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Abstract

This paper is the first part of a survey about an infinite dimensional dif-
ferential geometric approach of nonlinear control systems. It summarizes
the basic definitions and the fundamental results about IRA-manifolds,
diffieties and control systems that are used in the second part of this
work.
Keywords. Differential Geometry, IRA-manifolds, Diffieties, differential-
geometric approach.

1 Introduction

The aim of the Part I of this paper is to present an exposition of the main
facts about IRA manifolds and diffieties that are needed in Part II of this work
(Pereira da Silva 2008). The text is written in a very elementary style, and is
conceived for students and researchers that have some knowledge about finite
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dimensional manifolds, but are not acquainted with the difficulties and par-
ticularities that appears in the context of infinite dimensional manifolds. The
classical constructions using projective (and inductive) limits have been avoided.
Instead of using those elegant tools, one will find explicit constructions of the
topologies and maps. This point of view is suitable for such a basic introduction
to IRA-manifolds and diffieties. The authors believe that the great majority of
the results of the first part of this work are obvious for specialists on diffieties.
However, many results that have been stated in the literature without proof are
certainly not so trivial for the novice on the subject. For more advanced exposi-
tions, one may refer to (Alekseevskij, Vinogradov & Lychagin 1991, Anderson &
Ibragimov 1979, Golubitsky & Guillemin 1973, Ibragimov 1985, Krasil’shchik,
Lychagin & Vinogradov 1986, Olver 1993, Vinogradov 1984, Zharinov 1992,
Tsujishita 1990).

1.1 Organization

1.2 Notations

The field of real numbers will be denoted by IR. The set of natural numbers
{0, 1, 2, . . .} will be denoted by IN , the set {1, 2, 3, . . .} is denoted by IN∗, and
the set of integers is denoted by ZZ. If H is a finite set then cardH stands
for the cardinal of H. If H is finite, then cardH is the number of elements of
H. We will use the standard notations of differential geometry in the finite and
infinite dimensional case (Warner 1971, Zharinov 1992). If M is a matrix (or
a vector), then MT stands for its transpose. Let z1 and z2 be column vectors.
For simplicity, we abuse notation, letting (z1, z2) stand for the column vector
(zT1 , z

T
2 )T .

2 The space IRA

Following (Bernštĕın & Rosenfel′d 1973), a smooth infinite-dimension manifold
is usually understood to be a space obtained by pasting together open subsets of
a“model” topological vector space (most frequently a Banach or a Hilbert space)
by means of isomorphisms satisfying certain smoothness conditions. In what
follows, one is interested in a geometry that is adapted to infinite prolongations
of differential equations, that is, the geometry of infinite jets (Saunders 1989,
Krasil’shchik et al. 1986, Zharinov 1992). Hence one must consider manifolds
whose “model” is a Fréchet space, or a IRA-space, that is also denoted by IR∞.
This kind of linear vector spaces are equipped with a topology (the Fréchet
topology) that is not defined from a norm, and so, those manifolds do not
present all the nice features of the manifolds that are modeled by Banach spaces
(Lang 1995, Abraham & Marsden 1988). In fact, many difficulties arise when
one is trying to consider versions of the inverse function theorem, the flow-box
theorem etc (Zharinov 1992).
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2.1 IRA-spaces, continuity and smoothness
{sFrechet}

Let A be a countable set. The space IRA =
∏
α∈AEα, where Eα = IR is the set

of functions ξ : A→ IR. A point ξ ∈ IRA may be denoted by (xα, α ∈ A). The
coordinate function xα : IRA → IR maps ξ = (xα, α ∈ A) to xα = ξ(α).

The space IRA is a IR-linear vector space with the following definition

• (ξ + ζ)(α) = ξ(α) + ζ(α) for all α ∈ A, ξ, ζ ∈ IRA.

• (c ξ)(α) = c ξ(α), for all α ∈ IRA and c ∈ IR.

In other words, these operation are defined in the usual, componentwise way,
that is, (xα, α ∈ A) + (zα, α ∈ A) = (xα + zα, α ∈ A), and c(xα, α ∈ A) =
(cxα, α ∈ A).

The set IRA can be endowed with the Fréchet topology F (it is the product,
or Tychonoff topology). A basis B of this topology is the collection of subsets of
IRA of the form B = {ξ ∈ IRA | ξ = (xα, α ∈ A), |xα − δα| < εα, α ∈ F}, where
F is a finite subset of A , δα ∈ IR and εα is a positive real number for α ∈ F .
Remember that an open set U of F is an arbitrary union

⋃
i∈Λ Bi of basic open

sets Bi ∈ B.
It can be shown that IRA is a projective limit and the Fréchet topology is

the corresponding projective limit topology.
Let σ : A→ IN∗ be a bijection. One denotes IRIN

∗
= IR∞, and this bijection

induces an isomorphism between IRA and IR∞, namely, (xα : α ∈ A) 7→ (xi :
i ∈ IN∗), where xi = xσ(i). In particular one may denote a point ξ of IRA

by an infinite vector (x1, x2, x3, . . .), where xi = ξ(i), i ∈ IN∗. In particular,
coordinate functions may be denoted by xi. A common abuse of notation1 is to
consider xi(ξ) = xi.

The projection πk stands for the map (x1, x2, x3, . . . , xk, xk+1, . . .) 7→ (x1, x2,
x3, . . . , xk). It is a simple exercise to show that πk is an open map, i. e. , πk(U)
is an open subset of IRk for every open set U ⊂ IRA.

The following definition is the classical definition of continuity in General
Topology.

Definition 1 (Continuous Map) Let U ⊂ IRA, where U is an open set of IRA,
and V ⊂ IRB. A map g : U ⊂ IRA → V ⊂ IRB is continuous, if g−1(W ) is an
open set of IRA for every open set W of IRB.

{pContinuousMap}
Proposition 1 Let A,B be countable sets. Let yj , j ∈ IN∗ be the coordinate
functions of IRB. Let U ⊂ IRA and V ⊂ IRB. A map g : U ⊂ IRA → V ⊂ IRB

is continuous, if and only if the “ component functions” gj : U → IR defined by
gj = yj ◦ g are continuous for j ∈ IN∗.

Proof. The proof is an easy exercise that is left to the reader. �

1A more precise notation should be xi(ξ) = xi. Note that xi is a real number, whereas xi

is the coordinate function xi : IRA → IR.
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{dSmooth}
Definition 2 (Smooth Map) Let A,B be countable sets. Let U be an open set
of IRA. A map f : U → IR is smooth if, for every ξ ∈ U there exists some
open neighborhood V ⊂ U of ξ such that f |V = f̃ ◦πk, for a convenient smooth2

function f̃ : W ⊂ IRk → IR, where W = πk(V ). Let yj , j ∈ IN∗ be the coordinate
functions of IRB. A map g : U → IRB is smooth if yj ◦ g : U → IR is smooth.

{r1}
Remark 1 The following affirmations are straightforward to verify:

• A map g : U → IRB is smooth if and only if, for every smooth function
φ : IRB → IR then φ ◦ g is smooth (and this may be an alternate definition
of smooth maps).

• Let S be a topological space and let {Bλ : λ ∈ Λ} be a basis of this topology.
Since every open set of S is an arbitrary union of basic open sets, when
one wants to show that a map φ : T → S is continuous, it suffices to show
that φ−1(Bλ) is an open subset of T for every λ ∈ Λ.

• Let U =
⋃
λ∈Λ Vλ, where Vλ is an open set for all λ ∈ Λ. Note now that,

if φ : U ⊂ IRA → IRB is such that φ|Vλ
is continuous, then φ : U ⊂ IRA →

IRB is continuous. In fact, if φλ = φ|Vλ
, for every open set W ⊂ IRB,

φ−1(W ) =
⋃
λ∈Λ φ

−1
λ (W ).

Locally speaking, a smooth function must depend only on a finite number of
variables. Hence, around a point ξ, there exists a neighborhood such that this
number of variables is minimal. This is the idea of the next definition.

{dMinimalIndex}

Definition 3 (Minimal Index and Minimal Neihghborhood of a Smooth Func-
tion) Let {xi : i ∈ IN} be the set of canonical coordinate functions of IRA. Let
U ⊂ IRA be an open set. Let φ : U → IR be a smooth function. Let ξ ∈ U
and let Vξ be an open neighborhood of ξ such that f |Vξ = φ̃ ◦ πk. Among all
the open neighborhoods Vξ with this property, there exists V ∗ξ , called a minimal
neighborhood of φ at ξ, such that the k = k∗ is minimal. Such k∗ is called the
minimal index of φ at ξ. For a constant function on V ∗ξ one defines k∗ = 0.

Remark 2 Note that k∗ ∈ IN is a unique, well defined integer. However any
open subset of V ∗ξ is also a minimal neighborhood of φ at ξ. This explains why
one says a minimal neighborhood at ξ instead of the minimal neighborhood at
ξ. If V ∗ξ and W ∗

ξ are minimal neighborhoods, then it is clear that V ∗ξ
⋃
W ∗
ξ is

also a minimal neighborhood at ξ. Note that the minimal index is a property of
the germ3 of φ.

Definition 4 The union of all minimal neighborhoods of φ at ξ is called the
minimal neighborhood at ξ.

2Smooth in the usual sense of finite dimensional analysis.
3See section 2.3 for the definition of germ of a function.
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Proposition 2 Let X = {xi :∈ IN} be the set of canonical coordinate functions
of IRA. Let X̄ = {i1, . . . , ik} ⊂ IN with 0 < i1 < i2 < . . . < ik. Define
the projection πX̄ : U ⊂ IRA → IRk by x 7→ (xi1(x), . . . , xik(x)). Then πX̄ is
continuous.

Proof. Take a basic open set V = {w ∈ IRk | |wj − δj | < εj , j = 1, . . . , k} of IRk

and observe that π−1
X̄

(V ) = U
⋂
B, where B = {x ∈ IRA | |xij (x)− δj | < εj , j =

1, . . . , k} is a basic open set of IRA. �

Proposition 3 Let U ⊂ IRA be an open set. Every smooth function φ : U ⊂
IRA → IR is continuous.

Proof. Let ξ ∈ U and let Vξ ⊂ U an open neighborhood of ξ such that
φ|Vξ

= f̃◦πk|Vξ
. Then φ|Vξ

is continuous since it is the composition of continuous
maps. As U =

⋃
ξ∈U Vξ, then φ is continuous (see Remark 1). �

Proposition 4 Let A,B be countable sets (finite or infinite). Let U ⊂ IRA be
an open set. Every smooth map φ : U ⊂ IRA → IRB is continuous.

Proof. Consider the case where both A,B are infinite (other cases are left to the
reader). Denote the coordinate functions of IRB by yj , j ∈ IN∗. Let V ⊂ IRB be
the basic open set V = {y ∈ IRB | |yj(y)− δj | < εj , j ∈ F}, where F ⊂ IN∗ is a
finite subset. Let φj = yj ◦ φ. Then φ−1(V ) =

⋂
j∈F φ

−1
j [(δj − εj , δj + εj)]. By

the last proposition, each φj is continuous and this concludes the proof. �

Remark 3 One may show that the Fréchet topology is the weaker one such
that the projections πX̄ are continuous. In (Bernštĕın & Rosenfel′d 1973) one
may found an equivalent definition of smooth function and smooth maps. Such
elegant definition is based on projective limits.

Proposition 5 Let f : U ⊂ IRA and g : V ⊂ IRB → U be smooth maps, where
U and V are open sets. Then f ◦ g : V → IRA is smooth.

Proof. Let ξ ∈ V and ν = g(ξ) ∈ U . Since the notion of smoothness is a
componentwise notion, without loss of generality, assume that f is a function
f : U → IR, and write f |W = f̃ ◦ πk|W , where W is an open neighborhood of
ν (see Definition 2). As g is continuous, then Y = g−1(W ) is open. On Y , one
may locally write4, f ◦ g(x) = f̃ ◦ πk ◦ g(x) = f̃ ◦ (g1(x), . . . , gk(x)). Now, let
l = max{k∗1 , . . . , k∗k}, where k∗i is the minimal index of gi at ξ. Let V ∗i be the
cooresponding minimal neighborhods of gi at ξ. Let Z =

⋂k
i=1 V

∗
i . By using

the idea of Remark 4, on Z, one may write f̃ ◦πk ◦ g(x) = f̃(g1(x), . . . , gk(x)) =
4On g−1(W ).
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f̃(g̃1 ◦ πl(x), . . . , g̃k ◦ πl(x)). Defining g̃ : πl(Z) ⊂ IRl → IRk by s 7→ (g̃1(s) ◦
πl(s), . . . , g̃k ◦ πl(s)), one gets f ◦ g = (f̃ ◦ g̃) ◦ πl, which is the composition of
the smooth function (f̃ ◦ g̃) with πl. Hence, by definition, f ◦ g it is smooth.
�

{rX}

Remark 4 Let k∗ be the minimal index of a smooth function φ : U ⊂ IRA → IR
at ξ, and let Vξ be a minimal neighborhood of φ at ξ. Then one may write
φ|Vξ

= φ̃◦πk∗ |Vξ
. So for every k ≥ k∗ one obtains φ|Vξ

= (φ̃◦πk,k∗)◦πk|Vξ
, where

πk,k∗ is the map defined by (x1, . . . , xk∗ , . . . , xk) 7→ (x1, . . . , xk∗). In particular,
for all k ≥ k∗ there exists a smooth map φ̂ : W ⊂ IRk, where φ̂ = φ̃ ◦ πk,k∗ , and
W = πk(Vξ), such that φ|Vξ

= φ̂ ◦ πk.
{dDifferential}

Definition 5 Let U ⊂ IRA and let f : U → IR be a smooth function. The
differential df : IRA → IR is the linear map defined in the following way. As f is
smooth, one may locally write f = f̃ ◦ πk (see definition 2). Then, for x ∈ IRA
one sets df(x) = df̃(πk(x)) ◦ πk where df̃ : IRk → IR is the standard differential
of the smooth function f̃ that is defined in finite-dimensional analysis. Let
φ : U → IRB be a smooth map. Let x ∈ U . Let yj : j ∈ B bee the coordinate
functions of IRB. Define5 dφ(x) : IRA → IRB by yj ◦ dφ(x) = d(yj ◦ φ)(x).

