;“w}/ifla[Y07}/;}71/:£+17"'7Yp) (17b)
i=1

14Given H = (h1,...hp) € Hy(p), let I be the minimal index of the function (dz,, X).
Let lg = max{l}l, e, lZ;I}, and let L = maxgcp, (p) lg- Then one may take k = max{L, k}.
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p

do(Yo,...,Y,) = Z(—l)iYi(w(Yl,...,ﬁ»,...,Yp)>—|—
1=0
S ()WY, Y] Yo, YL YL Y1)
1<J

Proof. The first formula follows from the fact that Lx(-) = doi(X)+i(X)od.
Hence do Lx = d?0i(X)+doi(X)od = Lx od. The second and third formulas
follows from the definition of the operator Lx(-), from the formulae (I5), and
(16) (that coincide with the corresponding finite dimensional formulae) and
from the same arguments that are used to establish similar formulae in finite
dimensional geometry (see (Warner 1971, Dieudonneé 1974)). O

In particular, for one-forms w and fields X,Y on an open set U C IR?, one
may write

Lx<w,Y> = <LX(.«.),Y> + <w,LXY>
o(X,Y) = X(@(¥)-Y(@(X)) - w(X, V)

The last expression is known as Cartan’s Magic Formula.

Some important properties are collected in the following result:
{pCollectRA}
Proposition 16 Let 8 be a one-form, w be a p-form and n be a q-form , all of

them defined on an open set V.C IRA. Let g: U C R* — V be a smooth map.
1. One haﬂ g (wAn) =(g"w) A (g%n).
2. The map g*w is a p-form.
3. dg*0 = g*(db).
4. d(g*w) = g"(dw).

Proof. 1. It follows easily from the third item of Def. (see the proof of Prop.
13).

2. By Proposition this holds for p = 1. By definition w is locally given by
(7)*@, where @ is a p-form on some open set of IRF. Let @ = ZIer(k) ardry,
where dx; = dZ;, A...d%;,. Then, by the linearity of g* and (m)*, and by 1,
one may write

*

g*(mp)*ardz; = aromyog(g(m)

)dir
ay om0 g(m 0 g)"diy
dFi, A

= ajompog(mpog)” S AdT

aromg o g((my 0 g)*dEs, A... A (g o g) dT;,

15For the moment one is not claiming that g* maps forms to forms. Remember that the
wedge product was defined for arbitrary maps wT’[’J — IR.
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Now, by Proposition (m 0 g)*dZ;; = d(Z;; om0 g) = dg;; where g;; =
Tj, om0 g is the i;-th component of g. In particular, the array of equations
above means that

g"(mg)*ardzr = ay om0 g(dgs, A ... Adgip)

Now, let k7 and K be the respectively minimal index of g; and ay o 7 o g at
x. Let | = max{k,ky,...,ky, (KrI € Hy(k))}. Then it is clear that one may
locally write g; = m; 0 §; where g; is a function defined on some open set of IR'.

So

(dgiy N...ANdgip) = (m)"dgi A...A(m)"dgp (18)
= (m)"(dgi, A ... A dgip) (19)

As (dg;, A ...\ dgiy,) is a p-form on IR!, this shows the second claim.
3. From Theorem |2 one may locally write 8 = Zle a;dz;, where the «; de-
pends only on x1, ..., zg. From the proof of 2, one has g*0 = Zle(%' og)dg; =
P (m)*(B:)dgi, Giom = gi, where B;om = (aog), | = max{k, ki, ..., kx, Ky, .
and k! and K are respectively the minimal indeces at z of g; and «; o g. Hence
d(g*0) = >0 (m)*dBiNdg; = Y77y d(Biom) Ad(giom) = Y5 d(aiog)Ad(gi).
Without loss of generality, assume that|'°|l = k.
Now, let @ be such that a; = &; o m). Then df = ¢*(3h_, d(m)*ddi;) =
(Szé:1<m>*d(did@> = (Cici(m)*dds A diy) = (Ziy ((m)*dds) A ((m)*d)).
07

1
g do = Zg*(ﬂ'z)*d@i A g* (m)*dz;)
i=1
1
= Z(m ¢} g)*d&i A di‘l)
i=1
1
= Zd(diom 0g) Nd(Z;0m 0g)
i=1
1
Z d(a; 0 g) Adyg;
i=1
4. By the Proof of 2, it follows that d(g*w) = dm} 3 ;cpy (1) (Gromog) Adjr =
T Y rem, (k) A@r om0 g) Ndgi =3 ey (1) dlar o 0g) A dg;.
Now, ¢g*(dw) = g*(m)* ZIer(k:) day NdEy = (mog)* ZIer(k) day NdZy =
Zler(k) d(ayomog)A(mog)*di;. Now, recall that a; o m = ar and

(Wlog)*dj[ = (ﬂ'log)*(di‘il/\.../\di‘ip)
= (d(Zs,omog)A...Nd(T;, omog))
dgr

16By construction, [ > k. If k < [, one may write § = 2521 a;dz;, where a; = 0 for ¢ > k.
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4 RA-manifolds

The definition of a IR4-manifold is similar to the definition of a finite-dimensional
manifold.

Definition 20 A smooth IR -manifold is a Hausdorff topological space S and a
family of pairs {(U;, ¢;),i € A}, where U; is an open subset of S and ¢; : U; —
V; € IR is a homeomorphis such that:

1. UieAUi = S;

2. IfU; N U; for some pairi, j € A, then the mapping (j)jod)i_l o (UiNU;) —
¢;(U;NUj) is a smooth map between open sets of IR*.

As in the case of finite-dimensional manifolds, the family {(U;, ¢;),i € A}
is called atlas and each map ¢; : U; — V; is called a (local) chart. Given a set
of canonical coordinates {y;,i € IN*} of IR?, the set {z;,j € IN*} of functions
zj : Uy — IR defined by x; = y; o ¢; is called set of local coordinate functions.
Let £ € S. A local chart (U, ¢) with £ € U is called a local chart around &.

An atlas is mazimal if one may not add any pair (U, ¢) to this atlas in a
way that property 2 still holds. As in the finite dimensional case, using Zorn’s
Lemma, one may show the existence a maximal Atlas and, without loss of
generality, one may assume that a given atlas is maximal (Warner 1971). In
this entire section, S will be a given IR“-manifold.

4.1 Smooth functions on R*-manifolds

Let U C S be an open set. A function f : U — IR is smooth if for every local
chart ¢ : W — Z with W C U, the map fo¢~ ' : ¢(W) C R* — IR is smooth.
Let {x},j € IN*} be the set of local coordinate functions of the local chart ¢. Let
§eW CU and let z = ¢(§). By the definition of smooth function on an open
set of IR*, then f o ¢~ may be locally expressed in the form fo ¢! = fom.
Abusing notation, one may locally write f o ¢~ = f(:z:l, ..., xk), that is called
expression of f in local coordinates.

It is clear from the definition of a JR4-manifold that there exists a subfamily
{(Us, ¢i),1 € T'} of the maximal atlas such that | J,.r U; = U. Then if one wants
to prove that a given f : U — IR is smooth, it suffices to show that f o ¢; ' is
smooth for all ¢ € T'.

Definition 21 A map g : R — S between IR -manifolds is smooth if, for every
local chart (U,¢) of R and (V,%) of S, the map g =1 ogod=t:p(U) — (V)
1s smooth. the map g is called local expression of g in coordinates.

17That is, it is a continuous bijection with continuous inverse.
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4.2 Tangent bundle, tangent maps, and fields on IR4-manifolds

One may define derivations acting on germs of smooth functions on open sets of
IR“-manifolds in the same way that one has defined such objects on open sets
of IR* (see Section . Hence, given a IR“-manifold S, then TeS will denote
the set of tangent vectors ve : C*°{&} — IR, where C*°{¢} denote the set of
functions that are defined on some open neighborhood of £ € S.

Definition 22 Let g : R — S be a smooth map. The tangent map g.(x) :
TR — Ty)S is the R-linear map defined by g.(x)(ve)(A) = vz(Xog).

The following proposition has three important meanings, namely: the first
one is the chain rule; the second one assures that the tangent map of a diffeo-
morphism is an isomorphism of tangent spaces; the last one, shows that one
may canonically endow the tangent space with the Fréchet topology.

Proposition 17 Let X,Y and Z be R -manifolds. The following properties of
tangent maps hold for smooth maps g:Y — Z and h: X — Z.

1. (Chain Rule) (goh)(z) = g« (h(x)) o hi(x).

2. (Diffeomorphisms induce Isomorphisms of Tangent Spaces) If Z = X, g
is a diffeomorphism, and g = h™*, then g.(z) is an isomorphism between
the IR linear vector spaces T,,Y and Tg)Z with inverse h.(g(x)).

8. A Local Chart ¢ of X induce an isomorphism ¢.(z) : TpX — T,IR*. In
particular one may endow T, X with the Fréchet topology, and the induced
topology does not depend on the chosen chart.

Proof. See appendix [E] O

Definition 23 (Tangent bundle and sections on IR*-manifolds) Let S be a IR*-
manifold. Define T'S =J,cqT:S. The canonical projection m: T'S — S is the
map v, — x for every x € S and v, € T, S. The bundle (S,TS,7) is called
tangent bundle of S. A section T of the tangent bundle is a map 7 : S — TS
such that w o T is the identity map. In other words, T(x) is a tangent vector v,
at x € S, that is, 7(x) € T,.S.