Remark 5 It is easy to show that the last definition does not depend on a
particular representation of a function, i. e. , if a function admits two different
representations f = f̃1 ◦ π1 = f̃2 ◦ π2, then the differential defined with these
different representations must coincide (see Appendix A).

The proof of the following proposition is straightforward and is left to the
reader.

{pMinimal}

Proposition 6 Let φ : Z : IRA → IR be an smooth function, where Z is a
minimal neighborhood of φ at ξ. Let k∗ be the minimal index of φ at ξ.

Let ξ = (ξ1, ξ2, ξ3, . . .) ∈ Z and let Ψ : IR → IRA be such that Ψ(t) =
(ξ1, ξ2, ξ3, . . . , ξl−1, ξl+αt, ξl+1, ξl+2, . . .). By continuity of Ψ, there exists ε > 0
such that that Ψ[(−ε, ε)] ⊂ Z. If φ◦Ψ(t) is not constant for |t| < ε , then k∗ > l.

2.2 The tangent bundle TIRA and fields

Definition 6 Let U ⊂ IRA be an open subset. The tangent bundle TU is the
triple (U × IRA, U, π) where π : U × IRA → U is the canonical projection.

Definition 7 A field τ on an open set U ⊂ IRA is a smooth section of the
bundle T , that is, a map τ : U → U × IRA of the form x 7→ (x, τ̄(x)), where the
map τ̄ : U → IRA is smooth.

Remark 6 For convenience, one may identify τ with τ̄ .
5One may give a more intrinsic definition using projective limits (see (Bernštĕın &

Rosenfel′d 1973)).
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Let τ be a vector field, and let f : U → IR be a smooth function. Let
(xi, i ∈ IRIN

∗
) be the canonical coordinate functions of IRA. Then τ(x) =

(x, (τi(x) : i ∈ IN∗)). If f : U → IR is is smooth, for all ξ ∈ U there exists an
open neighborhood Vξ of ξ and a local representation f = f̃ ◦ πk defined on Vξ.

Definition 8 The Lie-derivative Lτf , also denoted by τ(f), is the smooth func-
tion Lτf : U → IR defined by the rule

Lτf(x) =
k∑
i=1

τi(x)
∂f̃

xi
(πk(x)) (1) {eLtau}

It is a simple exercise to show that the definition above do not depend on the
particular representation of f that is chosen.

The set of fields on U has a structure of C∞(U)-module defined by the
operations (τ1 + τ2)(x) = (x, τ̄1(x) + τ̄2(x)) and (fτ)|x = (x, f(x)τ̄(x)), where
τ1 and τ2 are arbitrary fields on an open subset U ⊂ IRA and f : U → IR is a
smooth function.

2.3 Derivations and the tangent space TxIR
A

{ssTangent}
Let x ∈ IRA. Let C∞{x} be the set of smooth functions f : Vx → IR, where
Vx ⊂ IRA is an open neighborhood of x. In C∞{x} one may define the following
equivalence relation, denoted by ∼. Given two functions f1, f2 ⊂ C∞{ξ}, then
f1 ∼ f2 if f1|Wξ

= f2|Wξ
, where Wξ is some open neighborhood of x. The

equivalent class of f ∈ C∞{x} is denoted by [f ], and is called the germ of f
at x. The set of all germs at x is denoted by C∞(x). Clearly, one may define
a structure of IR-vector space on C∞(x). If f1 : Ux → IR and f2 : Vx → IR,
let W = Ux

⋂
Vx. Then define [f1] + [f2] = [f1|W + f2|W ] and for α ∈ IR, let

α[f1] = [αf1]. Note also that C∞(x) has also a structure of a ring, if one defines
[f1][f2] = [(f1|W )(f2|W )].

Definition 9 A derivation at x ∈ IRA is a map vx : C∞(x) → IR such that

• The map vx is linear, that is, vx([f1] + [f2]) = vx([f1]) + vx([f2]) and
vx(a[f ]) = avx([f ]), a ∈ IR.

• vx([f1][f2]) = f2(x)vx([f1]) + f1(x)vx([f2]).

By convenience one may let vx(f) stands for vx([f ]). In this way one may regard
vx as a map from C∞{x} to IR. A derivation vx is also called a tangent vector
at x. Clearly, the set TxU of all tangent vectors at x is a IR-vector space with
the operations (v1

x + v2
x)(f) = v1

x(f) + v2
x(f) and (αvx)(f) = α(vx(f)), α ∈ IR.

Let TxU stand for the elements τx of TU = U × IRA of the form

τx = (x, (τ1, τ2, τ3, . . .)).
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Given f ∈ C∞{x}, it is easy to verify that one may regard τx as a tangent
vector vx at x, with the action of vx defined (see Definition 1), by:

vx([f ]) =
k∑
i=1

τi
∂f̃

xi
(πk(x)) (2) {eRule}

The following theorem shows that one may identify TxU with TxU by the
rule (2).

{t1}
Theorem 1 The map α : TxU → Tx such that τx 7→ vx, where the action of vx
is defined by (2), is an isomorphism of IR-vector spaces.

Proof. The linearity of vx is clear. Now, given two functions f1 and f2 belonging
to C∞{x}, if k = max{k1, k2}, where ki is the minimal index of fi, i = 1, 2 at x,
and V = V1

⋂
V2, where Vi is the minimal index of fi at x, one may write fi|V =

f̃i◦πk|V . Note that f1f2|V = (f̃1f̃2)◦πk|V . then, one may apply the last formula
for the product [f1][f2] showing that vx([f1][f2]) = f2(x)vx([f1])+f1(x)vx([f2]).
This shows that τx may be regarded as a tangent vector, and so α is well defined.

Now one has to show that any tangent vector vx ∈ TxU ∈ is the image α(τx)
for a convenient τx ∈ TxU . Let {xi, i ∈ IN∗} be canonical coordinates for IRA.
Let τi = vx(xi) and define τx = (τ1, τ2, τ3, . . .). It will be shown that α(τx) = vx,
showing our claim.

Note first that, if f = f1f2 with f1(x) = f2(x) = 0 then vx(f) = f1(x)vx(f2)+
f2(x)vx(f1) = 0. If f(x) = 1, for every x, then vx(f2) = f(x)vx(f)+f(x)vx(f) =
2vx(f) implies that vx(f) = 0 for every x. By linearity, for every constant func-
tion f , one has vx(f) = 0.

Let f̃ : Bε(x̃) ⊂ IRn → IR, be a smooth function, where Bε(x̃) = {x ∈
IRn | ‖x − x̃‖ < ε}. Then, by the fundamental theorem of Calculus and the
chain rule, one may write for all x ∈ Bε(x̃)

f̃(x)− f̃(x̃) = f̃(x̃) +
∫ 1

0

d

dt

{
f̃ [x̃+ t(x− x̃)]

}
dt

= f̃(x̃) +
n∑
i=1

(∫ 1

0

∂f̃

∂xi
[x̃+ t(x− x̃)]dt

)
(xi − x̃i)

In particular

f̃(x)− f̃(x̃) =
∂f̃

∂xi
|x̃(xi − x̃i) +

n∑
i=1

f i1(x)f
i
2(x) (3) {eProductZero}

where f1
i =

{(∫ 1

0
∂f̃
∂xi

[x̃+ t(x− x̃)]dt
)
− ∂f̃

∂xi
|x̃
}

and f2
i = (xi − x̃i).

Now, given f ∈ C∞(x), let f |V = f̃ ◦πk|V . Let x̃ = πk(x). Abusing notation,
one may write f |V = f̃(x1, . . . , xk). From (3), one may write f̃(x1, . . . , xk) =∑k
i=1 ai(xi− x̃i)+

∑n
i=1 f

i
1f
i
2, where f i1(x̃) = 0 and f i2 = (x̃) = 0 and ai = ∂f̃

∂xi
|x̃.
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From this, one gets vx([f ]) =
∑k
i=1 vx(xi)ai and, by (2), this concludes the

proof (compare also with (1)). �

Let xi, i ∈ IN be canonical coordinate functions of IRA. By the Proof of
Theorem 1, one may define the tangent vector ∂

∂xi
|x ∈ Tx such that ∂

∂xi
|x(xj) =

δij , where δij = 0, if i 6= j and δij = 1, if i = j. Given τx ∈ TxU , with
vx = α(τx), one may identify τx ∈ TxU with vx.

Abusing notation, one writes

τx =
∞∑
i=1

τi
∂

∂xi
|x

where
τi = τx(xi)

From Theorem 1, one may regard TU as the union of all tangent spaces
⋃
x∈U TxU ,

where TxU is the linear space of tangent vectors (or derivations) at x. In finite
dimensional theory, the set { ∂

∂xi
|x, i ∈ n} form a basis of TxU . In our infinite

dimensional setting, one may say that every tangent vector τx is an infinite6

sum
∑∞
i=1 τi

∂
∂xi

|x. Note that the action of τx on a function is always a finite
sum, and so this notation has a precise sense, without the need of establishing
any convergence result.

Using this notation, one may prove the following straightforward conse-
quence.

{eFieldRA}
Proposition 7 Let U ⊂ IRA and let τ : U → TU be a field. Let xi, i ∈ IN be
canonical coordinate functions of IRA. Then

τ(x) =
∞∑
i=1

τi(x)
∂

∂xi
|x (4a) {eTauxA}

where
τi(x) = τ(x)(xi) (4b) {eTauxB}

and τi : U → IR are smooth functions. Conversely, every section τ defined on
U by (4a), where τi are smooth functions, is a field.

The inverse β of the linear map α may be regarded as a map that associates
vx ∈ TxIRA to a vector of IRA. This map induces an isomorphism between IRA

and TxIRA ∼= TxIRA. Hence one may write the following obvious result.
{pIdentifyTxRA}

Proposition 8 The map β : TxIRA → IRA defined by
∞∑
i=1

τi
∂

∂xi
|x 7→ (τ1, τ2, τ3, . . .)

is an isomorphism. In particular one may endow TxIR
A with the Fréchet topol-

ogy.
6One may note that an infinite sum of vectors is not a linear combination in linear algebra.

Hence { ∂
∂xi

, i ∈ IN∗} is not a basis from the linear-algebraic viewpoint.
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The next definition establishes the concept of tangent maps. This concept
will be generalized to IRA-manifolds (see Definition 22). For the moment, only
the following definition is needed.

{dTangentMapRA}
Definition 10 Let g : U ⊂ IRA → IRB be a smooth map. The tangent map
g∗(x) : TxU → Tg(x)S is the IR-linear map7 defined by g∗(x)(vx)(λ) = vx(λ ◦ g).

Let (xi, i ∈ IN∗) and (yj , j ∈ IN∗) be canonical coordinates respectively
of IRA and IRB . Now, it is easy to obtain the expression of g∗vx. In fact, if
vx =

∑∞
i=0 ai

∂
∂xi

|x, then, by (4a)-(4b), it is easy to show that
{eGEstrela}

g∗(x)vx =
∞∑
j=0

bj
∂

∂yj
|g(x) (5a) {eGEstrelaA}

where
bj = (g∗(x)vx)(yj) = vx(yj ◦ g) = vx(gj) (5b) {eGEstrelaB}

2.4 Lie Derivatives and Lie-Brackets on IRA

{sLieRA}

In finite dimensional differential-geometry, a field τ is associated to a flow φt(x)
by the flow box theorem. For instance, the Lie-derivative Lτθ of the field θ may
be defined by (or at least interpreted) as

Lτθ|x = lim
t→0

(φ−t)∗(θ(φt(x))− θ(x))
t

,

which is a nice geometrical way of regarding the Lie-Bracket (Warner 1971).
However, a field on IRA is not necessarily associated to a flow (see (Zharinov
1992)). Hence, Lie-derivatives and Lie-brackets may not be interpreted as limits,
and the definitions of such objects are purely algebraic, although those defini-
tions implies, at least in some situations, the usual properties that are found in
finite dimensional geometry.

{d9}
Definition 11 (Lie-derivative of a function, and Lie-brackets of fields) Let τ
and θ be fields on IRA, and let f : IRA → IR be a smooth function.

• The Lie-derivative Lτf : IRA → IR is the smooth function defined by
Lτf(x) = τ(f)(x).

• The Lie-bracket [τ, θ] (also denoted by Lτθ) is the field on IRA defined by

[τ, θ](f) = Lτ (Lη(f))− Lη(Lτ (f)). (6) {eBrackett}

Given two smooth functions f1 and f2, by definition, as τ(x) is a tangent
vector, one may write

Lτ (f1 + f2) = Lτ (f1) + Lτ (f2) (7a) {eLinearTau}

Lτ (f1f2) = f2Lτ (f1) + f1Lτ (f2) (7b) {eProductTau}

7It is an easy exercise to show that g∗(x) : TxU → Tg(x)S is a well defined linear map.
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The next result shows that the previous definition of Lie-Bracket defines a
field.