Proposition 18 Let S be a IR* manifold and let T : S — TS be a section.
Let (U, ) be a coordinate system, and let V = ¢(U). Let {y; : i € IN*} be the

canonical coordinate functions of IR*, and let a%ﬂy be the fields on IR defined

by %Ly(yj) = ;5, where §;5 =0 if i # j and §;; =1 ifi = j. Let

P ) P
gz = (@7 Dslotan (5 lo) (20)

Then
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1. c’%'ﬁﬂ is a section on U such that a%i =(x5) = 0i5.

2. Bvery section 7 : S — T'S may be locally represented in the form

(r|U) (z Z 8% (21)

=1
where the functions 7; : U — IR are given by 7, = 7(x;).
8. Let 7:V — TV be defined by
P 81/1

where 7; = 1,09~ L. Then (7|U)(z) = (¢ 1)« (¢(2))7(d(x)). In particular,
on U one may write for A : U — R, 7(A)|, = (0™ Hu(d(x))T(P())(N) =

F(P@) (Ao ) = o Fily) 22|y pmi 2y, where A= Ao gL,

Proof.  The fact that a%ih is a section on U follows easily from the defi-
nition of tangent maps. Remember that z; = y; o ¢. Then 2|,(z;) =

(@ slon (57 lo6)) (25) = g loe) (@5 0671) = Lo (yj) = dij. By proposi-
tion of Appendix one may define the section 7: V — TV on V = ¢(U) C
R4, by 7(y) = ¢«(z)7(x), where x = ¢~ *(y). By Prop. [7} the section 7 may

be represented by
S
B "y

=0

where 7;,1 € IN are convenient functions (not necessarily smooth). By construc-
tion it is clear that

(@) = (67 )(d(2))7(¢(x)), 2 € U
Hence, if A : U — IR is a function, it follows that

TA) = (07)(d(2)7(d(2))(N)
= (@) (Aoo™")

00 ) 9 .

= ;(Ti0¢($))afyi|¢(m)(/\o¢ )

= >0 { (0 ) ()
1=0

DML ) EINEY

Hence one may take 7, = 7; o ¢(x). By 1, one must have 7(x;) = 7;. Note
that the infinite sum always makes sense since, at a point z € U, only a finite
number of summands are nonzero. O
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Proposition 19 One call by local expression of 7 in coordinates. One
says that the local expression is smooth if the functions 7; are smooth on U. Let
(U, ¢1) an (U, $2) be two local charts of a IR*-manifold S and let T be a section
of T'S. Then the local expression of T in the coordinates ¢1 is smooth if and
only if the local expression of T in the coordinates ¢o is smooth.

Proof. Straightforward from Proposition and Proposition of Appendix
[ O

The Propositions [18| and [19| allows one to state the following definition

Definition 24 A section T :— TS is a field if, for every local chart (U, $) of S,
with V = ¢(U) C IRA, the local expression of T in local coordinates is smooth.

Among other important things, the next proposition shows that, when par-
ticularized to a map between open sets of IR, the tangent map is a generaliza-
tion of the Jacobian matrix.

Proposition 20 Let g : U C R* — V C IRE. Let {zj,j € IN*} and {y;,i €
IN*} stand for the canonical coordinates respectively of IR* and IRB. Denote
the component function y; o g by g;. Then

9gi
1. g*(x)(%h) =1 oy |18(39;7:'

Ko; 9gi
2 u@) (5% a5 le) = X2y (52 0y 02

imal index of g; at x.

o x
L) e where k. is the maz-

3. Fiz a point x € RA. The map g.(z) : T,U — T,V is continuouﬁ.

Proof. Note that g*(x)(% ) (i) = (% 2)(Yiog) = gg;’ showing 1. Note
that 2 is straightforward from 1. Now, to show 3, it suffices to see that the ith
component function of g.(z) is the linear map that associates (ay, as,as,...)
to fil anggﬂw. As it depend only on a finite number kj, of coordinates,
since these functions are linear, from Proposition [I0] it follows that they are
continuous. Now, the result follows from Proposition O

4.3 Cotangent bundle, pull-backs, one-forms and differen-
tials on IR*-manifolds

From Proposition given an IR* manifold S, and 2 € S, one may identify
TS with Ty(,)V for a given local chart ¢ : U — V defined around x. As Ty,)V
may be identified with R4 (with the Fréchet topology), one may endow the
IR-linear space TS with the topology induced by those identifications.

18With the Fréchet topology constructed in Part 3 of Prop.
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Proposition 21 Let X andY be IR*-manifolds and let g : X — Y be a smooth
map. Fiz some x € X and let y = g(x). Then the IR-linear map g.(z) : T, X —
T,Y is continuous.

Proof. Let (U7 ¢) and (V 1) be respectively local charts around = and y. Let
=), §=v(y), U=0¢), V =1(V). Without loss of generality, assume
that U = g’l( ) (otherw1se one may restrict to g~ (V). Remember that W
is an open set of T,,Y if and only W = (¢~ 1).(9)(W), where W is an open set
of T,,U. Hence, W is open. An analogous remark may be stated for the open
sets of T, Y.

Let § = ¢ o go ¢! be the expression of g in local coordinates. Then § is
differentiable. In particular, from Proposition then §.(Z) : T:U — Tgf/ is
continuous. Since g.(z) = 1. (g(x))g«(z)¢; * (Z), given an open set W of T,Y,
it follows that (g.(x))~*(W) is an open set of T, X. O

Definition 25 (Cotangent bundle, one-forms and pull-backs)

o (Cotangent Bundle) Let TS denote the space of continuous linear maps
Wy : TpS — IR. Let T*S = |J,c,TiS. Let m: TS — S be the canon-
ical projection that maps w, — x. The Cotangent Bundle is the triple

(S, T*S, ).

e (One-form) A section of the cotangent bundle of S is a map w: S — T'S
such that mow is the identity map on S. In other words, w(x) € T;S. A
one form w is a section of the cotangent bundle such that, for every field
T:8 =TS the map {(w,7) : S — IR defined by (w, T)(x) = w(x)(7(z)) is
a smooth function.

e (Cotangent Map and Pull-Back) Let X and Y be IR*-manifolds (or open
subsets of IR*) and let ¢ : X — Y be a smooth map. Letx € X, y = ¢(x),
and let 0, € T;Y . Let 7, € T, X. The cotangent map ¢*(z) : T, Y — Ty X
is deﬁneﬂ by (0" (x)(0y), Te) = (Oy, ds(x)T2). Let T be a field on X.
Given a section 0 of T xY, one may define a section ¢*(0) of T*X called
pull-back of 6, by the rule (;5*(9)(7')(@ = (¢*(x)0(x), T(x)).

The next proposition shows that a one-form on a IR“*-manifold is necessarily
the pull-back by a local chart of a one-form on an open set of IR*. Moreover,
the pull-back of a one form is a one-form.

Proposition 22 Let X, Y be IR* manifolds. Let g: X — Y be a smooth map,
y = g(x) and let (U, ) and (V,1)) be local charts respectively around x and vy,
with V = ¢(U).

1. Let # = ¢(z) and U = ¢(U). The map ¢*(zx) : TiU — T*X is an
isomorphism of IR-vector spaces. In particular, every section 6 of T*U is
of the form 60 = ¢*0, where 0 is a section of T*U

19Clearly, as ¢* (x)(8y) = 0y o ¢x«(x), if 6, is continuous, so is ¢*(x)(0y).
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2. A one form 0 on U is of the form 0 = ¢*0, where 0 is a one-form of T*U.

8. (Dual of chain-rule) Let X,Y,Z be IR* manifolds and let g : X — Y and
f:Y — Z be smooth maps. Then (f og)* = g*f*.

4. If w is a one-form on'Y, then g*w is a one-form on X.

Proof. See appendix [G] O

Proposition 23 Let S be an IR* manifold and let (U, ¢) be a local coordinate
system. Let (x;,1 € IN*) be the corresponding local coordinate functions. Let
77,‘? : U — IR* be the map defined by

T2(E) = (21(8),22(6), ..., 21(€)),E € S

Note that qﬁf =7 o ¢p. A section w of T*S is a one form if and only if, around
every point & € U, there exists a local chart (U, ¢) around & and a one form @
on IR, such that w|y = (ﬁ,‘f)*&}

Proof. From the part 3 of the last Proposition, there exists a local chart (U, ¢)
such that w|y = ¢*@, where & is a one form on an open subset of IR*. Now,
from Part 2 of theorem w = m;w, where @ is a one-form on an open set of R*.

Hence, using Proposition wly = (¢*mi@) = (g 0 ) @ = (W,f)*&) O

Now we are ready to define the notion of differential of a function on a
IR*-manifold.

Definition 26 One may define the differential df of a function f : S — IR as
the one-form such that df () = 7(f) for every field T on S.

Proposition 24 Let ¢ : X — Y be a smooth map between IR manifolds. Let
A:Y — R be a function. Then ¢*(dX) = d(Xo ¢).