{pLieWell}

Proposition 9 The definition of Lie-bracket stated in (11) is well posed, that
is, the Lie-Bracket of two vector fields is a vector field. Furthermore, if τ =∑∞
i=1 τi(x)

∂
∂xi

|x and θ =
∑∞
i=1 θi(x)

∂
∂xi

|x, then [τ, θ](x) =
∑∞
i=1 αi(x)

∂
∂xi

|x,
where αi = τ(η(xi))− η(τ(xi)).

Proof. See appendix D �

2.5 The cotangent bundle T ∗IRA and one-forms

The set of continuous linear functionals γ : IRA → IR is denoted by (IRA)∗. Let
x = (xj , j ∈ IN∗) ∈ IRA. Let dxi : IRA → IR stand for the coordinate function
dxi(x) = xi. The notation dxi is used because dxi coincides with the differential
of xi.

{pFunctionals}

Proposition 10 An element γ ∈ (IRA)∗ is of the form γ =
∑k
i=1 αidxi for

convenient αi ∈ IR, i = 1, . . . k.

Proof. See appendix B. �

Let (x̃1, . . . , x̃k) be canonical coordinates of IRk. Let ω̃ =
∑k
i=1 αidx̃i be

a linear functional of (Rk)∗. Let x ∈ IRA. Denote by π∗k : (Rk)∗ → (IRA)∗

the linear functional defined by π∗k(ω̃)(x) = ω̃(πk(x)). Then it is clear that
π∗k
∑k
i=1 αidx̃i =

∑k
i=1 αidxi. The last proposition says that an element γ ∈

(IRA)∗ is of the form π∗kω̃, where ω̃ is a linear functional belonging to (IRk)∗.
In particular, one may identify (IRA)∗ with the subspace of IRA formed by the
vectors x = (xi, i ∈ IN∗) for which only a finite number of components xi
are nonzero. It can be shown that (IRA)∗ is an inductive limit (Bernštĕın &
Rosenfel′d 1973). One will adopt a topology of (IRA)∗ for which the corre-
sponding basis are the sets of the form B = {(xi, i ∈ IN∗) ∈ IRA | |xi − δi| <
εi, i ∈ IN∗, εi > 0}. Note that, when one regards (IRA)∗ as a subset of IRA, this
topology does not coincide with the subset topology. For instance, the open set
U = {x ∈ IRA||xi| < 1, i ∈ IN∗} is an open set of (IRA)∗ that is not an open set
of IRA.

Definition 12 The cotangent bundle T ∗U on U is the triple (U× (IRA)∗, U, π),
where π : U × (IRA)∗ → U is the canonical projection. A smooth section
of T ∗U is a map ω : U → T ∗U such that x 7→ (x, ω̄(x)) where ω̄(x) =
(ω1(x), ω2(x), . . .) ∈ (IRA)∗ and each ωi : U → IR is a smooth function, i ∈ IN∗.
The set of smooth sections of T ∗U is denoted by Ω(U).

The map x 7→ (x, dxi), where dxi is the differential of the coordinate function
xi (which coincides with the coordinate function itself), is an example of a
smooth section of T ∗U that is denoted by dxi|x.

11



Clearly dxi|x maps x into (x, (ω1(x), ω2(x), . . .)), where ωj = 0 if j 6= i, and
ωi = 1. Hence, abusing notation, given a section x 7→ (x, (ω1(x), ω2(x), . . .)) of
T ∗U , one may write

ω(x) =
∞∑
k=1

ωi(x)dxi|x.

It is important to be pointed out that, at every fixed x ∈ U , then ωi(x) 6= 0
only for i belonging to a finite subset F ⊂ IN∗.

Definition 13 Let U ⊂ IRA be an open set, and let τ : U → TU be a field
such that x 7→ (x, τ̄(x)), and a section ω : U → T ∗U such that x 7→ (x, ω̄(x))
of T ∗U . Then define the function 〈ω, τ〉 : U → IR (also denoted by ω(τ)) by
x 7→ ω̄(x) (τ(x)). Since ω̄(x) ∈ (IRA)∗ and τ̄(x) ∈ IRA, then 〈ω, τ〉(x) is always
well defined by a finite sum

∑kx

i=0 ωi(x)τi(x), where kx may depend on x.
{d13}

Definition 14 A 1-form on U is a section ω on T ∗U such that the function
〈ω, τ〉 : U → IR is smooth for every field τ defined on U .

Let (x̃1, . . . , x̃k) be canonical coordinates of IRk and {xi, i ∈ IN∗} the canon-
ical coordinates of IRA. Let V be an open set of IRk and let U = π−1

k (V ). Let
ω̃(x̃) =

∑k
i=1 ω̃i(x̃)dx̃i|x̃ be a one-form on V . Let (πk)∗ω̃ stand for the one-form

ω on U defined by ω(x) =
∑k
i=1(ω̃i ◦ πk)dxi|x. Later, such notation will be

generalized and it will be redefined in a more intrinsic manner.
{tFormsAreFinite}

Theorem 2 Let U be an open subset of IRA. The following affirmations holds:

1. A one-form ω on U is a smooth section of T ∗U .

2. A smooth section of T ∗U is a one-form if and only if, for every x ∈ U ,
there exists an open neighborhood Vx of x, and k ∈ IN∗ such that, for all
x ∈ Vx one has ω(x) =

∑k
i=1 αi(x)dxi|x, where αi : Vx → IR, i = 1, . . . , k

are smooth functions. defined on Ṽ ⊂ IRk, where Ṽ = πk(Vx), and k∗ ∈
IN∗ big enough, such that ω|Vx

= (πk∗)∗ω̃.

Proof. The proof of this theorem is deferred to Appendix C. �

The proof of the following proposition is straightforward, and is left to the
reader.

Proposition 11 (The differential of a smooth function is a one-form) Let φ :
U → IR be a smooth function. Let dφ(x) : IRA → IR be the differential of φ (see
Def. 5). The map dφ : U → U × (IRA)∗ defined by x 7→ (x, dφ(x)) is a one
form. Furthermore, if τ : U → U × (IRA) is a field, then τ(f) = 〈dφ, τ〉.

Proof. By Def. 5, if one may locally write φ = φ̃ ◦ πk, then dφ(x) =∑k
i=1

∂φ̃
∂xk

|πk(x)dxi|x. In particular, it follows that dφ is a one form. The other
affirmation follows from (1). �

The differential dφ of a smooth function is also a smooth section of T ∗U .
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2.6 The Cotangent Space T ∗
xU

{ssCotangent}
Fix some x ∈ U ⊂ IRA. The set of points of T ∗U = U × (IRA)∗ of the form
(x, ω̄), with ω̄ ∈ (IRA)∗, is denoted by T ∗xU . Now the IR-vector space T ∗xU is
generated by the basis {dxi|x : i ∈ IN∗}.

Remember that (IRA)∗ may be identified with the subspace of IRA formed
by the elements ν = (να, α ∈ A) such that να 6= 0 for α ∈ F , where F ⊂ A is
finite. The “natural” topology T of (IRA)∗ is the one induced by an injective
limit (Bernštĕın & Rosenfel′d 1973). The basis of this topology contains the
sets of the form B = {(να, α ∈ A) ∈ IRA | |να − ν̄α| < εα, α ∈ A}, where
ν̄ = (ν̄α, α ∈ A) ∈ (IRA)∗ and εα > 0, α ∈ A. This topology is stronger than
the Fréchet topology, since an infinite product of open intervals of IR can be an
open set of T .

The map β : T ∗x IR
A → (IRA)∗ by

∑k
i=1 αidxi 7→ (α1, α2, . . . , αk, 0, 0, . . .) is

easily seen to be an isomorphism. In particular one may endow T ∗x IR
A with the

topology induced by T .
The next definition establishes the concept of cotangent maps. This concept

will be generalized to IRA-manifolds in section 4.3. For the moment, only the
following definition is needed.

{dCoTangentMapRA}
Definition 15 Let g : U ⊂ IRA → V ⊂ IRB be a smooth map. The cotangent
map g∗(x) : T ∗g(x)V → TxU is the IR-linear map8 defined by the following rule:
one maps ω ∈ T ∗g(x)V to g∗ω ∈ T ∗xU , where 〈g∗(x)ω, τ〉 = 〈ω, g∗τ〉 for every
τ ∈ TxU .

{pGEstrela1}

Proposition 12 Given a one-form ω on V , then define the section g∗ω of T ∗U
by the rule 〈g∗(x)ω(x), τ(x)〉 = 〈ω(g(x)), g∗(x)τ(x)〉, where τ(x) is a field on U .
Then g∗ω is a one-form.

Proof. It is clear that g∗ω is a section of T ∗U . To show that g∗ω is a one-form,
it suffices to show that 〈g∗ω, τ〉 is a smooth function for every field τ on U . One
locally has ω =

∑k
j=1 αj(y)dyj |y. Note that 〈g∗ω, τ〉(x) = 〈ω(g(x)), g∗(x)τ(x)〉.

From (5a)-(5b), it follows that g∗(x)τ(x) =
∑∞
j=1 τ(gj(x))

∂
∂yj

|g(x), where gj =

yj ◦ g. Hence 〈g∗ω, τ〉(x) is locally given by
∑k
j=1 αj(gj(x))τ(gj(x)), which

depends smoothly on x. �

2.7 p-forms, wedge product, and exterior differentiation
on IRA

One has shown that a one form ω on IRA is locally the pull-back π∗kω̃, where
ω̃ is a one-form on IRk. (see Theorem 2). One can define a p-form on IRA by
generalizing this property9.

8It is an easy exercise to show that g∗(x) : T ∗
g(x)

V → TxU is a well defined linear map.
9A more intrinsic way for defining a p-form can be found in (Bernštĕın & Rosenfel′d 1973).
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{def16}
Definition 16 Let V ⊂ IRB and U ⊂ IRA be open sets. Let y ∈ U and define

ΓpU (y) = TyU × TyU × . . .× TyU︸ ︷︷ ︸
p times

Consider the fiber bundle ΓpU =
⋃
y∈U ΓpU (y). Let ω : ΓpU → IR be a map. Let

g : U ⊂ IRB → V ⊂ IRA be a smooth map. Let y = g(x) Define the pull back
g∗|xω : ΓpV (x) → IR by the rule

g∗|xω(τ1, . . . , τp) = ω(g∗τ1, . . . , g∗τp), for every {τ1, . . . , τp} in ΓpU (y)

Define the pull-back g∗ω : ΓpV → IR, pointwise, by the same rule above.

We are ready to define a p-form.
{dPForms}

Definition 17 (p-forms on U ⊂ IRA)

• A p-form ω on U is a map ω : ΓpU → IR such that, around every y ∈ U
there exists an open neighborhood Wy of y such that ω|

W̃
= (πk)∗ω̃, where

ω̃ is a p-form on V , V = πk(Wy) ⊂ IRk, and W̃ = ΓpWy
.

• The set of p-forms on U will be denoted by Λp(U), where Λ0(U) denotes
the set of smooth functions f : Y → IR.

• The exterior derivative10 is the map d : Λp(U) → Λp+1(U) defined in the
following way. For p = 0, the map df = d(f) is the differential of the
function f . For p > 0, as one locally has ω|

W̃
= π∗kω̃, then one may

locally define d(ω)|W̃ = π∗k(dω̃), where W̃ and ω̃ are defined above.

• The wedge product “∧” is defined11 in the following way. Let ωx : ΓmU (x) →
IR and ηx : ΓpU (x) → IR be two maps. Let T = (τ1, . . . , τp+m) ∈ Γp+mU (y).
then

ωx ∧ ηx(T ) =
∑

σ∈Shp,m

sgn(σ)ωx(T σ1,p)ηx(T σp+1,p+m) (8) {eRuleWedge}

where T σ1,p = (τσ(1), . . . , τσ(p)), T σp+1,p+m = (τσ(p+1), . . . , τσ(p+m)), Shp,m
denotes the (p,m)-shuffles, that is, the permutations σ of the set bp+me
such that σ(1) < . . . < σ(p) and σ(p + 1) < . . . < σ(p + m) and sgn(σ)
denotes the sign of the permutation.

Consider now a p-form ω and a m-form η defined on U . Then, ω ∧ η :
Γp+mU → IR is the map that is pointwise defined by ω(x) ∧ η(x).

10It will be shown that this definition does not depend on the chosen representation π∗kω̃
(see (15)).

11This definition mimics the standard definition of wedge product that appears in finite
dimensional exterior algebra (see (Warner 1971)).
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The following Proposition is instrumental in the sequel. From this result,
one may show that the wedge product commutes with g∗ (that is, g∗(ω ∧ η) =
(g∗ω) ∧ (g∗η) in the general situation

{pWedgePi}
Proposition 13 Consider the notation of Prop. 17. Given a p -form ω, and
and m-form η on U , assume that ω = π∗kω̃ and η = π∗kη̃, where ω̃ and η̃ are
convenient forms on V = πk(U) ⊂ IRk. Then,

π∗k(η̃ ∧ τ̃) = π∗kη̃ ∧ π∗k τ̃ . (9) {eComuta}

Proof. Note that

ω ∧ η(T ) =
sgn∑

σ∈Shp,m

(σ)ω(τσ(1), . . . , τσ(k))η(τσ(k+1), . . . , τσ(k+m))

=
sgn∑

σ∈Shp,m

(σ) ω̃((πk)∗τσ(1), . . . , (πk)∗τσ(k))η((πk)∗τσ(k+1), . . . , (πk)∗τσ(k+m))

= η̃ ∧ τ̃((πk)∗τ1, . . . , (πk)∗τp+m) = (πk)∗(η̃ ∧ τ̃)

In particular, (9) follows. �

{dMultiindex}
Definition 18 A vector I = (i1, . . . , ip), where ij ∈ {1, . . . , k}, j = 1, . . . , p,
and i1 < i2 < . . . < ip is called a p-multiindex of class k. One may define the
class of I, denoted by |I| and given by |I| = maxi∈bpe{i1, i2, . . . , ip}. The set of
p-multiindeces I such that |I| ≤ k is denoted by Hp(k). By definition, Hp(k) is
the set of p-multiindeces of class that is not greater than k.

It will be shown that one may compute exterior derivatives and wedge prod-
ucts of p-forms on IRA in the same way that one computes those objects in
finite dimensional differential geometry. All the properties of finite dimensional
geometry are transfered via the pull-back π∗k in the expected way.

For this consider that the canonical coordinates of IRk are {x̃1, . . . , x̃k}. Let
V IRk be an open subset. Let H = (h1, . . . , hp) be a p-multiindex. One consider
the standard notation dx̃H = dx̃h1 ∧ dx̃h2 ∧ . . . ∧ dx̃hp

of finite dimensional
geometry. Given tangent vectors {X̃1, . . . X̃p} ⊂ Tx̃V , recall that12, one has
dx̃H(X̃1, . . . X̃p) = det〈dx̃hi

, X̃j〉, where det〈dx̃hi
, X̃j〉 denotes the determinant

of the p× p matrix whose (i, j)-element is 〈dx̃hi
, X̃j〉.

It is well known that a p-form on V ⊂ IRk is given by

ω̃ =
∑

H∈Hp(k)

α̃H(x̃)dx̃H . (10) {eOmegaTil}

Let U be an open set of IRA. Let V = πk(U). Define the p-form on U ⊂ IRA

given by
dxH = π∗k(dx̃H)

12Other suitable definitions of the action of dx̃H on tangent vectors may be found in (Warner
1971)
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Given a set of p fields {X1, . . . Xp} on U , one has

dxH(X1, . . . , Xp) = dx̃H((πk)∗X1, . . . , (πk)∗Xp)
= det〈dx̃hi

, (πk)∗Xj〉
= det〈dx̃hi

, (πk)∗Xj〉
= det {(πk)∗Xj(x̃hi

)}
= det {Xj(x̃hi

◦ πk)}
= det {〈dxhi

, Xj〉} .

This last equality does not depend on the chosen projection πk. In other words,
the notation dxH makes sense without the need of specifying the corresponding
projection that was originally used to define dxH . In particular, it follows easily
that, all p-forms on IRA may be locally written in the form.

ω|W̃ =
∑

H∈Hp(k)

αHdxH =
∑

H∈Hp(k)

π∗k(α̃Hdx̃H) = π∗kω̃ (11) {eFORMRA}

where αH = α̃H ◦ πk and ω̃ is given by (10). Conversely, given a form (11), it is
clear that, for any m ≥ k, one may write13

ω|W̃ = π∗m

 ∑
H∈Hp(m)

α̃Hdx̃H

 (12) {eFORMRB}

where the functions α̃H = 0 coincides with the ones of (11) for |H| ≤ k and
α̃H = 0 for |H| such that k < |H| ≤ m. From this arguments, one have shown
the following Proposition.

{pKbigEnough}
Proposition 14 Given a p-form ω1 and a q-form ω2 on IRA, choosing k∗ big
enough, one may locally write ω1 = π∗kω̃1 =

∑
H∈Hp(k) αHdxH and ω2 = π∗kω̃2 =∑

J∈Hq(k) βJdxJ . It follows from Proposition 13, that the wedge product ω1∧ω2

of two forms is locally the pull-back (πk∗)∗(ω̃1 ∧ ω̃2) of a form ω̃1 ∧ ω̃2, defined
on an open set of IRk. In particular, the definition of wedge product given in
Def. 17 well posed in the sense that it is a p+ q-form in the sense of the same
Def. 17.

Now, one computes the expression of the wedge product:

ω1 ∧ ω2 = π∗k (ω̃1) ∧ π∗k (ω̃2)
= π∗k (ω̃1 ∧ ω̃2) (13) {eWedge}

=
∑

H∈Hp(k)

∑
J∈Hq(k)

αHβJdxH ∧ dxJ .

13From now on, for simplicity of notation, one will not mention the restriction to W̃ = Γp
W

in the local expressions of the forms (see Def. 16).
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Note that the last expression do not depend on the chosen local projection πk
that was used to represent ω locally. Now given a p-form ω̃ on V ⊂ IRk given
by (10). Then

dω̃ =
∑

H∈Hp(k)

dα̃H ∧ (x̃)dx̃H . (14) {eDOmegaTil}

Now by definition, note that, given a p-form (11), by (14) one may locally write

dω = π∗kdω̃ = π∗k

 ∑
H∈Hp(k)

dα̃H(x̃) ∧ dx̃H

 .

From (13), it follows that

dω =
∑

H∈Hp(k)

π∗k (dα̃H(x̃)) ∧ (π∗kdx̃H)

In particular, given a p-form ω given by (11), then

dω =
∑

H∈Hp(k)

dαH(x) ∧ dxH (15) {eDOmegaRA}

It is clear from the last formula that the concept of exterior differentiation,
that is stated in Definition 17, does not depend on the chosen local projection
πk that was used to represent ω locally. Furthermore, given ω = π∗kω̃, as dω =
π∗kdω̃, then d2(ω) = π∗kd

2ω̃ = 0.

3 Internal product, and the Lie derivative of p-
forms on IRA

{s3}

Definition 19 Let X,Y1, . . . , Yp−1 be fields on an open set U ⊂ IRA. Let ω be
a p-form on U . Define the interior product i(X) : Λp(U) → Λp−1(U) by the
p− 1 form defined by ω̄(Y1, . . . , Yp−1) = ω(X,Y1, . . . , Yp−1). The Lie-derivative
of ω along X is the p-form LXω defined by LXω = i(X) ◦ d(ω) + d ◦ i(X)(ω).

One must show that the last definition is well posed in the sense that both
objects θ1 = i(X)ω and θ2 = LXω locally coincide respectively with (πk)∗θ̃1
and (πk)∗θ̃2, where θ̃i are forms defined on some open subset of IRk. For this,
let ω be locally given by (11). Let Y = (Y1, . . . , Yp)Γ

p
U (x) and let (πk)∗Y stands

for ((πk)∗Y1, . . . , (πk)∗Yp). Then, if X ∈ TxU one may write

i(X)(ω)(Y ) =
∑

H∈Hp(k)

π∗k (α̃Hdx̃H) (X,Y )

=
∑

H∈Hp(k)

((α̃H ◦ πk)dx̃H) ((πk)∗X, (πk)∗Y )
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Let H = (h1, . . . , hp) be a multiindex, and let X̃, Ỹ1, . . . , Ỹp ∈ Tx̃V , where
V = πk(U) ⊂ IRk is an open set. Let Ỹ stands for (Ỹ1, . . . , Ỹp). Then,

i(X̃)dx̃H(Ỹ ) = i(X̃)
(
dx̃h1 ∧ . . . ∧ dx̃hp

)
(Ỹ )

=
p∑
i=1

(−1)i+1〈dx̃hi , X̃〉
(
dx̃h1 ∧ . . . d̂xhi ∧ . . . ∧ dx̃hp

)
(Ỹ ),

where the notation d̂xhi means that the differential dxhi is omitted. Now take
X̃ = (πk)∗X and Ỹi = πk)∗Yi for i = 1, . . . , p. Since 〈dx̃hi

, π∗kYj〉 = 〈dxhi
, Yj〉,

one gets

i(X)(aHdxH) = aH

p∑
i=1

(−1)i+1〈dxhi
, X〉 (dxh1 ∧ . . . ∧ d̂xhi

∧ . . . ∧ dxhp
) (16) {eIXRA}

It is now clear that, for k̄ big enough14, then i(X)ω = π∗
k̄
θ̃1, for a convenient

one-form θ1 locally defined on IRk̄. Now, as d : Λk(S) → Λk+1(S) is well posed,
it is clear that the operator LX is well posed.

For a function φ : U ⊂ IRA → IR and a field X on U , remember that, by
definition LXφ = X(φ) = 〈dφ,X〉. Then LX(dφ) = d(i(X)dφ) + i(X)(d2φ) =
d〈dφ,X〉 = dLXφ.

Let ω be a p-form ω given by (11). Then dω is given by (15), and i(X)(ω) can
be easily determined by (16). These expressions are the same that are found in
finite dimensional geometry. As LX(ω) is defined by i(X) (dω)+d (i(X)ω), then
it is not difficult to show from (15) and (16), that the expression of LX(aHdxH)
for H = (h1, . . . hp) ∈ Hk(p) also coincides with the finite dimensional formula
(Warner 1971, Dieudonneé 1974):

LX(aHdxH) = (LXaH)dxH +
p∑
i=1

aHdxh1 ∧ . . . ∧ LX(dxhi) ∧ . . . dxhp

For one-forms, the last expression implies that

LX(
k∑
i=1

aidxi) =
k∑
i=1

LX(ai)dxi + aiLX(dxi)

Proposition 15 Let X,Y0, Y1, . . . , Yp be fields on an open subset U ⊂ IRA. Let
ω be a p-form on U . Then

dLXω = LX(dω) (17a)
Y0(ω(Y1, . . . , Yp)) = (LY0ω) (Y1, . . . , Yp) +

p∑
i=1

ω(Y1, . . . , Yi−1, [Y0, Yi], Yi+1, . . . , Yp) (17b)

14Given H = (h1, . . . hp) ∈ Hk(p), let liH be the minimal index of the function 〈dxhi
, X〉.

Let lH = max{l1H , . . . , lpH}, and let L = maxH∈Hk(p) lH . Then one may take k̄ = max{L, k}.
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dω(Y0, . . . , Yp) =
p∑
i=0

(−1)iYi
(
ω(Y1, . . . , Ŷi, . . . , Yp)

)
+

∑
i<j

(−1)i+jω([Yi, Yj ], Y0, . . . , Ŷi, . . . , Ŷj , . . . , Yp)(17c)

Proof. The first formula follows from the fact that LX(·) = d ◦ i(X) + i(X) ◦ d.
Hence d◦LX = d2 ◦ i(X)+d◦ i(X)◦d = LX ◦d. The second and third formulas
follows from the definition of the operator LX(·), from the formulae (15), and
(16) (that coincide with the corresponding finite dimensional formulae) and
from the same arguments that are used to establish similar formulae in finite
dimensional geometry (see (Warner 1971, Dieudonneé 1974)). �

In particular, for one-forms ω and fields X,Y on an open set U ⊂ IRA, one
may write

LX〈ω, Y 〉 = 〈LXω, Y 〉+ 〈ω,LXY 〉
dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ])

The last expression is known as Cartan’s Magic Formula.
Some important properties are collected in the following result:

{pCollectRA}
Proposition 16 Let θ be a one-form, ω be a p-form and η be a q-form , all of
them defined on an open set V ⊂ IRA. Let g : U ⊂ IRA → V be a smooth map.

1. One has15 g∗(ω ∧ η) = (g∗ω) ∧ (g∗η).

2. The map g∗ω is a p-form.

3. dg∗θ = g∗(dθ).

4. d(g∗ω) = g∗(dω).

Proof. 1. It follows easily from the third item of Def. 17 (see the proof of Prop.
13).
2. By Proposition 12, this holds for p = 1. By definition ω is locally given by
(πk)∗ω̃, where ω̃ is a p-form on some open set of IRk. Let ω̃ =

∑
I∈Hp(k) ãIdxI ,

where dxI = dx̃i1 ∧ . . . dx̃ip . Then, by the linearity of g∗ and (πk)∗, and by 1,
one may write

g∗(πk)∗ãIdx̃I = ãI ◦ πk ◦ g (g∗(πk)∗) dx̃I
= ãI ◦ πk ◦ g(πk ◦ g)∗dx̃I
= ãI ◦ πk ◦ g(πk ◦ g)∗dx̃i1 ∧ . . . ∧ dx̃ip
= ãI ◦ πk ◦ g((πk ◦ g)∗dx̃i1 ∧ . . . ∧ (πk ◦ g)∗dx̃ip

15For the moment one is not claiming that g∗ maps forms to forms. Remember that the
wedge product was defined for arbitrary maps ω:Γp

U → IR.
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Now, by Proposition 24, (πk ◦ g)∗dx̃ij = d(x̃ij ◦ πk ◦ g) = dgij where gij =
x̃ij ◦ πk ◦ g is the ij-th component of g. In particular, the array of equations
above means that

g∗(πk)∗ãIdx̃I = ãI ◦ πk ◦ g(dgi1 ∧ . . . ∧ dgip)

Now, let k∗j and KI be the respectively minimal index of gj and ãI ◦ πk ◦ g at
x. Let l = max{k, k∗1 , . . . , k∗p, (KII ∈ Hp(k))}. Then it is clear that one may
locally write gj = πl ◦ g̃j where g̃j is a function defined on some open set of IRl.
So

(dgi1 ∧ . . . ∧ dgip) = (πl)∗dg̃1 ∧ . . . ∧ (πl)∗dg̃p (18)
= (πl)∗(dg̃i1 ∧ . . . ∧ dg̃ip) (19)

As (dg̃i1 ∧ . . . ∧ dg̃ip) is a p-form on IRl, this shows the second claim.
3. From Theorem 2, one may locally write θ =

∑k
i=1 αidxi, where the αi de-

pends only on x1, . . . , xk. From the proof of 2, one has g∗θ =
∑k
i=1(αi ◦g)dgi =∑p

i=1(πl)
∗(βi)dg̃i, g̃i◦πl = gi, where βi◦πl = (αi◦g), l = max{k, k∗1 , . . . , k∗p,K1, . . . ,Kp},

and k∗i and Ki are respectively the minimal indeces at x of gi and αi ◦ g. Hence
d(g∗θ) =

∑p
i=1(πl)

∗dβi∧dg̃i =
∑p
i=1 d(βi◦πl)∧d(g̃i◦πl) =

∑p
i=1 d(αi◦g)∧d(gi).