Proof. We shall show that the action of both 1-forms on every field 7 on X
coincides. In fact, (¢*(dX), 7) = (d\, p«7) = (¢+T)(A) = T7(A 0o ¢p) = (d(A o ¢),T)
O

Proposition 25 (Computational Issues) Let S be a IR*-manifold. Let ¢ € S
and let (U, ¢) be a local chart of S around §. Let (x;,9 € IN*) be the cor-
responding coordinate functions. Let dx;|, be the differential of x; : U — IR.
Then:

1. {dxi|,, %h) = 0;;, where 0;; was defined in Prop. .
2. If {yi,i € IN*} are the canonical coordinates of IR, then
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8. If {z,i = 1,...,k} are the canonical coordinates of IRF, then dx;|, =
(W,‘f)*(z)dzi|z, 1=1,...,k, where z = W,f(x)

4. If w is a one-form on S, then around every £ € U there exists an open
neighborhood Ve of §, and some k € IN, such that w|y, (v) = Zle wi(z)dz;| s
where w; : Ve — IR is the smooth function given by w;(x) = (w(x), a%i|z>,
and the minimal index of the functions wy at & are less than or equal to k.
Furthermore, w = (phi)*® where & is the one-form on ¢(Ve) C IR given

by o(y) = S, @iy)dyily, and @ (y) = w; 0 =1 (y).

5. Let k be the minimal index of f at £ and let Ve C Ug be a minimal neigh-
borhood. Then df (v) = Zle % v(f)dx;|,, for all v € Ve. Furthermore,

if f=Ffoo™t, then 21,(f) = 2L

d(v)-

Proof. See appendix [H] O

Remark 7 One may endow T'S and T*S with structures of a IR manifold in a
very similar way that one can do in the finite dimensional case (Warner 1971).
In this context, one may define the canonical projection m : T'S — S in the same
way one has defined above, and a section is a map T : S — TS such that woT
1s the identity map. Then a field may be defined as a smooth section of TS,
which gives a intrinsic definition of a field. However, a one-form is not only a
smooth section of T*S, as one have noted in the discussions above, and intrinsic

definition of a one-form w must assure that (w, ) is a smooth function for every
field T.

4.4 Independent functions are part of a local coordinate
system

It is known in finite dimensional geometry that a set of functions with pointwise
independent differentials is part of a local coordinate system. The theorem that
allows one to prove this statement is the inverse function theorem. The next
lemma shows that this result holds in our infinite dimensional setting, at least
for a finite number of functions. However it does not hold for an infinite number
of functions (Zharinov 1992). As a consequence of this result, one shows that,
if the differential of a function u is generated by a finite set df of pointwise
independent differentials, then u is locally a function of 6.

Lemma 1 Let S be a IR* manifold, and V be an open neighborhood of € € S.
Let 0 = {01,...,0} be a set of smooth functions 0; -V — IR, i=1,...,k, and
assume that set of one-forms df = {db.,...,d0y} is pointwise independent at
every point of V.

1. Let v € V. Then there exists an open neighborhood U of v and a set
of functions z such that (0, z) is a local coordinate system defined in U.
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In particular the map 6 : U — 6(U) = V c R* defined by 0(¢) =
(01(¢),...,0k(C)) is open and surjective.

2. Let u: V — IR be a smooth function such that du € span {db,...,d0k}
in'V. Let v € V. Then, there exist a smooth map i : S(U) — IR such
that u|lU = pod. In particular, the mapping p may be identified with the
expression of u in the local coordinates (0, z).

3. Let (0, w) be a local coordinate system around & and let n = {n1,...,n}
be a set of smooth functions such that span {df} = span {dn} on an open
neighborhood containing & and the set dn is linearly independent at §. Then
(n,w) is also a local coordinate system on some open neighborhood of &.

Proof. See Appendix [l O

Proposition 26 Let S be a IR*-manifold. Let u : S — IR be a function. Let
(U, @) be a local coordinate system, and let x = (0,w), be the corresponding
coordinate functioﬂ around &, where 0 = {0;,i € B} and w = {w;,j € C}.
Assume that one locally has span{du} C span{df}. Hence, there exists an
open neighborhood of € such that the local expression of u in coordinates given
by p=wuo ¢~ in coordinates is of the form u(6y,...,04).

Proof.  Abusing notation, let {f,w} be coordinates of IR*. By Part 5 of
Proposition one gets op 0,7 € C. If the minimal index of u at ¢ is k, on

Qw;

a minimal neighborhood, if the cardinal of B is greater than k, one gets g—é‘i =0
for ¢ > k. The desired result then follows.

4.5 Integral curves on /R“-Manifolds

A smooth curve on an IR4-manifold S is a smooth map o : (a,b) — S, where
(a,b) C IR. Let f be a field on S. One may define on IR the field - given by
the standard operation of derivation of smooth functions.

Definition 27 A smooth curve o : (a,b)(a,b) — S is an integral curve of a

field f if .
o (t) 7l = f(o(t)). (22)

Given a local coordinate system (U, ¢) with local coordinate functions (x;,7 €
IN*), one may abuse notation, letting x;(t) stands for z; 0 o(t), that is, one shall
denote ¢ o o(t) by (z1(t),z2(t),...). Let U = ¢(U). Assume that

f@) =Y 55

20Here one does not assume that 6 is a finite set.
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where f; = f(x;). Then, when one seeks an integral curve o (t) € U, the equation
is locally equivalent to the infinite dimensional differential equatioﬂ

l’z(t) = fl(xl(t), (EQ(?f), e ,.’Eai),i e IN* (23) {eSolutionL}

An integral curve o is also called a solution of f. One may take a closed
interval [a, b], instead of (a,b). In this case o(a) is called the initial condition of
.

Contrarily to the finite dimensional case, a version of flow-box theorem is
not available in the context of IR4 manifolds. In fact, for some fields there exists
no integral curves (Zharinov 1992). It is easy to construct an example for which
there exist infinitely many solutions with the same initial condition. In fact, on
IRA, define the field f = pya xiﬂa%JI’ where © = (21, 22,...). Now, Borel’s
theorem (Borel 1895) says that, for every z € IR?, & = (Z1, T2, . ..), there exists
a smooth function g : (—1,1) with ¢g*=1(0) = Zx,k € IN*. This assures the
existence of a solution o(t) = (g(t), g™ (t),g®(¢),...) for any initial condition
Z € IR*. Remember that the smooth functioé h: IR — IR defined by

0,t <0
h(t) = { exp(—1/8),¢ > 0 (24)
is such that h(¥)(0) = 0 for k € IN*. Hence, the curve o(t) = (g(t)+h(t), g™ (t)+
R (1), g (t) + hP)(t),...) is also a solution with initial condition z € IR*. So
uniqueness of solutions is not expected to be a general property in our infinite
dimensional context.

4.6 Submersions, immersions, immersed manifolds and em-

beddings

Let A, B be two countable sets. Let X = R4 and Y = RE. Let 7 : R x
IRP — IRP be such that m(z,y) = y. Let ¢ : R* — IR* x IRP be such
that «(z,y) = (x,0). Let S and T be two IR“*-manifolds. A map ¥ : S — T
is said to be a submersion (respectively, an immersion) if, for every £ € S,
there exists local charts (U, ¢) and (V,v), with £ € U and ¢(§) € V, with
coordinate functions such that the expression of ¥ in local coordinates, given
by 1 o ¥ o ¢!, coincides with 7 (respectively, coincides with ¢). In the finite
dimension case, one may show that a map X is a local submersion around some
& € S (respectively a local immersion) if and only if ¥, () is an surjective linear
map (respectively, an injective linear map). This nice feature does not hold in
our infinite dimensional setting (Zharinov 1992). However, if ¥ is a submersion
(respectively an immersion), Prop. shows that X, is pointwise surjective
(respectively pointwise injective).

Let S be an R*-manifold. A subset A C A is said to be an immersed
manifold if there exists a IR“-manifold A and an injective immersion ¥ : A — S

2n fact, ow(]) (i) = o |e(2i 0 0) = &i(t) = f(@i)|o(t) = filot-
22This function is used in the construction of partitions of unity (Warner 1971).
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with A = Y(A). Note that one may endow A with two different topologies.
The first one is the subset topology, for which the open sets of A are of the form
UN A, where U is an open set of S. The second one is the induced topology,
for which the open sets of A are of the form X(V'), where V is an open set of
A. Note that A has a structure of JR4-manifold when one chooses the induced
topology. In fact, giving an atlas {(Ux, ¢x), A € A} of A, as the map ¥ : A — A
is a bijection, then one may define the atlas {(Ux,d2),A € A} of A, where
Uy = %(Uy) and ¢y = ¢ o X1 A simple exercise shows that this defines a
structure of R4 —manifold for A. Note that, as ¥ is an immersion, there exists
convenient local charts such that the local expression of ¥ in these coordinates
reads z +— (z,0). So the immersed manifold is locally “a slice” of the manifold
S, as one have seen in the finite dimensional case.

The immersion X is said to be an embedding if the induced topology coincides
with the subset topology. In this case there is no loss of generality of thinking
that ¥ is the insertion map (since it is a bijection onto its image), A = A
and the topology is the subset topology. As in the finite dimensional case, an
embedding cannot exhibit the same known problem of the “figure eight”, that
is, an embedded manifold cannot approximate to itself indefinitely, because it
is formed by a disjoint union of slices (Warner 1971).