Without loss of generality, assume that16 l = k.
Now, let α̃i be such that αi = α̃i ◦ πl). Then dθ = g∗(

∑l
i=1 d(πl)

∗α̃idx̃i) =
(
∑l
i=1(πl)

∗d(α̃idx̃i) = (
∑l
i=1(πl)

∗dα̃i ∧ dx̃i) = (
∑l
i=1 ((πl)∗dα̃i) ∧ ((πl)∗dx̃i)).

So,

g∗dθ =
l∑
i=1

g∗(πl)∗dα̃i ∧ g∗(πl)∗dx̃i)

=
l∑
i=1

(πl ◦ g)∗dα̃i ∧ dx̃i)

=
l∑
i=1

d(α̃i ◦ πl ◦ g) ∧ d(x̃i ◦ πl ◦ g)

=
l∑
i=1

d(αi ◦ g) ∧ dgi

4. By the Proof of 2, it follows that d(g∗ω) = dπ∗l
∑
I∈Hp(k)(α̃I ◦ πl ◦ g)∧ dg̃I =

π∗l
∑
I∈Hp(k) d(α̃I ◦ πl ◦ g) ∧ dg̃i =

∑
I∈Hp(k) d(αI ◦ ◦g) ∧ dgi.

Now, g∗(dω) = g∗(πl)∗
∑
I∈Hp(k) dα̃I ∧dx̃I = (πl ◦ g)∗

∑
I∈Hp(k) dα̃I ∧dx̃I =∑

I∈Hp(k) d(α̃I ◦ πl ◦ g) ∧ (πl ◦ g)∗dx̃I . Now, recall that α̃I ◦ πl = αI and

(πl ◦ g)∗dx̃I = (πl ◦ g)∗(dx̃i1 ∧ . . . ∧ dx̃ip)
= (d(x̃i1 ◦ πl ◦ g) ∧ . . . ∧ d(x̃ip ◦ πl ◦ g))
= dgI

16By construction, l ≥ k. If k < l, one may write θ =
∑l

i=1 αidxi, where αi = 0 for i ≥ k.
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4 IRA-manifolds
{sRAManifolds}

The definition of a IRA-manifold is similar to the definition of a finite-dimensional
manifold.

Definition 20 A smooth IRA-manifold is a Hausdorff topological space S and a
family of pairs {(Ui, φi), i ∈ Λ}, where Ui is an open subset of S and φi : Ui →
Vi ⊂ IRA is a homeomorphism17 such that:

1.
⋃
i∈Λ Ui = S;

2. If Ui
⋂
Uj for some pair i, j ∈ Λ, then the mapping φj◦φ−1

i : φi(Ui
⋂
Uj) →

φj(Ui
⋂
Uj) is a smooth map between open sets of IRA.

As in the case of finite-dimensional manifolds, the family {(Ui, φi), i ∈ Λ}
is called atlas and each map φi : Ui → Vi is called a (local) chart. Given a set
of canonical coordinates {yj , i ∈ IN∗} of IRA, the set {xj , j ∈ IN∗} of functions
xj : Ui → IR defined by xj = yj ◦ φi is called set of local coordinate functions.
Let ξ ∈ S. A local chart (U, φ) with ξ ∈ U is called a local chart around ξ.

An atlas is maximal if one may not add any pair (U, φ) to this atlas in a
way that property 2 still holds. As in the finite dimensional case, using Zorn’s
Lemma, one may show the existence a maximal Atlas and, without loss of
generality, one may assume that a given atlas is maximal (Warner 1971). In
this entire section, S will be a given IRA-manifold.

4.1 Smooth functions on IRA-manifolds

Let U ⊂ S be an open set. A function f : U → IR is smooth if for every local
chart φ : W → Z with W ⊂ U , the map f ◦ φ−1 : φ(W ) ⊂ IRA → IR is smooth.
Let {xj , j ∈ IN∗} be the set of local coordinate functions of the local chart φ. Let
ξ ∈ W ⊂ U and let x = φ(ξ). By the definition of smooth function on an open
set of IRA, then f ◦ φ−1 may be locally expressed in the form f ◦ φ−1 = f̃ ◦ πk.
Abusing notation, one may locally write f ◦ φ−1 = f̃(x1, . . . , xk), that is called
expression of f in local coordinates.

It is clear from the definition of a IRA-manifold that there exists a subfamily
{(Ui, φi), i ∈ Γ} of the maximal atlas such that

⋃
i∈Γ Ui = U . Then if one wants

to prove that a given f : U → IR is smooth, it suffices to show that f ◦ φi−1 is
smooth for all i ∈ Γ.

Definition 21 A map g : R→ S between IRA-manifolds is smooth if, for every
local chart (U, φ) of R and (V, ψ) of S, the map g̃ = ψ ◦ g ◦ φ−1 : φ(U) → ψ(V )
is smooth. the map g̃ is called local expression of g in coordinates.

17That is, it is a continuous bijection with continuous inverse.
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4.2 Tangent bundle, tangent maps, and fields on IRA-manifolds
{sTTF}

One may define derivations acting on germs of smooth functions on open sets of
IRA-manifolds in the same way that one has defined such objects on open sets
of IRA (see Section 2.3). Hence, given a IRA-manifold S, then TξS will denote
the set of tangent vectors vξ : C∞{ξ} → IR, where C∞{ξ} denote the set of
functions that are defined on some open neighborhood of ξ ∈ S.

{d22T}
Definition 22 Let g : R → S be a smooth map. The tangent map g∗(x) :
TxR→ Tg(x)S is the IR-linear map defined by g∗(x)(vx)(λ) = vx(λ ◦ g).

The following proposition has three important meanings, namely: the first
one is the chain rule; the second one assures that the tangent map of a diffeo-
morphism is an isomorphism of tangent spaces; the last one, shows that one
may canonically endow the tangent space with the Fréchet topology.

{pChainRule}
Proposition 17 Let X,Y and Z be IRA-manifolds. The following properties of
tangent maps hold for smooth maps g : Y → Z and h : X → Z.

1. (Chain Rule) (g ◦ h)∗(x) = g∗(h(x)) ◦ h∗(x).

2. (Diffeomorphisms induce Isomorphisms of Tangent Spaces) If Z = X, g
is a diffeomorphism, and g = h−1, then g∗(x) is an isomorphism between
the IR linear vector spaces TxY and Tg(x)Z with inverse h∗(g(x)).

3. A Local Chart φ of X induce an isomorphism φ∗(x) : TxX → TxIR
A. In

particular one may endow TxX with the Fréchet topology, and the induced
topology does not depend on the chosen chart.

Proof. See appendix E. �

{dField}
Definition 23 (Tangent bundle and sections on IRA-manifolds) Let S be a IRA-
manifold. Define TS =

⋃
x∈S TxS. The canonical projection π : TS → S is the

map vx 7→ x for every x ∈ S and vx ∈ TxS. The bundle (S, TS, π) is called
tangent bundle of S. A section τ of the tangent bundle is a map τ : S → TS
such that π ◦ τ is the identity map. In other words, τ(x) is a tangent vector vx
at x ∈ S, that is, τ(x) ∈ TxS.

{p11}
Proposition 18 Let S be a IRA manifold and let τ : S → TS be a section.
Let (U, φ) be a coordinate system, and let V = φ(U). Let {yi : i ∈ IN∗} be the
canonical coordinate functions of IRA, and let ∂

∂yi
|y be the fields on IRA defined

by ∂
∂yi

|y(yj) = δij, where δij = 0 if i 6= j and δij = 1 if i = j. Let

∂

∂xi
|x = (φ−1)∗|φ(x))(

∂

∂yi
|φ(x)) (20) {eDdx}

Then
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1. ∂
∂xi

|x is a section on U such that ∂
∂xi

|x(xj) = δij.

2. Every section τ : S → TS may be locally represented in the form

(τ |U)(x) =
∞∑
i=1

τi(x)
∂

∂xi
|x (21) {eUnique}

where the functions τi : U → IR are given by τi = τ(xi).

3. Let τ̃ : V → TV be defined by

τ̃(y) =
∞∑
i=1

τ̃i(y)
∂

∂yi
|y

where τ̃i = τi ◦φ−1. Then (τ |U)(x) = (φ−1)∗(φ(x))τ̃(φ(x)). In particular,
on U one may write for λ : U → IR, τ(λ)|x = (φ−1)∗(φ(x))τ̃(φ(x))(λ) =
τ̃(φ(x))(λ ◦ φ−1) =

∑k
i=0 τ̃i(y)

∂λ̃
∂yi

|y=φ−1(x), where λ̃ = λ ◦ φ−1.

Proof. The fact that ∂
∂xi

|x is a section on U follows easily from the defi-
nition of tangent maps. Remember that xj = yj ◦ φ. Then ∂

∂xi
|x(xj) =

(φ−1)∗|φ(x))( ∂
∂yi

|φ(x))(xj) = ∂
∂yi

|φ(x)(xj ◦φ−1) = ∂
∂yi

|φ(x)(yj) = δij . By proposi-
tion 35 of Appendix F, one may define the section τ̃ : V → TV on V = φ(U) ⊂
IRA, by τ̃(y) = φ∗(x)τ(x), where x = φ−1(y). By Prop. 7, the section τ̃ may
be represented by

τ̃ =
∞∑
i=0

τ̃i
∂

∂yi
|y

where τi, i ∈ IN are convenient functions (not necessarily smooth). By construc-
tion it is clear that

τ(x) = (φ−1)∗(φ(x))τ̃(φ(x)), x ∈ U

Hence, if λ : U → IR is a function, it follows that

τ(λ) = (φ−1)∗(φ(x))τ̃(φ(x))(λ)
= τ̃(φ(x))(λ ◦ φ−1)

=
∞∑
i=0

(τ̃i ◦ φ(x))
∂

∂yi
|φ(x)(λ ◦ φ−1)

=
∞∑
i=0

(φ−1
∗ )(φ(x))

{
(τ̃i ◦ φ(x))

∂

∂yi
|φ(x)(λ)

}

=
∞∑
i=1

(τ̃i ◦ φ(x))
∂

∂xi
|x(λ)

Hence one may take τi = τ̃i ◦ φ(x). By 1, one must have τ(xj) = τj . Note
that the infinite sum always makes sense since, at a point x ∈ U , only a finite
number of summands are nonzero. �
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{p12s}

Proposition 19 One call (21) by local expression of τ in coordinates. One
says that the local expression is smooth if the functions τi are smooth on U . Let
(U, φ1) an (U, φ2) be two local charts of a IRA-manifold S and let τ be a section
of TS. Then the local expression of τ in the coordinates φ1 is smooth if and
only if the local expression of τ in the coordinates φ2 is smooth.

Proof. Straightforward from Proposition 18 and Proposition 35 of Appendix
F. �

The Propositions 18 and 19 allows one to state the following definition
{d18}

Definition 24 A section τ :→ TS is a field if, for every local chart (U, φ) of S,
with V = φ(U) ⊂ IRA, the local expression of τ in local coordinates is smooth.

Among other important things, the next proposition shows that, when par-
ticularized to a map between open sets of IRA, the tangent map is a generaliza-
tion of the Jacobian matrix.

{pJacobian}

Proposition 20 Let g : U ⊂ IRA → V ⊂ IRB. Let {xj , j ∈ IN∗} and {yi, i ∈
IN∗} stand for the canonical coordinates respectively of IRA and IRB. Denote
the component function yi ◦ g by gi. Then

1. g∗(x)( ∂
∂xj

|x) =
∑∞
i=1

∂gi

∂xj
|x ∂
∂yi

.

2. g∗(x)(
∑∞
j=1 αj

∂
∂xj

|x) =
∑∞
i=1

(∑k∗gi
j=1 αj

∂gi

∂xj
|x
)

∂
∂yi

, where k∗gi
is the max-

imal index of gi at x.

3. Fix a point x ∈ IRA. The map g∗(x) : TxU → TyV is continuous18.

Proof. Note that g∗(x)( ∂
∂xj

|x)(yi) = ( ∂
∂xj

|x)(yi ◦ g) = ∂gi

∂xj
, showing 1. Note

that 2 is straightforward from 1. Now, to show 3, it suffices to see that the ith
component function of g∗(x) is the linear map that associates (α1, α2, α3, . . .)

to
∑k∗gi
j=1 αj

∂gi

∂xj
|x. As it depend only on a finite number k∗gi

of coordinates,
since these functions are linear, from Proposition 10 it follows that they are
continuous. Now, the result follows from Proposition 1. �

4.3 Cotangent bundle, pull-backs, one-forms and differen-
tials on IRA-manifolds

{sCTPFD}

From Proposition 17, given an IRA manifold S, and x ∈ S, one may identify
TxS with Tφ(x)V for a given local chart φ : U → V defined around x. As Tφ(x)V
may be identified with IRA (with the Fréchet topology), one may endow the
IR-linear space TxS with the topology induced by those identifications.

18With the Fréchet topology constructed in Part 3 of Prop. 17
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Proposition 21 Let X and Y be IRA-manifolds and let g : X → Y be a smooth
map. Fix some x ∈ X and let y = g(x). Then the IR-linear map g∗(x) : TxX →
TyY is continuous.

Proof. Let (U, φ) and (V, ψ) be respectively local charts around x and y. Let
x̃ = φ(x), ỹ = ψ(y), Ũ = φ(U), Ṽ = ψ(V ). Without loss of generality, assume
that U = g−1(V ) (otherwise, one may restrict to g−1(V )). Remember that W
is an open set of TyY if and only W = (ψ−1)∗(ỹ)(W̃ ), where W̃ is an open set
of TxU . Hence, W̃ is open. An analogous remark may be stated for the open
sets of TxY .

Let g̃ = ψ ◦ g ◦ φ−1 be the expression of g in local coordinates. Then g̃ is
differentiable. In particular, from Proposition 20, then g̃∗(x̃) : Tx̃Ũ → TỹṼ is
continuous. Since g∗(x) = ψ∗(g(x))g̃∗(x)φ−1

∗ (x̃), given an open set W of TyY ,
it follows that (g∗(x))−1(W ) is an open set of TxX. �

{d25}
Definition 25 (Cotangent bundle, one-forms and pull-backs)

• (Cotangent Bundle) Let T ∗xS denote the space of continuous linear maps
ωx : TxS → IR. Let T ∗S =

⋃
x∈s T

∗
xS. Let π : TS → S be the canon-

ical projection that maps ωx 7→ x. The Cotangent Bundle is the triple
(S, T ∗S, π).

• (One-form) A section of the cotangent bundle of S is a map ω : S → TS
such that π ◦ ω is the identity map on S. In other words, ω(x) ∈ T ∗xS. A
one form ω is a section of the cotangent bundle such that, for every field
τ : S → TS the map 〈ω, τ〉 : S → IR defined by 〈ω, τ〉(x) = ω(x)(τ(x)) is
a smooth function.

• (Cotangent Map and Pull-Back) Let X and Y be IRA-manifolds (or open
subsets of IRA) and let φ : X → Y be a smooth map. Let x ∈ X, y = φ(x),
and let θy ∈ T ∗y Y . Let τx ∈ TxX. The cotangent map φ∗(x) : T ∗y Y → T ∗xX
is defined19 by 〈φ∗(x)(θy), τx〉 = 〈θy, φ∗(x)τx〉. Let τ be a field on X.
Given a section θ of T ∗ Y , one may define a section φ∗(θ) of T ∗X called
pull-back of θ, by the rule φ∗(θ)(τ)(x) = 〈φ∗(x)θ(x), τ(x)〉.

The next proposition shows that a one-form on a IRA-manifold is necessarily
the pull-back by a local chart of a one-form on an open set of IRA. Moreover,
the pull-back of a one form is a one-form.

{p13}
Proposition 22 Let X, Y be IRA manifolds. Let g : X → Y be a smooth map,
y = g(x) and let (U, φ) and (V, ψ) be local charts respectively around x and y,
with V = φ(U).

1. Let x̃ = φ(x) and Ũ = φ(U). The map φ∗(x) : T ∗x̃ Ũ → T ∗xX is an
isomorphism of IR-vector spaces. In particular, every section θ of T ∗U is
of the form θ = φ∗θ̃, where θ̃ is a section of T ∗Ũ .

19Clearly, as φ∗(x)(θy) = θy ◦ φ∗(x), if θy is continuous, so is φ∗(x)(θy).
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2. A one form θ on U is of the form θ = φ∗θ̃, where θ̃ is a one-form of T ∗Ũ .

3. (Dual of chain-rule) Let X,Y, Z be IRA manifolds and let g : X → Y and
f : Y → Z be smooth maps. Then (f ◦ g)∗ = g∗f∗.

4. If ω is a one-form on Y , then g∗ω is a one-form on X.

Proof. See appendix G. �

{pPull}
Proposition 23 Let S be an IRA manifold and let (U, φ) be a local coordinate
system. Let (xi, i ∈ IN∗) be the corresponding local coordinate functions. Let
πφk : U → IRk be the map defined by

πφk (ξ) = (x1(ξ), x2(ξ), . . . , xk(ξ)), ξ ∈ S

Note that φφk = πk ◦ φ. A section ω of T ∗S is a one form if and only if, around
every point ξ ∈ U , there exists a local chart (U, φ) around ξ and a one form ω̃

on IRk, such that ω|U = (πφk )∗ω̃.

Proof. From the part 3 of the last Proposition, there exists a local chart (U, φ)
such that ω|U = φ∗ω̂, where ω̂ is a one form on an open subset of IRA. Now,
from Part 2 of theorem 2, ω̂ = π∗kω̃, where ω̃ is a one-form on an open set of IRk.
Hence, using Proposition 22, ω|U = (φ∗π∗kω̃) = (πk ◦ φ)∗ω̃ = (πφk )∗ω̃. �

Now we are ready to define the notion of differential of a function on a
IRA-manifold.

{d26}

Definition 26 One may define the differential df of a function f : S → IR as
the one-form such that df(τ) = τ(f) for every field τ on S.

{p15}
Proposition 24 Let φ : X → Y be a smooth map between IRA manifolds. Let
λ : Y → IR be a function. Then φ∗(dλ) = d(λ ◦ φ).

Proof. We shall show that the action of both 1-forms on every field τ on X
coincides. In fact, 〈φ∗(dλ), τ〉 = 〈dλ, φ∗τ〉 = (φ∗τ)(λ) = τ(λ ◦ φ) = 〈d(λ ◦ φ), τ〉
�

{pComputational}

Proposition 25 (Computational Issues) Let S be a IRA-manifold. Let ξ ∈ S
and let (Uξ, φ) be a local chart of S around ξ. Let (xi, i ∈ IN∗) be the cor-
responding coordinate functions. Let dxi|x be the differential of xi : U → IR.
Then:

1. 〈dxi|x, ∂
∂xj

|x〉 = δij, where δij was defined in Prop. 18.

2. If {yi, i ∈ IN∗} are the canonical coordinates of IRA, then

dxi|x = φ∗(x)dyi|φ(x).
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3. If {zi, i = 1, . . . , k} are the canonical coordinates of IRk, then dxi|x =
(πφk )∗(z)dzi|z, i = 1, . . . , k, where z = πφk (x).

4. If ω is a one-form on S, then around every ξ ∈ U there exists an open
neighborhood Vξ of ξ, and some k ∈ IN , such that ω|Vξ

(x) =
∑k
i=1 ωi(x)dxi|x

where ωi : Vξ → IR is the smooth function given by ωi(x) = 〈ω(x), ∂
∂xi

|x〉,
and the minimal index of the functions ω1 at ξ are less than or equal to k.
Furthermore, ω = (phi)∗ω̂ where ω̂ is the one-form on φ(Vξ) ⊂ IRA given
by ω̂(y) =

∑k
i=1 α̃i(y)dyi|y, and α̃i(y) = ωi ◦ φ−1(y).

5. Let k be the minimal index of f at ξ and let Vξ ⊂ Uξ be a minimal neigh-
borhood. Then df(ν) =

∑k
i=1

∂
∂xi

|ν(f)dxi|ν , for all ν ∈ Vξ. Furthermore,

if f̃ = f ◦ φ−1, then ∂
∂xi

|ν(f) = ∂f̃
∂yi

|φ(ν).

Proof. See appendix H. �

Remark 7 One may endow TS and T ∗S with structures of a IRA manifold in a
very similar way that one can do in the finite dimensional case (Warner 1971).
In this context, one may define the canonical projection π : TS → S in the same
way one has defined above, and a section is a map τ : S → TS such that π ◦ τ
is the identity map. Then a field may be defined as a smooth section of TS,
which gives a intrinsic definition of a field. However, a one-form is not only a
smooth section of T ∗S, as one have noted in the discussions above, and intrinsic
definition of a one-form ω must assure that 〈ω, τ〉 is a smooth function for every
field τ .

4.4 Independent functions are part of a local coordinate
system

It is known in finite dimensional geometry that a set of functions with pointwise
independent differentials is part of a local coordinate system. The theorem that
allows one to prove this statement is the inverse function theorem. The next
lemma shows that this result holds in our infinite dimensional setting, at least
for a finite number of functions. However it does not hold for an infinite number
of functions (Zharinov 1992). As a consequence of this result, one shows that,
if the differential of a function u is generated by a finite set dθ of pointwise
independent differentials, then u is locally a function of θ.

{lLemma2}
Lemma 1 Let S be a IRA manifold, and V be an open neighborhood of ξ ∈ S.
Let θ = {θ1, . . . , θk} be a set of smooth functions θi : V → IR, i = 1, . . . , k, and
assume that set of one-forms dθ = {dθ1, . . . , dθk} is pointwise independent at
every point of V .

1. Let ν ∈ V . Then there exists an open neighborhood U of ν and a set
of functions z such that (θ, z) is a local coordinate system defined in U .
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In particular the map δ : U → δ(U) = V̂ ⊂ IRk defined by δ(ζ) =
(θ1(ζ), . . . , θk(ζ)) is open and surjective.

2. Let u : V → IR be a smooth function such that du ∈ span {dθ1, . . . , dθk}
in V . Let ν ∈ V . Then, there exist a smooth map µ : δ̂(U) → IR such
that u|U = µ ◦ δ. In particular, the mapping µ may be identified with the
expression of u in the local coordinates (θ, z).

3. Let (θ, w) be a local coordinate system around ξ and let η = {η1, . . . , ηk}
be a set of smooth functions such that span {dθ} = span {dη} on an open
neighborhood containing ξ and the set dη is linearly independent at ξ. Then
(η, w) is also a local coordinate system on some open neighborhood of ξ.

Proof. See Appendix I. �

Proposition 26 Let S be a IRA-manifold. Let u : S → IR be a function. Let
(U, φ) be a local coordinate system, and let x = (θ, w), be the corresponding
coordinate function20 around ξ, where θ = {θi, i ∈ B} and w = {wj , j ∈ C}.
Assume that one locally has span {dµ} ⊂ span {dθ}. Hence, there exists an
open neighborhood of ξ such that the local expression of u in coordinates given
by µ = u ◦ φ−1 in coordinates is of the form µ(θ1, . . . , θk).

Proof. Abusing notation, let {θ, w} be coordinates of IRA. By Part 5 of
Proposition 25, one gets ∂µ

∂wj
= 0, j ∈ C. If the minimal index of u at ξ is k, on

a minimal neighborhood, if the cardinal of B is greater than k, one gets ∂µ
∂θi

= 0
for i ≥ k. The desired result then follows. �

4.5 Integral curves on IRA-Manifolds

A smooth curve on an IRA-manifold S is a smooth map σ : (a, b) → S, where
(a, b) ⊂ IR. Let f be a field on S. One may define on IR the field d

ds given by
the standard operation of derivation of smooth functions.

Definition 27 A smooth curve σ : (a, b)(a, b) → S is an integral curve of a
field f if

σ∗(t)
d

ds
|t = f(σ(t)). (22) {eSolution}

Given a local coordinate system (U, φ) with local coordinate functions (xi, i ∈
IN∗), one may abuse notation, letting xi(t) stands for xi ◦σ(t), that is, one shall
denote φ ◦ σ(t) by (x1(t), x2(t), . . .). Let Ũ = φ(U). Assume that

f(x) =
∞∑
i=1

fi(x)
∂

∂xi
|x

20Here one does not assume that θ is a finite set.
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where fi = f(xi). Then, when one seeks an integral curve σ(t) ∈ U , the equation
(22) is locally equivalent to the infinite dimensional differential equation21

ẋi(t) = fi(x1(t), x2(t), . . . , xαi), i ∈ IN∗ (23) {eSolutionL}

An integral curve σ is also called a solution of f . One may take a closed
interval [a, b], instead of (a, b). In this case σ(a) is called the initial condition of
σ.

Contrarily to the finite dimensional case, a version of flow-box theorem is
not available in the context of IRA manifolds. In fact, for some fields there exists
no integral curves (Zharinov 1992). It is easy to construct an example for which
there exist infinitely many solutions with the same initial condition. In fact, on
IRA, define the field f =

∑∞
i=1 xi+1

∂
∂xi

|x, where x = (x1, x2, . . .). Now, Borel’s
theorem (Borel 1895) says that, for every x̄ ∈ IRA, x̄ = (x̄1, x̄2, . . .), there exists
a smooth function g : (−1, 1) with g(k−1)(0) = x̄k, k ∈ IN∗. This assures the
existence of a solution σ(t) = (g(t), g(1)(t), g(2)(t), . . .) for any initial condition
x̄ ∈ IRA. Remember that the smooth function22 h : IR→ IR defined by

h(t) =
{

0, t ≤ 0
exp(−1/t), t > 0 (24)

is such that h(k)(0) = 0 for k ∈ IN∗. Hence, the curve σ(t) = (g(t)+h(t), g(1)(t)+
h(1)(t), g(2)(t) + h(2)(t), . . .) is also a solution with initial condition x̄ ∈ IRA. So
uniqueness of solutions is not expected to be a general property in our infinite
dimensional context.