In finite dimensional geometry, the converse of the next proposition holds.
However this is not true in general in our infinite dimensional context. For
instance, the tangent map ¢. of a map phi : S — T may be injective at a
given point £ € S, but the map ¢ is not an immersion around this point (see an
example of this fact (Zharinov 1992)).

Proposition 27 The tangent map of an immersion (respectively submersion) is
pointwise injective (respectively surjective). The cotangent map of an immersion
(respectively submersion) is surjective (respectively injective).

Proof. We show only the claims for injections. The proof of the given affirma-
tions for submersion is similar, and is left to the reader. Locally an injection
t: T — S is of the form = — (z,0). Given a function A : S — T', namely A(z, z),
note that A ot = A(z,0). In particular, if A = z;, abusing notation, one has
Aot =z;. Now, if t,(7)(A) = 0 for all A, this means that, 7(Ao¢) = 0 for all A.
In particular 7(x;) = 0 for all ¢ implies that 7 = 0. Hence ker ¢, = {0} and so ¢,
is injective. Now, as ¢*(d\) = d(A\o¢), by choosing A = z; one gets ¢*(d\) = dz;.
In particular, the cotangent space T, X is generated by the image of i*(z) for
all z € X. O

Lemma 2 Let S be a IR* manifold an let ¢ : S — IRP be a submersion, where
B is a (finite or infinite) countable set. Then around all & € S there exists a
local coordinate system (U, 1)) such that the coordinate functions are of the form
(¢, 2). When written in these coordinates, the map ¢ reads (h,z) — h.

Proof. Looking IR as a IRP-manifold, the assumption means that, for all
¢ € S, there exists local charts (U, ) around & and (V, 8) around ¢(€) such that
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the map B0 ¢oa~! reads (z,2) — . Note that the map (x,2) — (87 (2),2)
is a local diffeomorfism with inverse (w,z) — (B(w),2). Hence (871(x),z) is
also a set of coordinate functions. Now, for all v € S with a(v) = («, z), one
has 371 (z) = B~ (Bogoa™t(x,2)) = goa(z,2) =poatoa(r) = o).
In particular, v — (¢(v),2(v)) is the local chart with the claimed properties.
O

4.7 Distributions and Codistributions

Let S be a IR® manifold. Let z € S and let G, stands for the set of all
subspaces of the IR-linear space T,S. Define G = |J,.gG.. A distribution
D:S — Gisamap  — D(x) such that, for all z € S, D(x) is a subspace
of T,S. In finite dimensional theory, one may endow G with a structure of
manifold (called the Grassmanian of S). In this context one may define a smooth
codistribution as being a smooth section of G. In our infinite dimensional setting,
this construction is much more involved, and it is not necessary, at least for our
purposes. Hence, we shall consider another definition of smooth distribution,
that is also considered in finite dimensional geometry.

Definition 28 (Distributions) The set F(S) of fields on S has a structure of
C*°(S)-module induced by the operation of (pointwise) sum of fields, and (point-
wise) multiplication of a field by a function (evaluated on the working point).
A smooth distribution on S is a submodule D of F(S). Note that, given a
distribution D, one may define a D(x) = span{7(x)|7 € D}. A point x of S
is a regular point of D, if there exists an open neigborhood V, of x such that
the dimension of D(v) is finite and constant for all v € V,,. A distribution is
involutive if for all 71 and 75 in D, then [11,72) € D.

Unfortunately, the Frobenius theorem does not hold for finite dimensional
distributions in our infinite dimensional setting. As a matter of fact, it holds
when its codimension is finite. It is much easier to considere the Cartan’s version
of the Frobenius theorem, which is related to codistributions (see section .

Definition 29 (Codistributions) The set A1(S) of one-forms on S has a struc-
ture of C*°(S)-module induced by the operation of (pointwise) sum of one-forms,
and (pointwise) multiplication of a one-form by a function (evaluated on the
working point). A (smooth) codistribution on S is a submodule T' of A1(S).
Note that, given a distribution T', one may define a map C(I), that associates to
every point x € S the subspace of TS given by C(T')(z) = span {w(x) |w € T'}.
A point x of S is a regular point of T', if there exists an open neighborhood V,
of x such that the dimension of C(T")(v) is finite and constant for allv € V,,. If
all x € S is a reqular point of T', we say that I’ is a nonsingular codistribution.

Remark 8 By simplicity, one may abuse notation, letting T'(x) stands for C(T')(x).

Given a codistribution I' defined on S, let V' C S be an open set. Then I'|y
stands for the C>°(V)-submodule defined by I'ly = spanges(y) {wly : w €T}
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Proposition 28 Let I' be a smooth codistribution on S. Define the function
dimT : S — R by = — dimD(z). AssumeP_B] that dimT'(z) < k* for some
k* € IN forallz e S.

1. The function dim(T") : S — IR is upper semi-continuous. In other words,
around every point v € S, there exist an open set V,, C s such that
(dim(T")(v)) < (dim(T")(z)) for every x € V.

2. The set of regular points of T is open and dense on S.

3. Let x € S be a reqular point of a codistribution T, then there exists an
open neighborhood V; of x and a set of pointwise independent one-forms
w = {wi,...,wr} C I such that Ty, = spancey,) {wilv,, .., wrlv, }.
The set w is called a local basis of T'.

4. Let T, = 1,2 be two codistributions. They are said to be locally coinci-
dent, if for all £ € S, one has I'1|v, = I'a|v,, where Ve is an open neigh-
borhood of £&. Assume that I'1 is nonsingular. Then the codistributions I'y
and 'y are locally coincident if and only if C(T'1) = C(I'2).

Proof. 1. Let s = dimI'(v). Then I'(v) is a s-dimensional subspace of
TxS. In particular, there exists a set of one-forms {wy,...ws} in T, such that
{wi(v),...,ws(v)} is a basis of T'(v). By Part 4 of Proposition 25| choosing a
local coordinate system, on some open neighborhood V' of v, one may write

k
wi(x) = Z a;j(z)dz;l,

where «;; : V' — IR are smooth functions. The k x s matrix a(z) such that
{a}i; = a;; depends smoothly@ on z. As a(v) has rank s, it admits a nonzero
minor determinant. Since the (minor) determinant is a continuous function,
and so is «, this minor will be nonzero on some open neighborhood W, of v. In
particular dimT'(x) > s for all x € W,.

2. The fact that the set of nonsingular points is open is straightforward
from the definition. To show that this set is dense, choose any open set V. As
dimI'(z) < k*,z € S there must exist v € V such that dimI'(v) > dimTI'(z) for
all x € V. By 1, it follows that v must be a regular point of T

3. In the proof of 1, take the constructed set w = {wy,...,w,}, where r =
dimT'(x). This set is pointwise independent on some open neighborhood V. of
x € S. By dimensional arguments, it is clear that I'(§) = span {w1(£),...,w-(§)}
for all £ € V. This shows only the pointwise coincidence of the vector spaces
I'(¢) and span {w;(€),w,(£)}. To show the statement of 2 one must show that,

23For instance, this is true if I' is finitely generated.
240ne may regard o : V — IRFXS as a map that associates z € V to a k X s matrix.
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forallw € Tly,, w(€) = >i_; 0;(§w; (&) for all £ € V,,, where a;,i =1,...7, are
smooth functions. One has already shown that

w(§) = Z(Sz<£)wz(£) (25) {eOmegaXi}

It suffices to show the smoothness of the §;. From the same arguments of the
proof of 1, after choosing a local coordinate system

k
wi(§) =) aij(Q)dwile,i=1,...,7 (26) {eAAAAA}
=1

and define the smooth map « : V, — IRF*". As rank a(xr) = r, one may
complete the real matrix «(§) with k — r constant rows 8;,l = 1,...,k —r, con-
structing the k x k invertible matrix 5(§). By continuity, 5(£) will be invertible
for £ in some open neighborhood W, C V,, of z. So define

k

=1

By Proposition one may locally write

-
w(€) = D vi(€)duile

for convenient smooth functions ~;. Substituting on (25)), one shows that
one may take k* = k. Note that this substitution is equivalent to the following
matrix equation

61(£)
M(¢) : Sé)
O s | s
7 (6) 0
0
So one may locally write
61(£)
& @ 7(8)
5o =] ™Y
(:) 7 (©)
0
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Showing the smoothness of the functions J;.

Another proof can be given, without the need of completing the matrix «
into an invertible matrix 5. The idea is to use a pseudo—inversﬁ of o in order
to compute the J; from the knowledge of the ~;.

4. Straightforward consequence of the proof of 3. The details are left to the
reader. g

Remark 9 Note that proofs of Parts 1 and 2 Proposition also shows that
v € S is a regular point of T if and only if dimT is locally mazimal around v.

4.8 Lie-Brackets, Lie-derivatives and Exterior Calculus on
IR*-manifolds

In this section one will generalize for JR4-manifolds the concepts of Lie-Brackets,
Lie-derivatives and all the results of exterior calculus, that have been established
for open sets of IRA. The main idea is to transfer directly all the results by using
the tangent mappings of the local charts (for fields), or by the pull-backs of the
forms. One may define Lie-Brackets on IR“-manifolds exactly as it was stated in
deﬁnition only replacing IR4 by IR4-manifold. The proof that such definition
is well posed is identical to the one of Proposition [0

Lemma 3 Let ¢: S — S be a smooth mapping between IR*-manifolds. Let T,0
be fields on S and 7,0 be fields on S. The fields {7, T} are said to be ¢-related
if g7 =T o0 . Assume that {7,7} and {0,0} are ¢-related. Then {[7,0],[r,0]}
are also ¢-related.