4.6 Submersions, immersions, immersed manifolds and em-
beddings

Let A,B be two countable sets. Let X = IRA and Y = IRB . Let π : IRA ×
IRB → IRB be such that π(x, y) = y. Let ι : IRA → IRA × IRB be such
that ι(x, y) = (x, 0). Let S and T be two IRA-manifolds. A map Σ : S → T
is said to be a submersion (respectively, an immersion) if, for every ξ ∈ S,
there exists local charts (U, φ) and (V, ψ), with ξ ∈ U and φ(ξ) ∈ V , with
coordinate functions such that the expression of Σ in local coordinates, given
by ψ ◦ Σ ◦ φ−1, coincides with π (respectively, coincides with ι). In the finite
dimension case, one may show that a map Σ is a local submersion around some
ξ ∈ S (respectively a local immersion) if and only if Σ∗(ξ) is an surjective linear
map (respectively, an injective linear map). This nice feature does not hold in
our infinite dimensional setting (Zharinov 1992). However, if Σ is a submersion
(respectively an immersion), Prop. 27 shows that Σ∗ is pointwise surjective
(respectively pointwise injective).

Let S be an IRA-manifold. A subset ∆̃ ⊂ ∆ is said to be an immersed
manifold if there exists a IRA-manifold ∆ and an injective immersion Σ : ∆ → S

21In fact, σ∗(
d
ds
|t)(xi) = d

ds
|t(xi ◦ σ) = ẋi(t) = f(xi)|σ(t) = fi|σt.

22This function is used in the construction of partitions of unity (Warner 1971).
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with ∆̃ = Σ(∆). Note that one may endow ∆̃ with two different topologies.
The first one is the subset topology, for which the open sets of ∆̃ are of the form
U
⋂

∆̃, where U is an open set of S. The second one is the induced topology,
for which the open sets of ∆̃ are of the form Σ(V ), where V is an open set of
∆. Note that ∆̃ has a structure of IRA-manifold when one chooses the induced
topology. In fact, giving an atlas {(Uλ, φλ), λ ∈ Λ} of ∆, as the map Σ : ∆ → ∆̃
is a bijection, then one may define the atlas {(Ũλ, φ̃λ), λ ∈ Λ} of ∆̃, where
Ũλ = Σ(Uλ) and φ̃λ = φλ ◦ Σ−1. A simple exercise shows that this defines a
structure of IRA−manifold for ∆̃. Note that, as Σ is an immersion, there exists
convenient local charts such that the local expression of Σ in these coordinates
reads x 7→ (x, 0). So the immersed manifold is locally “a slice” of the manifold
S, as one have seen in the finite dimensional case.

The immersion Σ is said to be an embedding if the induced topology coincides
with the subset topology. In this case there is no loss of generality of thinking
that Σ is the insertion map (since it is a bijection onto its image), ∆̃ = ∆
and the topology is the subset topology. As in the finite dimensional case, an
embedding cannot exhibit the same known problem of the “figure eight”, that
is, an embedded manifold cannot approximate to itself indefinitely, because it
is formed by a disjoint union of slices (Warner 1971).

In finite dimensional geometry, the converse of the next proposition holds.
However this is not true in general in our infinite dimensional context. For
instance, the tangent map φ∗ of a map phi : S → T may be injective at a
given point ξ ∈ S, but the map φ is not an immersion around this point (see an
example of this fact (Zharinov 1992)).

{p16}
Proposition 27 The tangent map of an immersion (respectively submersion) is
pointwise injective (respectively surjective). The cotangent map of an immersion
(respectively submersion) is surjective (respectively injective).

Proof. We show only the claims for injections. The proof of the given affirma-
tions for submersion is similar, and is left to the reader. Locally an injection
ι : Γ → S is of the form x 7→ (x, 0). Given a function λ : S → Γ, namely λ(x, z),
note that λ ◦ ι = λ(x, 0). In particular, if λ = xi, abusing notation, one has
λ ◦ ι = xi. Now, if ι∗(τ)(λ) = 0 for all λ, this means that, τ(λ ◦ ι) = 0 for all λ.
In particular τ(xi) = 0 for all i implies that τ = 0. Hence ker ι∗ = {0} and so ι∗
is injective. Now, as ι∗(dλ) = d(λ◦ ι), by choosing λ = xi one gets ι∗(dλ) = dxi.
In particular, the cotangent space TxX is generated by the image of i∗(x) for
all x ∈ X. �

{lSubmersion}

Lemma 2 Let S be a IRA manifold an let φ : S → IRB be a submersion, where
B is a (finite or infinite) countable set. Then around all ξ ∈ S there exists a
local coordinate system (U,ψ) such that the coordinate functions are of the form
(φ, z). When written in these coordinates, the map φ reads (h, z) 7→ h.

Proof. Looking IRB as a IRB-manifold, the assumption means that, for all
ξ ∈ S, there exists local charts (U,α) around ξ and (V, β) around φ(ξ) such that
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the map β ◦ φ ◦ α−1 reads (x, z) 7→ x. Note that the map (x, z) 7→ (β−1(x), z)
is a local diffeomorfism with inverse (w, z) 7→ (β(w), z). Hence (β−1(x), z) is
also a set of coordinate functions. Now, for all ν ∈ S with α(ν) = (x, z), one
has β−1(x) = β−1

(
β ◦ φ ◦ α−1(x, z)

)
= φ ◦ α−1(x, z) = φ ◦ α−1 ◦ α(ν) = φ(ν).

In particular, ν 7→ (φ(ν), z(ν)) is the local chart with the claimed properties.
�

4.7 Distributions and Codistributions

Let S be a IRA manifold. Let x ∈ S and let Gx stands for the set of all
subspaces of the IR-linear space TxS. Define G =

⋃
x∈S Gx. A distribution

D : S → G is a map x 7→ D(x) such that, for all x ∈ S, D(x) is a subspace
of TxS. In finite dimensional theory, one may endow G with a structure of
manifold (called the Grassmanian of S). In this context one may define a smooth
codistribution as being a smooth section of G. In our infinite dimensional setting,
this construction is much more involved, and it is not necessary, at least for our
purposes. Hence, we shall consider another definition of smooth distribution,
that is also considered in finite dimensional geometry.

Definition 28 (Distributions) The set F(S) of fields on S has a structure of
C∞(S)-module induced by the operation of (pointwise) sum of fields, and (point-
wise) multiplication of a field by a function (evaluated on the working point).
A smooth distribution on S is a submodule D of F(S). Note that, given a
distribution D, one may define a D(x) = span {τ(x) | τ ∈ D}. A point x of S
is a regular point of D, if there exists an open neigborhood Vx of x such that
the dimension of D(ν) is finite and constant for all ν ∈ Vx. A distribution is
involutive if for all τ1 and τ2 in D, then [τ1, τ2] ∈ D.

Unfortunately, the Frobenius theorem does not hold for finite dimensional
distributions in our infinite dimensional setting. As a matter of fact, it holds
when its codimension is finite. It is much easier to considere the Cartan’s version
of the Frobenius theorem, which is related to codistributions (see section 4.9).

Definition 29 (Codistributions) The set Λ1(S) of one-forms on S has a struc-
ture of C∞(S)-module induced by the operation of (pointwise) sum of one-forms,
and (pointwise) multiplication of a one-form by a function (evaluated on the
working point). A (smooth) codistribution on S is a submodule Γ of Λ1(S).
Note that, given a distribution Γ, one may define a map C(Γ), that associates to
every point x ∈ S the subspace of T ∗xS given by C(Γ)(x) = span {ω(x) |ω ∈ Γ}.
A point x of S is a regular point of Γ, if there exists an open neighborhood Vx
of x such that the dimension of C(Γ)(ν) is finite and constant for all ν ∈ Vx. If
all x ∈ S is a regular point of Γ, we say that Γ is a nonsingular codistribution.

Remark 8 By simplicity, one may abuse notation, letting Γ(x) stands for C(Γ)(x).

Given a codistribution Γ defined on S, let V ⊂ S be an open set. Then Γ|V
stands for the C∞(V )-submodule defined by Γ|V = spanC∞(V ) {ω|V : ω ∈ Γ}.
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{p26}

Proposition 28 Let Γ be a smooth codistribution on S. Define the function
dim Γ : S → IR by x 7→ dim Γ(x). Assume23 that dim Γ(x) ≤ k∗ for some
k∗ ∈ IN for all x ∈ S.

1. The function dim(Γ) : S → IR is upper semi-continuous. In other words,
around every point ν ∈ S, there exist an open set Vν ⊂ s such that
(dim(Γ)(ν)) ≤ (dim(Γ)(x)) for every x ∈ Vν .

2. The set of regular points of Γ is open and dense on S.

3. Let x ∈ S be a regular point of a codistribution Γ, then there exists an
open neighborhood Vx of x and a set of pointwise independent one-forms
ω = {ω1, . . . , ωr} ⊂ Γ such that Γ|Vx = spanC∞(Vx) {ω1|Vx , . . . , ωr|Vx}.
The set ω is called a local basis of Γ.

4. Let Γi, i = 1, 2 be two codistributions. They are said to be locally coinci-
dent, if for all ξ ∈ S, one has Γ1|Vξ

= Γ2|Vξ
, where Vξ is an open neigh-

borhood of ξ. Assume that Γ1 is nonsingular. Then the codistributions Γ1

and Γ2 are locally coincident if and only if C(Γ1) = C(Γ2).

Proof. 1. Let s = dim Γ(ν). Then Γ(ν) is a s-dimensional subspace of
T ∗ν S. In particular, there exists a set of one-forms {ω1, . . . ωs} in Γ, such that
{ω1(ν), . . . , ωs(ν)} is a basis of Γ(ν). By Part 4 of Proposition 25, choosing a
local coordinate system, on some open neighborhood V of ν, one may write

ωi(x) =
k∑
i=1

αij(x)dxi|x

where αij : V → IR are smooth functions. The k × s matrix α(x) such that
{α}ij = αij depends smoothly24 on x. As α(ν) has rank s, it admits a nonzero
minor determinant. Since the (minor) determinant is a continuous function,
and so is α, this minor will be nonzero on some open neighborhood Wν of ν. In
particular dim Γ(x) ≥ s for all x ∈Wν .

2. The fact that the set of nonsingular points is open is straightforward
from the definition. To show that this set is dense, choose any open set V . As
dim Γ(x) ≤ k∗, x ∈ S there must exist ν ∈ V such that dim Γ(ν) ≥ dim Γ(x) for
all x ∈ V . By 1, it follows that ν must be a regular point of Γ.

3. In the proof of 1, take the constructed set ω = {ω1, . . . , ωr}, where r =
dim Γ(x). This set is pointwise independent on some open neighborhood Vx of
x ∈ S. By dimensional arguments, it is clear that Γ(ξ) = span {ω1(ξ), . . . , ωr(ξ)}
for all ξ ∈ Vx. This shows only the pointwise coincidence of the vector spaces
Γ(ξ) and span {ω1(ξ), ωr(ξ)}. To show the statement of 2 one must show that,

23For instance, this is true if Γ is finitely generated.
24One may regard α : V → IRk×s as a map that associates x ∈ V to a k × s matrix.
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for all ω ∈ Γ|Vx , ω(ξ) =
∑r
i=1 δi(ξ)ωi(ξ) for all ξ ∈ Vx, where αi, i = 1, . . . r, are

smooth functions. One has already shown that

ω(ξ) =
r∑
i=1

δi(ξ)ωi(ξ). (25) {eOmegaXi}

It suffices to show the smoothness of the δi. From the same arguments of the
proof of 1, after choosing a local coordinate system

ωi(ξ) =
k∑
i=1

αij(ξ)dxi|x, i = 1, . . . , r (26) {eAAAAA}

and define the smooth map α : Vx → IRk×r. As rank α(x) = r, one may
complete the real matrix α(ξ) with k− r constant rows βl, l = 1, . . . , k− r, con-
structing the k× k invertible matrix β(ξ). By continuity, β(ξ) will be invertible
for ξ in some open neighborhood Wx ⊂ Vx of x. So define

ωi(ξ) =
k∑
i=1

βij(ξ)dxi|ξ, i = 1, . . . , k

By Proposition 25, one may locally write

ω(ξ) =
k∗∑
i=1

γi(ξ)dxi|ξ

for convenient smooth functions γi. Substituting (26) on (25), one shows that
one may take k∗ = k. Note that this substitution is equivalent to the following
matrix equation


γ1(ξ)
γ2(ξ)

...
γk(ξ)

 = β(ξ)



δ1(ξ)
δ2(ξ)

...
δr(ξ)

0
...
0


So one may locally write

δ1(ξ)
δ2(ξ)

...
δr(ξ)

0
...
0


= β−1(ξ)


γ1(ξ)
γ2(ξ)

...
γk(ξ)


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Showing the smoothness of the functions δi.
Another proof can be given, without the need of completing the matrix α

into an invertible matrix β. The idea is to use a pseudo-inverse25 of α in order
to compute the δi from the knowledge of the γj .

4. Straightforward consequence of the proof of 3. The details are left to the
reader. �

Remark 9 Note that proofs of Parts 1 and 2 Proposition 28 also shows that
ν ∈ S is a regular point of Γ if and only if dim Γ is locally maximal around ν.

4.8 Lie-Brackets, Lie-derivatives and Exterior Calculus on
IRA-manifolds

In this section one will generalize for IRA-manifolds the concepts of Lie-Brackets,
Lie-derivatives and all the results of exterior calculus, that have been established
for open sets of IRA. The main idea is to transfer directly all the results by using
the tangent mappings of the local charts (for fields), or by the pull-backs of the
forms. One may define Lie-Brackets on IRA-manifolds exactly as it was stated in
definition 11, only replacing IRA by IRA-manifold. The proof that such definition
is well posed is identical to the one of Proposition 9.