Proof. The proof is identical to the same result of finite dimensional geometry
(see (Warner 1971)). O

The consequence of the last Lemma is that, to compute the expression of the
Lie-Bracket in coordinates, it suffices to apply the expression that is developed
in section [2.4] This follows from the fact that a field 7 on S is locally given by
To¢ = ¢~ x 7, where (U, ¢) is a local chart of S, 7 is a field on V C R4, and
V =¢(U).

One has shown that a one form w on a JR“4-manifold is locally the pull-back
¢*® where ¢ is a local chart and @& is a one-form on an open set of IR4. One
can define a p-form on S by generalizing this property. The next definition
generalizes the Def. for IR“4-manifolds.

Definition 30 Let Y be a IR“-manifold. Let

My =T,Y xT,Y x...xT,Y

p times

25For the definition and properties of the pseudo-inverse see for instance (Strang 1988).
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and define T%, = Uyey Tr(y). Let w : kY — IR be a map. Letg: X — Y
be a smooth map between IR*-manifolds. Let y = g(x). Define the pull-back
g*|aw : Tk (2) — IR by the rule

Gow(T1y .oy Tp) = w(GaT1, .., GuTp), for every {T1,..., 7} in T%(x)
Define the pull-back g*w : Flj( — IR, pointwise, by the same rule above.

Let (U, ¢) be alocal chart on Y. Let V = ¢(U) C IR*. By definition, if U is an
open subset of Y, then F'fj is a subset of F’f,. We are ready to define a p-form.

Definition 31 (p-forms on IR*-manifolds)

o Ap-formw onY is a map w : I}, — IR such that, around every y € Y
there exists a local chart (U, ¢) around y such that w|g = ¢*©, where @ is
a one-form on'V = ¢(U) C R, and U =T%,.

o The set of p-forms on'Y will be denoted by A,(Y), where T'o(Y) denotes
the set of smooth functions f : Y — IR.

o The wedge product “N”is deﬁneﬂ in the following way. Let wy : I'Y,(x) —
R and n, : T (z) — IR be two maps. Then w A1 is defined by the same
rule that was used to define the wedge product on IRA..

o The exterior derivative is the map d : Ap(Y) — Api1(Y) defined in the
following way. For p = 0, the map df = d(f) is the differential of the
function f. For p > 0, the dW)lg = ¢*(do), where U and & are
defined above.

Some important properties of forms on a IR“*-manifold are collected in the
following result:

Proposition 29 Let 8 be a one-form, w be a p-form and n be a g-form , all of
them defined on an open set V of a IR*-manifold. Let g: U — V be a smooth
map between open subsets of IRA-manifolds.

1. The definition of exterior differential stated in Def. des not depend on
the chosen local chart that is used to represent the p-form.

2. One haf_-s] g (wAn) = (g"w) A(g*n).
8. The map g*w is a p-form.
4. dg*0 = g*(do).

26This definition mimics the standard definition of wedge product that appears in finite
dimensional exterior algebra (see (Warner 1971)).

27Tt is not difficult to show that the definition does not depend on the chosen local chart
(U, ).

28For the moment one is not claiming that ¢g* maps forms to forms. Remember that the
wedge product was defined for arbitrary maps wT“{] — IR.

35

{dPFormsS}

{pCollectS}



5. d(g*w) = g*(dw).

Proof.

1. Since ¢ ' o ¢y is the identity map, and (¢ 0 ¢51)* = (¢5')*@5, then
it follows that ¢, ')* = (¢3)~1. Assume that (Up,¢1) and (Us,¢s) are two
local charts of a IR4-manifold S, with W = Uy, NUs # 0. Let w be a p-
form on W such that w = ¢jw; and w = P59, where w; and we are p-forms
defined respectively on the open subsets respectively, ¢1(U;) and ¢o(Us). Tt
will be shown that ¢idw; = ¢5dws on W. In fact, note that (¢y')*¢iw; =
wo. Then, (phij o ¢2_1)*w1 = ws. By proposition part 3 of it follows that
d(phiy o g5 )*wi = (phiy o ¢y ')*dw; = dwy. Then, this implies that ¢3(phi; o
¢y ') dwr = @3y ) Pidwr = (1) * dwy = ()" dws.

2. It follows easily from the third item of Def. (see the proof of Prop. .

3. Let (U, ¢) be a local coordinate system. As in Prop. one lets W,f stands
for 7, o ¢. By Def. B1] w is locally given by ¢*w, @ is a p-form on some the
open set ¢(U) C IRA. By Def. W = (m)*®, where & = Zle &;dT; is a form
on an open set of IRF. Then w = (wlf)* Zle &;dZ;. The rest of the proof is
similar to the Proof of Prop. |16| with 7, (or ;) replaced by w,‘f (or respectively,

replaced by (;Sf) The details are left to the reader.
O

It is clear now that one may compute exterior derivatives and wedge prod-
ucts of p-forms on R4 manifolds in the same way that one computes exterior
derivatives of forms on IR“. Given a local chart (U,¢), all the properties of
finite dimensional geometry may be obtained via the pull-back ¢* in the ex-
pected way. Now let I = (i1,...,%,) € Hp(k) be a multiindex. Given a local
chart (U, ¢) with coordinate functions {z;,7 € IN*}, one may locally define on
U the p-forms ¢* (dxs, Adwg, A. .. Ndx;)) = (w,‘f)*(dfﬁil NdTi, N. .. NdT;,), where
T; o ¢ = ;. Abusing notation, one lets dz; = dx;, Adx;, A ... Adz;, stands for
¢*(dxy, Ndxi, A... Ndx;,). Now, if w is locally written by ZIer(k) ar(z)dry
then dw is locally written by

dw = day Ndxg.
IeH,(k)

If one locally has wy = Zlfer ardry; and wy = ZJqu(l) Bydxz, then
w1 Nwg = Z Z arBydry ANdxy. (27)
T€Hp (k) JEI, (1)
Other properties may be easily obtained from the properties of p-forms on

IRA. For instance, all the definitions and properties of Section [3| may be easily
generalized for JR4-manifolds.
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4.9 The Frobenius theorem on R*-manifolds

As stated above, the Frobenius theorem for fields is a delicate matter in our
infinite dimensional setting. However, since 1-forms are pull-backs of one-forms
that are defined on finite dimensional linear spaces, the Cartan’s version of
Frobenius theorem is easy to obtain from the same theorem for finite dimensional
manifolds.

Definition 32 Let I' = span {wi,...,wy} be a codistribution on a IR* manifold
S.

e One says that T is (locally) integrable around & € S if there exists a local
coordinate system (U, ¢) around & with local coordinate functions {x;,i €
IN*} such that T|y = span{dxy,...,dz,}|u.

o Let T C A*(S) = {w e A2(S) |w=327_,0; Ani,0; € A1(S),m; €T'}. One
says that T is involutive if d(T') C T), or equivalently, d(w;) = Z§:1 0 Awj,
0 € A'(S), i,j € |k].

The next theorem states the Cartan local integrability criterium for R4
manifolds.

Theorem 3 A codistribution T' = span{wi,...,wr} on S is locally integrable
around & if and only if € is a reqular point of T' and T is locally involutive around

£.

Proof. See Appendix [J} O

5 Cartan fields and Diffieties

An ordinary diffiety is an JR“-manifold for which there exists a field %, called
Cartan field.

5.1 Lie Biacklund maps between diffieties

Let S; and S3 be two diffieties with Cartan fields respectively given by d; and
Oy. A smooth map ¢ : S7 — Sy is Lie-Bécklund if ¢,.9; = s 0 ¢.

Let ¢ be a Lie-Bécklund immersion. In adequate local coordinates z; for Sp
and (21, Z2) for Sy, one has z; — (21,0), that is, 21 0 ¢ = 27 and 23 0 ¢ = 0.
Then ¢,01(21) = 01(21 0 ¢) = D1(21) = D2(Z2) o ¢. Furthermore,

0 = 81 (22 o ¢)
= ¢.01(%)
- 82(22) o qZS

This means that, one has 02(Z2) = 0. The following result may be easily

proved from the remarks above.

|im¢
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Proposition 30 Let ¢ : S; — So be an immersion between two diffieties Si
and Sy. Let z1 and (Z1,22) be suitable local coordinats respectively of S1 and
Sa such that the local expression of ¢ reads z; — (z1,0). Then ¢ is a Lie-
Backlund immersion if and only if 02(Z2) = 0 and 02(21) o ¢ = 01(z1). Let
oh=> ai(zl)%. Then,

> 0 > 0
D2 (21,20) = Zﬂi(zly ZQ)ﬁ + Z%’(Zl,@)@,
i=1 i j=1 i
where B;(21,0) = a;(z1) and v;(z1,0) = 0. In particular,

= 0
82|(zl,0) = Zai(zl)agl .
i=1 i

Roughly speaking, the proposition above says that the Cartan field 0, of
So, when restricted to the immersed manifold A = im¢, may be identified with
01. This may be understood in a more intrinsic way, by noting that ¢, is an
injective linear map at every point £ of S;. Hence ¢, () is an isomorphism onto
its image. So, as ¢.01 = 02 0 ¢, one may identify 0 at £ € Sp with 95 at ¢(&)
via this isomorphism.

In a similar way one may prove that.

Proposition 31 Let ¢ : S; — So be an submersion between two diffieties Sy
and So. Let (z1,22) and Zy be suitable local coordinates, respectively of S1 and
So such that the local expression of ¢ reads (z1,22) — z2. Then ¢ is a Lie-
Backlund submersion if and only if 02(22) o ¢ = 01(22). In particular, if 02 =
Py @(22)%21 then 8y = >.2, Oéi(Zl,Zg)%li + 2052 ﬁj(zz)%%, where the

smooth functions a;,i € IN* are arbitrary.

5.2 Time notion and systems

A system is a diffiety S with Cartan field % for which one can define a global
notion of time. In other words, for each point ¢ of S, one may associate the
time 7(§), where 7 : S — IR is a smooth function. For each t € 7(5) the fiber
771(t) corresponds to the set of all points that exists at time ¢. Furthermore,
the derivative of time is identically equal to one, that is %(T)‘g = 1 for every
£esS.

The next definition is an intrinsic definition of a system (see (Fliess, Lévine,
Martin & Rouchon 1997, Fliess, Lévine, Martin & Rouchon 1999)).

Definition 33 The field IR of real numbers can be regarded as an ordinary diffi-
ety with the Cartan field % defined by the standard operation of diferentiation

% +(p) = %(t). A system S is a triple (S, 7, R), where S is an ordinary diffiety
with Cartan field % and T : S — IR is a Lie-Bdcklund submersion. The function
T 15 called time notion.
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Now, as 7 : S — IR is a submersion, by Lemma [2| there exists local co-
ordinates functions of the form {¢,z}, where ¢ = 7 and the function 7, when
written in these coordinates reads (t, z) — t. Let % = 040% + 3, O‘ia%i' Let
R = 7(5). Note that 7 is an open map, and so R is an open subset of IR.
As 7 =t is Lie-Bécklund, this means that for every function ¢ : R — IR one
has %¢(S) = T*(%)((b) = %(qb o). Letting ¢ be the identity map on the last
equation, one obtains o = %(T) = 1. The remarks above can be stated as
an alternate definition of a system. It is easy to note that both definitions are

equivalent.

Definition 34 A system S is an ordinary diffiety with Cartan field % and a
function 7 : S — IR called time notion, such that:

e Around each point & € S, there exists local coordinates (t,z) such that
T(t,2) =t.

e In these coordinates one may write % = % + > ai(t,z)a%i. In other
words & (t) = 1.

Note that a system (S, 7, IR) is a fiber-bundle. Remember that S is a trivial
fiber bundle if S = IR x S; and 7 is the projection in the first factor. Assume
that S is a diffiety with Cartan field %1. Let o : S — 57 be the projection on
the second factor. Assume that

d d

- 0Tm2 = (Wz)*%

dt1 (28)

Then the Cartan field is said to be time-invariant. In this case it is easy to
see that, for convenient coordinates z of S; and (¢, z) of S, one gets % =
24, ailz)

Note that, in general, the fiber bundle S is not necessarily trivial. When S
is trivial, and hold, then the system is called time-invariant. This means
that the notion of time is exogenous to the system, and furthermore the Cartan
field does not depend on time. For a time-invariant system every fiber 77 1(#)
does exist for every time ¢. Furthermore, the solution of the field %, that is,
the time-translation, has a canonical meaning.

5.3 Lie Biacklund maps between systems, immersed sys-
tems and subsystems

Let (S1, 71, IR) and (S, 72, IR) be two systems. A Lie-Bécklund map ¢ : S; — S

is a Lie-Béacklund map such that 7 = 15 0¢. In other words, the notions of time

of both systems is compatible with the map ¢. One says that S; is immersed
on 59 if ¢ is a Lie-Bécklund immersion.

Proposition 32 The map ¢ : S1 — Sz is a Lie-Bdcklund immersion between
systems Sy and Sy if and only if:
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e Around every point s; € S1, and around ¢(s1) € Ss), there exists local
coordinates (t, z1), respectively of S1 and (t,z1, 22) OE| Sa, such that the
map ¢ reads (t,z1) — (¢,21,0).

e If 7 and 5 are the time notions respectively of S1 and S, then in these
coordinates one may write t = 11(t,z1) and t = 1o(t, 21, 22).

e In these coordinates, the Cartan field 01 of S1 is given by % = £ +
oo it 21)%, whereas the Cartan field Oy of So reads

i

> 0 > 0
62'(21722) = Zﬁ’b(ta ZlazQ)a + Z%(t; 21, Z2)£7
i=1 j=1

where Bi(t, z1,0) = (¢, z1) and v (t, z1,0) = 0. In particular,

- )
| (t,21,0) = Z a;(t, Zl)ﬁ

i=1 Li

Proof. See Appendix [K] O

The following definition is very important in the study of implicit systems.

Definition 35 (Subsystem) A system S is said to be a subsystem Sy if and
only if there exists a Lie-Bicklund submersion ¢ : S1 — So between S; and Ss.
If there exists a Lie-Bdcklund submmersion ¢ : U C S1 — Sa, where U is an
open subset, then Sy is said to be a local subsystem of Si.

A similar result may be stated for subsystems. The proof of this result is
similar to the last one, and is left to the reader.

Proposition 33 The map ¢ : S1 — Sy is an Lie-Bdcklund submersion between
systems S1 and Ss if and only if:

o Around every point s1 € S1 and ¢(s1) € S2), there exists local coordinates
(t,21,22) of S1 and (t,z1) oﬂ Sa such that the map ¢ reads (t,z1,22) —
(t, 21) .

e In these coordinates, one may write t = 171(t, 21, 22) and t = 1o(t, 21).

o In these coordinates, the Cartan field 01 of S1 is given by % = % +

> Byt 21, zz)% + 3002 ault, zl)azil_, whereas the Cartan field 92 of

d _ 9 oy 9
Sy reads 5 = & + >4 ai(t, Zl)azli :

29For convenience, we abuse notation letting (¢, z1) stands for a set of coordinate functions
of both S1 and Ss.

30For convenience, we abuse notation letting z; stands for a set of coordinate functions of
both S1 and Ss.
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A Uniqueness of the differential in R4

It will be shown that the definition of differential stated in definition [ is inde-
pendent on the chosen local finite representation of the function. Before showing
this fact, consider the following lemma of finite dimensional calculus.

Lemma 4 Let k > p and let 7} : IRF — IRP be defined by mh(x1,...,75) =
(z1,...2p). Let U C IR¥ and V C IRP be two open sets such that 7 (U) = V.

Let f1 : U C RF — IR® and fy : V C RP — IR® be two smooth functions

such that f1 = fg ony. Then, for ally € U and z € IR*, one may wm’t

dfi(y)(z) = df2|wg(y) o my(2).

The proof of the last lemma is straightforward and is left to the reader. One
may denote the statement of the Lemma using the following notation, which
means an equality of linear transformations for every fixed y:

dfi(y) = dfz(n}(y)) o ¥

Now, assume that a function admits two different local representations f =

fl om = fg o g, where 71 (21, 29,...) = (x1,Z9,...,2%) and w1 (x1,22,...) =
(x1,22,...,2p). Without loss of generality, assume that this local representa-
tions are defined on the same open set W and k > p. Then, 1y = 7, 0w, where
(21, ..., x) = (x}, ...xp). Note that f = fiom = faomy = foomfom. Asm

is surjective, then f1 = f2 omy. Let y = m1(z). Note now that dfg (mo(z))ome =

dfs(mpom (2))o(nfom) = [(df2(mf(y)) omplom = dfi(y)om = dfi(mi(z))om,
This shows the claimed uniqueness.

B Proof of proposition

Choose an arbitrary k& € IN*. One may write R4 = IRF x IRP, where B =
{j € IN*|j > k}. Hence, a point of IR* will be denoted by (z,z), where

31Here df1(y)(z) means the linear mapping z +— [lim¢— M]
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r = (21,...,2,) € RF and z € RP. Let X C IR? be the k-dimensional
subspace X = {(v,2z) € R* | z = 0}. It is clear that X = IR*. Hence, as
v : R* — IR is R-linear, it follows that |x(z,0) = Zf:o o;x;, where a; € IR.
Now fix € € IR, with € > 0. As v is continuous, then A = 771 ((—¢,€)) is an
open subset of IR4. Note that A contains a basic open set containing the origin
(0,0). From the definition of the basis of the Fréchet topology (see section ,
choosing k big enough, this basic open set must contain every point £ € IR* of
the form & = (0, z), where z € IRP is arbitrary. Let Z C IR4 be the subspace
defined by Z = {¢ = (2,2) € R*|x = 0}. One will show now that v(¢) = 0
for every £ € Z. In fact, by linearity, one has v ((0,tz)) = tv((0, z)) for every
t € IR. Hence, if v((0,2)) = a # 0, then one may choose t = 2¢/|a|, obtaining
~v((0,t2)) = 2¢ € (—¢,€). This is a contradiction, and shows that (£§) = 0.
Hence

k
7 ((2,2)) =7 ((2,0) +7((0,2)) = v((2,0)) = Zaw

In particular, v = Zf: o dx;.

C Proof of Theorem [2

Proof. Remember that a section w of T*U must be of the form

w(z) = Zai(az)dziu.

Now take 7 = %. Then (w,7) = a;(z). In particular, if w is a one-form, then

() must be a smooth function, showing 1.

Now if w(z) = Zle a;(z)dz;|,;, with a; being smooth, it is clear that w is
a smooth section, showing the sufficiency of 2.

To show the necessity of 2, assume, as an absurd, that w : U — T*U is a
one-form and, for every [ € IN* and for every open neighborhood V, C U of &,
there exists Z € Ve and k > [ such that

w(x) =Y wi(x)dr;|., where wi(z) # 0. (29)
k=1

Let /; and Ug be respectively the minimal index at &, and a minimal neigh-
borhood at £ of w; : U — IR,i € IN*. Given k € IN*, let VVE’C = UgﬂUgﬂUfk
and define [ = 0 and I} = max{ly,ls,... Ik, l;_, +1,k}, for k=1,2,3,.... By
construction I > I¥_; and I} > k. Let £ = (&,&2,&3,...). define the field 7 on
U by

(@) =) (w41 — §l*+1)i\x
i i axi

=1
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By construction, 7;(x) = (z1x41 — §241),7 € IN*. In particular, 7;(§) = 0,4 €
IN*.

Now assume that V; C U is a minimal neighborhood of the smooth function
(w,7) : U — IR. Suppose also that [ is the minimal index the function (w, ) at
&. Let Z be a basic open set such that Z C Vg ﬂWf By absurd, there exists
Z € Z and k > [ such that holds. '

Now note that, inside Z, w;,% = 1,...,k does not depend on z; for j > .
Let T = (Z1, T2, 73,...) and let £ = (&1,£2,&3,...). Define the map ¥ : IR — IRA
by

V(t) = (Z1,22,..., Tz, &z 41 + 4,612, & 43, - - -)

As Z is a basic open set, it is easy to show that ¥(0) € Z. As ¥ is continuous,
then ¥(¢t) € Z for |t| < ¢, for € small enough. By construction it is easy to see

that
k-1

T(U(t)) = ;(fllﬂd - §z;+1)aixi + taimk
Hence -
{w, T)(¥(t)) = Z(i'l;-',-l =& )wi (W (1)) + twr((t))

By construction, w; depend only on the first I; coordinates and [}, > l;,i =
1,...k on Z. Tt follows that w;(V(t)) = w;(Z),i = 1,...k. In particular, h =
wi(¥(t)) # 0. One concludes that

(w, T)(¥(t) = (w, 7)(¥(0)) = th

By Proposition [6] it follows that the minimal index of (w,T) is greater than
I} +1>k >1. This is an absurd.

One has already shown that, for every £ € U there exists £k € IN* and an
open neighborhood V¢ of § such that w(z) = Zle wi(x)dz; for x € Ve. Without
loss of generality, assume that Vg is a minimal neighborhood of w; at &, and the
minimal index of w; is If,i =1,... k. Let k* = max{k,[{,15,...,l;}. It is clear
that u)i|v5 = W; o mg+|y, for convenient smooth functions w;. In particular, on

V. one may write w(z) = Zle(@i o mp+)dx;. Hence wly, = (m~)*@, for a
convenient w.

O

D Proof of Proposition [9
It is easy to see from that [1,0](f1 + f2) = [, 6](f1) + [, 0](f2). Now,

[7,0)(f1f2) L7 (Lo(f1f2)) — Lo(L-(f1f2))
L:[foLo(f1) + fiLle(f2)] — Lo[f2L-(f1) + frL-(f2)]
{filr(Lo(f2)) + (Lo f2)(Lrf1)+
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f2Lr(Lo(f1)) + (Lo f1)(Lrf2)} —
{fiLo(L7(f2)) + (Lrf2) (Lo f1)+
f2Lo(L+(f1)) + (Lr f1)(Lof2)}
= filr, 0l(f2) + fa[7, 0](f1).

In particular, [7,0](x) is a tangent vector for all z € IR4. To show that [r, 6] is a
field (that is, a smooth section of TIR“), one may compute the expression [, ]
in coordinates by taking f = x;, obtaining [7,0]; = a; = T(n(x;)) — n(7(z;)). In
particular, [7,0](z) = Y o, ai(x)a%i‘x? where «; is a smooth function.

E Proof of Proposition

Let v, € T,X. Let y = g(z) and z = h(y). Let A : V, — IR be a smooth
function, where V; is an open neighborhood of z. By definition (hog).(vy)(A\) =
vz(Aohog) = (g«(x)vy) (Ao h). Since 7y = gi(z)(vy) € T,)Y, then 1y(Aoh) =
ha(y) (1) (A) = (he(9(x)) © g«(x)(vz)) (A). This shows the chain rule. Now, let
X be a IR*-manifold and let ¥ : X — X be the identity map. Then, by
definition, it is clear that W, (x) is the identity map on the linear space T, X.
If g = h™!, then ¥ = ho g is the identity map on X, and so h.(g(z)) is the
left-inverse of g.(z). As ® = goh is the identity map on Y, one concludes easily
that h.(g(x)) is also the right-inverse of g.(x). This shows 2.

The proof of 3 is identical to the proof of 2. By section [2.3] one may induce
a topology on T, X. It is easy to show that the topology induced on T, X does
not depend on the chosen local chart ¢. In fact, if ¢ is another chart defined
around z, one may write ¢.(z) = (¢ o 1/)*1)*|¢($)w*(9:). Now, from 2, it follows
that (¢ o 1/)*1)*|w(x) is an isomorphism, and so the uniqueness of the induced
topology follows.

F Smoothness of vector fields trasformed by dif-
feomorphisms

The following results are instrumental for the definition of fields on JR“-manifolds.

They are useful in order to show that the notion of smoothness that is introduced
in the Def. [24] does not depend on the chosen local chart.

Proposition 34 (Diffeomorphisms induce a transformation of fields) If ¢ : U C
R — V C IRB is a diffeomorphism of open sets, then given a field T : U — TU,
the map 7:V — TV s a field, where 7(y) = ¢.(x)7(z), with x = ¢~ (y)).

Proof. Note that 7 is well defined as a section from V' to TV. Let {y;,j € IN*}
be canonical coordinates of V' C IRA. To show that 7 is a field, it suffices
to show that 7(y) = Z;‘;l 73-(y)a%j7 where 7; : V' — IR is a smooth func-
tion. Denote the functions y; o ¢ by ¢;. Now remember that, 7; = 7(y;) =

45

{aChainRule}

{aTransfer}

{pTransfer}



G (@) () (Y5)lo=g-1(x) = T(@) (W5 © D)la=g-1(y) = T(¥)(D))o=p-1(y) = T(¢5) ©
1(y) As ¢ and 7 are smooth, 7(¢) : U — IR is smooth, and so is 7(¢;) o ¢~ L.

{p10}
Proposition 35 Let (U, ¢1) and (U, $2) be local charts of the IR*-manifold S.
Let 7 : S — TS be a section of TS. Take some x € U and let y; = ¢;(x) and
Vi =¢;(U) C R4, i=1,2.

1. The map 7; : V; — TV, defined by 7;(y;) = (¢i)«(x)7(x), where x =
&~ 1(y;) is a section of TV; fori=1,2.

2. The section 71 is smooth (that is, 71 is a field) if and only if T2 is smooth.

Proof. The fact that 7; is a section of T'V; is a consequence of the fact that
(¢i)« maps a a tangent vector of TS onto a tangent vector of Ty(z)V. To
show 2, note that 72(y2) = (¢2)«(2)7(2) = (d2 0 ¢7" 0 ¢1)u(x)7(x) = (¢ ©
¢11)*h>(¢1) (@)r(@) = (42 o ¢ ")« (y1)F1(11), With y1 = ¢1 0 ¢; ' (y2). By
Prop. 134} as ¢; o ¢2 : Uy — Uy is a local diffeomorphism, then if 7 is smooth,
it follows that 7 is also smooth. By similar arguments, if 75 is smooth, then 7
is smooth. g

G Proof of Proposition

al3
Let 7, be a tangent vector in T, X, and let §; € T:U. Remember that ¢* (x)(ﬂ;g)(rx){: ’
0z (¢s(x)75). As ¢. is an isomorphism, it is clear that ¢*(z)(0z)(m) = 0 for
all 7, € T, X if and only if 6z = 0. Hence ker ¢*(z) = {0}. Now, given a con-
tinuous linear function h : T, X — IR, as ¢.(x) is continuous with continuous
inverse, then h = ho (¢,)~! € T3U, and ¢*(z)h = h. This shows 1. Now,
to show 2, remember that a smooth vector field on U is of the form 7(x) =
o7 (o(x))(7(d(x)), where 7 : U — TU is a field. Now let § = ¢*6 be a one-form

on U. Then (8(z),7)(z) = (8(x),(x)) = (6" (2)0(6(x)), 67 ($(2)) (F((x))) =
(0(x), ¢4 (2)2  (D(2))(7) 0 ) = (0(¢(x)), 7(¢(x))) = (0, 7) 0p(). In particular,
this function is smooth if and only if the function (f,7) is smooth on ¢(U).
Hence, by Def. 6 must be a one form on ¢(U). Now given a one-form w
on Z and a field 7 on X, then ((f o g)*w,7) = (w, (f 0 9)«7) = (w, f«(gs7)) =
(f*w,g+7) = (g" f*w, ). To show (4), note first that g*w is a section of T X*.
Hence, it suffices to show that (g*w, 7) is smooth for every field 7 : Y — TY. For
this, let (V, ¥) be a local chart around y = g(z). From Part 3 of Proposition [18]
one locally has 7 = U (#)7(Z), where & = ¥ (z) and 7(%) = > ﬂ(i)%ﬁ.
From Part 1 of Prop. [I7] and Prop. one may write

¢+ (9(x)) g+ ()7 () $eguty (2)7(2)
= (oo g o). (2)

S )5l 5

=1 j=1
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Now let @(g) = Zle a;(9)dg; be such that w = ¢*@. Then
(gw,m) = (v, g.7)

(070, gu7)

(@, ¢*g*¢* 7)

S5 S

=1 5=1

where §j = W o go ¢~ 1(Z). From the smoothness of the last equation, the result
follows directly by the third part 3 of Def. 28]

H Proof of Proposition

By definition (dxi\m,a%ju) = a%j «(z;). By Prop. it follows that
<dxl‘r’am le) = 6;5. Now, as z; = y; 0 ¢ and z; = 2 owk, then 2 and 3
follows from Proposition (24 n Now, by proposition on V¢ one may write
w = (77,‘?) @, where @ is a one-form on V, where V' C IRF is the open subset of
IR* given by 71';?(‘/5) Since w(z) = Zle @;(2)dz],, then by 3 and Prop.
one has w(x) Zk 1 wi(z)dz; |y, where w; = @; ow,‘f. By 1, it follows easily that
w; = {(w, ax |z Since (¢! o ¢)* is the identity map, note from part 3 of Prop.

22] that
() =(¢")7". (30)

Note that (¢71)*w = Zle w; 0 ¢~ 1) *wdz;|,. By 2, and G) one may
Write<¢_1) dmz'w - (¢_1)*¢*dyz|y - dyz‘y So (¢_ )*w = Z 10@( )dyz|y
Hence w(z) = ¢* ZZ 1 @i(y)dy;ly. This shows 4. Note that (df (z), 22 Forle) =

2 w(f):<¢_1)*(¢( )>8:r1 (m)(f) 8?/1 (foqﬁ ) Byl

dz;

#(2)

I Proof of Lemma [

Let (¢, W) be a coordinate system around &, where ¢ = {x; : i € A}. Without
loss of generality, one may assume that W = V, otherwise we may restrict V'
to VN W. Let V be the open set V = ¢(V ) c IRA. Up to a restriction to

the open set V, one may write §; = 6, o =1 = 6, (1, oy Tpy)t = 1,0k,
where n; is the maximal index of 6; at £. Let n = max{nq,...,nx} and denote
x = (x1,...,2,) and & = (Tp41,Tnt2,Tnts,-..). Consider the projection 7 :

V — V; C IR" defined by m(z,2) = z. Theset 6 = {6, ...,0;} may be regarded
as a set of functions defined on V; C IR™. Note that the independence of df
on V implies the independence of df on V. So, a convenient application of
the (finite dimensional) inverse function theorem, shows that one may choose a

set of coordinates & = {z;,,...,2;,_,} and an open neighborhood U; C V; C
R™ of 7o ¢(€), such that the map H : Uy — Uy C IR™ defined by H(x) =
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(0(z),%) is a difeomorphism. Let U = 7~ *(U;). Then the map F : U — U,
defined by F(x,%) = (H(z),#) is a difeomorphism with inverse F~10,%,2) =
(H=1(0,%),%7). Let U = ¢~ (U). Then, (4,U) is a coordinate system of S
around &, where ¢ = {6, &, &}, with 1) = F o ¢. Let U; = 9(U), and define the
open surjective map my : U — V c R by m1(0,%,2) = 0. Let &t =uo~t. As
du € span {df}, then u(0,z,2) = p(f). Hence, one may regard p as a function
defined in V such that pom = 4. Hence, pom ot = u. One may take
0 = m o1, and § and p, constructed in this way, have the desired properties.
This shows 1 and 2.

To show 3, let ¢ = (6, w). By part 2, one may construct § : V; — V and
W V — W such that 7 is locally given by w(6). By dimensional arguments,
the set {dn} is pointwise independent. By parts 1 and 2, one may construct a
local coordinate system ¢, = (1, z), and maps 0; : V‘é1 — ‘71 and p : ‘71 — W
such that € is locally given by pi(n). Without loss of generality, the two local
coordinate systems ¢ and ¢, are defined on the same open neighborhood of V;
of £. In particular the map p is the inverse of uj, and so u is a local diffeomor-
phism. So the map h such that (6, w) — (u(6),w) is a local diffeomorphism. In
particular, the map ho ¢ = (n,w) is a local cooordinate system.

J Proof of Theorem 3l

The following result is useful for the Proof of Theorem

Lemma 5 Assume that g : X — Y is a smooth map between IR*-manifolds
such that g(x) is surjective, and g.(x) is a surjective linear map for every x € X.
Let wy and wsy be two k-forms on'Y. If g*wi = g*ws, then wi = ws.

Proof. As y = g(x) € Y is arbitrary, it suffices to note that, given any
one §; € T,Y, can choose 7, € T,X in a way that 6, = g.(z)r;. Hence,

{aT3}

{10bs}

w1(gsT1y -+, GuTh) = w2(guT1, - - -, g«Tx) implies that wy (01, ..., 0k) = wa(6y,...,0k),

with 61, ...,0; arbitrary vectors in T,Y, with y arbitrary. 0

Proof. (Of theorem ) If T is integrable around &, our definition implies that
¢ is a regular point of I'. If ' is integrable, then I'|y = span {dz1,...,dz,} |u.
In particular, as d(dz;) = 0, then d(T'|;y) C T. This shows that the statement of
the theorem is a necessary condition of integrability. To show that the statement
of the theorem gives sufficient conditions, note that, by part 4 of Proposition [25]
one may construct a local chart (U, ¢), with coordinate functions (z; : i € IN*),
such that, around any & € S, for k big enough, w; = (W,f)*d)i, where w; are
one-forms on the open set V = w,f(U ) of IRF. Now, from the assumptions of
Theorem [3] one will show from the finite dimensional Frobenius theorem that
the codistribution I' = span {®1,...,@} is locally integrable around Z € V. In
fact, by Part 5 of Prop. [29] it follows that

dwi = (W](f)*d(bl
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and dw = Zle 0; Aw;. From Part 2 of Prop. one has

() da = () {0 05,

Jj=1

As 77,‘? is surjective and (ﬂ';f)* is pointwise surjective, by Lemma the assump-
tions of the finite dimensional Frobenius theorem holds. In particular, there

exists a local diffeomorphism 6 given by (Z1,...,%x) = (Z1,...,Z), defined
around Z, such that I = span {dZ,...,dZ.}. Assume that the coordinate func-
tions of the local chart ¢ are given by (z,Z), where z = (z1,...,2k), and

& = (Tk41, Tht2, Th+3, - -.). Note that the map (x, %) — (z,2) is a local diffeo-
morphism. In particular, 1 = (z, %) is a local chart of S around &. Tt is easy to
see that z; = Z;omp 0 = Z; 0 ﬂ}f, where Z; is the i-th component of the map 6.

It follows tha I' = span {(W;f)*dzl, cey (W,f)*dzr}. Then

I' = span {(w;f)*dél, cee (ﬂ;f)*dir} = span {(m 0 ¥)*dz1, ..., (T o) dZ, } .
By Proposition 24} one has
I' =span {d(Z; om0 1)),...,d(Z o o))} = span {dzy,...,dz},

showing our claim. O

K Proof of Proposition

(if). Assume that ¢ a Lie-Béicklund immersion between two systems. Note that,
from Definition there exists local coordinates (t,21) of Sy and (£,y2) of Sy
such that the map 7| reads (¢, z;) — t and the map 7 reads (¢, ys) — t. Writing
¢ in these coordinates one gets (t,21) — ((£,21),v2(t,21)). As 71 = T2 0 ¢,
then t = £. So the map ¢ in these coordinates reads (¢,21) — (t,v2(t,21)). So
one may abuse notation, taking ¢ = ¢t. Now, as ¢ is a immersion, there exists
local coordinates wy of Sy and (@7, 22) of Se such that ¢ reads wq — (wq,0).
Abusing notation, one may let w; stand for wy. After a convenient restriction,
the coordinate change map (¢, z1) — w1 (¢, z1) is a local diffeomorphism. So the
map (t,21,22) — (w1(t,21),22) is also a local diffeomorphism. In particular,
(t,21,22) are local coordinates for Sy with the claimed properties. From the
fact that ¢ is Lie-Bicklund, the second statement follows from Definition
and Proposition

(only if). Straightforward from the Definition [34] and from Proposition

32Here one uses the fact that, for nonsingular codistributions, the pointwise definition of
codistributions coincides with the definition of a codistribution as a submodule, as shown in
Part 4 of Proposition
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