Lemma 3 Let φ : S → S̃ be a smooth mapping between IRA-manifolds. Let τ, θ
be fields on S and τ̃ , θ̃ be fields on S̃. The fields {τ̃ , τ} are said to be φ-related
if φ∗τ = τ̃ ◦ φ. Assume that {τ̃ , τ} and {θ̃, θ} are φ-related. Then {[τ̃ , θ̃], [τ, θ]}
are also φ-related.

Proof. The proof is identical to the same result of finite dimensional geometry
(see (Warner 1971)). �

The consequence of the last Lemma is that, to compute the expression of the
Lie-Bracket in coordinates, it suffices to apply the expression that is developed
in section 2.4. This follows from the fact that a field τ on S is locally given by
τ ◦ φ = φ−1 ∗ τ̃ , where (U, φ) is a local chart of S, τ̃ is a field on V ⊂ IRA, and
V = φ(U).

One has shown that a one form ω on a IRA-manifold is locally the pull-back
φ∗ω̃ where φ is a local chart and ω̃ is a one-form on an open set of IRA. One
can define a p-form on S by generalizing this property. The next definition
generalizes the Def. 16 for IRA-manifolds.

Definition 30 Let Y be a IRA-manifold. Let

ΓpY (y) = TyY × TyY × . . .× TyY︸ ︷︷ ︸
p times

25For the definition and properties of the pseudo-inverse see for instance (Strang 1988).
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and define ΓkY =
⋃
y∈Y Γk(y). Let ω : ΓkY → IR be a map. Let g : X → Y

be a smooth map between IRA-manifolds. Let y = g(x). Define the pull-back
g∗|xω : ΓkX(x) → IR by the rule

g∗xω(τ1, . . . , τp) = ω(g∗τ1, . . . , g∗τp), for every {τ1, . . . , τp} in ΓpX(x)

Define the pull-back g∗ω : ΓkX → IR, pointwise, by the same rule above.

Let (U, φ) be a local chart on Y . Let V = φ(U) ⊂ IRA. By definition, if U is an
open subset of Y , then ΓkU is a subset of ΓkY . We are ready to define a p-form.

{dPFormsS}
Definition 31 (p-forms on IRA-manifolds)

• A p-form ω on Y is a map ω : ΓpY → IR such that, around every y ∈ Y
there exists a local chart (U, φ) around y such that ω|Ũ = φ∗ω̃, where ω̃ is
a one-form on V = φ(U) ⊂ IRA, and Ũ = ΓpU .

• The set of p-forms on Y will be denoted by Λp(Y ), where Γ0(Y ) denotes
the set of smooth functions f : Y → IR.

• The wedge product “∧” is defined26 in the following way. Let ωx : ΓpU (x) →
IR and ηx : ΓmU (x) → IR be two maps. Then ω ∧ η is defined by the same
rule (8) that was used to define the wedge product on IRA..

• The exterior derivative is the map d : Λp(Y ) → Λp+1(Y ) defined in the
following way. For p = 0, the map df = d(f) is the differential of the
function f . For p > 0, then27 d(ω)|Ũ = φ∗(dω̃), where Ũ and ω̃ are
defined above.

Some important properties of forms on a IRA-manifold are collected in the
following result:

{pCollectS}
Proposition 29 Let θ be a one-form, ω be a p-form and η be a q-form , all of
them defined on an open set V of a IRA-manifold. Let g : U → V be a smooth
map between open subsets of IRA-manifolds.

1. The definition of exterior differential stated in Def. 31 des not depend on
the chosen local chart that is used to represent the p-form.

2. One has28 g∗(ω ∧ η) = (g∗ω) ∧ (g∗η).

3. The map g∗ω is a p-form.

4. dg∗θ = g∗(dθ).

26This definition mimics the standard definition of wedge product that appears in finite
dimensional exterior algebra (see (Warner 1971)).

27It is not difficult to show that the definition does not depend on the chosen local chart
(U, φ).

28For the moment one is not claiming that g∗ maps forms to forms. Remember that the
wedge product was defined for arbitrary maps ω:Γp

U → IR.
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5. d(g∗ω) = g∗(dω).

Proof.
1. Since φ−1

2 ◦ φ2 is the identity map, and (φ2 ◦ φ−1
2 )∗ = (φ−1

2 )∗φ∗2, then
it follows that φ−1

2 )∗ = (φ∗2)
−1. Assume that (U1, φ1) and (U2, φ2) are two

local charts of a IRA-manifold S, with W = U1 ∩ U2 6= ∅. Let ω be a p-
form on W such that ω = φ∗1ω̃1 and ω = φ∗2ω̃2, where ω1 and ω2 are p-forms
defined respectively on the open subsets respectively, φ1(U1) and φ2(U2). It
will be shown that φ∗1dω1 = φ∗2dω2 on W . In fact, note that (φ−1

2 )∗φ∗1ω1 =
ω2. Then, (phi1 ◦ φ−1

2 )∗ω1 = ω2. By proposition part 3 of 16, it follows that
d(phi1 ◦ φ−1

2 )∗ω1 = (phi1 ◦ φ−1
2 )∗dω1 = dω2. Then, this implies that φ∗2(phi1 ◦

φ−1
2 )∗dω1 = φ∗2φ

−1
2 )∗φ∗1dω1 = (φ1) ∗ dω1 = (φ2)∗dω2.

2. It follows easily from the third item of Def. 31 (see the proof of Prop. 13).
3. Let (U, φ) be a local coordinate system. As in Prop. 23, one lets πφk stands
for πk ◦ φ. By Def. 31, ω is locally given by φ∗ω̂, ω̃ is a p-form on some the
open set φ(U) ⊂ IRA. By Def. 17, ω̂ = (πk)∗ω̃, where ω̃ =

∑k
i=1 α̃idx̃i is a form

on an open set of IRk. Then ω = (πφk )∗
∑k
i=1 α̃idx̃i. The rest of the proof is

similar to the Proof of Prop. 16 with πk (or πl) replaced by πφk (or respectively,
replaced by φφl ). The details are left to the reader.

�

It is clear now that one may compute exterior derivatives and wedge prod-
ucts of p-forms on IRA manifolds in the same way that one computes exterior
derivatives of forms on IRA. Given a local chart (U, φ), all the properties of
finite dimensional geometry may be obtained via the pull-back φ∗ in the ex-
pected way. Now let I = (i1, . . . , ip) ∈ Hp(k) be a multiindex. Given a local
chart (U, φ) with coordinate functions {xi, i ∈ IN∗}, one may locally define on
U the p-forms φ∗(dxi1 ∧dxi2 ∧ . . .∧dxip) = (πφk )∗(dx̃i1 ∧dx̃i2 ∧ . . .∧dx̃ip), where
x̃i ◦ φ = xi. Abusing notation, one lets dxI = dxi1 ∧ dxi2 ∧ . . .∧ dxip stands for
φ∗(dxi1 ∧ dxi2 ∧ . . . ∧ dxip). Now, if ω is locally written by

∑
I∈Hp(k) αI(x)dxI

then dω is locally written by

dω =
∑

I∈Hp(k)

dαI ∧ dxI .

If one locally has ω1 =
∑l1
I∈Hk

p
αIdxI and ω2 =

∑
J∈Iq(l) βJdxJ , then

ω1 ∧ ω2 =
∑

I∈Hp(k)

∑
J∈Iq(l)

αIβJdxI ∧ dxJ . (27) {eWedgeI}

Other properties may be easily obtained from the properties of p-forms on
IRA. For instance, all the definitions and properties of Section 3 may be easily
generalized for IRA-manifolds.
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4.9 The Frobenius theorem on IRA-manifolds
{sFrob}

As stated above, the Frobenius theorem for fields is a delicate matter in our
infinite dimensional setting. However, since 1-forms are pull-backs of one-forms
that are defined on finite dimensional linear spaces, the Cartan’s version of
Frobenius theorem is easy to obtain from the same theorem for finite dimensional
manifolds.

Definition 32 Let Γ = span {ω1, . . . , ωk} be a codistribution on a IRA manifold
S.

• One says that Γ is (locally) integrable around ξ ∈ S if there exists a local
coordinate system (U, φ) around ξ with local coordinate functions {xi, i ∈
IN∗} such that Γ|U = span {dx1, . . . , dxr} |U .

• Let Γ̃ ⊂ Λ2(S) = {ω ∈ Λ2(S) | ω =
∑s
i=1 θi ∧ ηi, θi ∈ Λ1(S), ηi ∈ Γ}. One

says that Γ is involutive if d(Γ) ⊂ Γ̃), or equivalently, d(ωi) =
∑k
j=1 θ

i
j∧ωj,

θij ∈ Λ1(S), i, j ∈ bke.

The next theorem states the Cartan local integrability criterium for IRA

manifolds.
{t3}

Theorem 3 A codistribution Γ = span {ω1, . . . , ωk} on S is locally integrable
around ξ if and only if ξ is a regular point of Γ and Γ is locally involutive around
ξ.

Proof. See Appendix J. �

5 Cartan fields and Diffieties

An ordinary diffiety is an IRA-manifold for which there exists a field d
dt , called

Cartan field.

5.1 Lie Bäcklund maps between diffieties

Let S1 and S2 be two diffieties with Cartan fields respectively given by ∂1 and
∂2. A smooth map φ : S1 → S2 is Lie-Bäcklund if φ∗∂1 = ∂2 ◦ φ.

Let φ be a Lie-Bäcklund immersion. In adequate local coordinates z1 for S1

and (z̃1, z̃2) for S2, one has z1 7→ (z1, 0), that is, z̃1 ◦ φ = z1 and z̃2 ◦ φ = 0.
Then φ∗∂1(z̃1) = ∂1(z̃1 ◦ φ) = ∂1(z1) = ∂2(z̃2) ◦ φ. Furthermore,

0 = ∂1(z̃2 ◦ φ)
= φ∗∂1(z̃2)
= ∂2(z̃2) ◦ φ.

This means that, one has ∂2(z̃2)|imφ = 0. The following result may be easily
proved from the remarks above.
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{p19}
Proposition 30 Let φ : S1 → S2 be an immersion between two diffieties S1

and S2. Let z1 and (z̃1, z̃2) be suitable local coordinats respectively of S1 and
S2 such that the local expression of φ reads z1 7→ (z1, 0). Then φ is a Lie-
Backlund immersion if and only if ∂2(z̃2) = 0 and ∂2(z̃1) ◦ φ = ∂1(z1). Let
∂1 =

∑∞
i=1 αi(z1)

∂
∂z1i

. Then,

∂2|(z1,z2) =
∞∑
i=1

βi(z1, z2)
∂

∂z̃1i

+
∞∑
j=1

γi(z1, z2)
∂

∂z̃2i

,

where βi(z1, 0) = αi(z1) and γj(z1, 0) = 0. In particular,

∂2|(z1,0) =
∞∑
i=1

αi(z1)
∂

∂z̃1i

.

Roughly speaking, the proposition above says that the Cartan field ∂2 of
S2, when restricted to the immersed manifold ∆ = imφ, may be identified with
∂1. This may be understood in a more intrinsic way, by noting that φ∗ is an
injective linear map at every point ξ of S1. Hence φ∗(ξ) is an isomorphism onto
its image. So, as φ∗∂1 = ∂2 ◦ φ, one may identify ∂1 at ξ ∈ S1 with ∂2 at φ(ξ)
via this isomorphism.

In a similar way one may prove that.
{p20}

Proposition 31 Let φ : S1 → S2 be an submersion between two diffieties S1

and S2. Let (z1, z2) and z̃2 be suitable local coordinates, respectively of S1 and
S2 such that the local expression of φ reads (z1, z2) 7→ z2. Then φ is a Lie-
Backlund submersion if and only if ∂2(z̃2) ◦ φ = ∂1(z2). In particular, if ∂2 =∑∞
j=1 βj(z̃2)

∂
∂z̃2j

then ∂1 =
∑∞
i=1 αi(z1, z2)

∂
∂z1i

+
∑∞
j=1 βj(z2)

∂
∂z2j

, where the
smooth functions αi, i ∈ IN∗ are arbitrary.

5.2 Time notion and systems

A system is a diffiety S with Cartan field d
dt for which one can define a global

notion of time. In other words, for each point ξ of S, one may associate the
time τ(ξ), where τ : S → IR is a smooth function. For each t ∈ τ(S) the fiber
τ−1(t) corresponds to the set of all points that exists at time t. Furthermore,
the derivative of time is identically equal to one, that is d

dt (τ)|ξ = 1 for every
ξ ∈ S.

The next definition is an intrinsic definition of a system (see (Fliess, Lévine,
Martin & Rouchon 1997, Fliess, Lévine, Martin & Rouchon 1999)).

{d26a}
Definition 33 The field IR of real numbers can be regarded as an ordinary diffi-
ety with the Cartan field ∂

∂s defined by the standard operation of diferentiation
∂
∂s |t(φ) = ∂φ

∂s (t). A system S is a triple (S, τ, IR), where S is an ordinary diffiety
with Cartan field d

dt and τ : S → IR is a Lie-Bäcklund submersion. The function
τ is called time notion.
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Now, as τ : S → IR is a submersion, by Lemma 2, there exists local co-
ordinates functions of the form {t, z}, where t = τ and the function τ , when
written in these coordinates reads (t, z) 7→ t. Let d

dt = α0
∂
∂t +

∑∞
i=1 αi

∂
∂zi

. Let
R = τ(S). Note that τ is an open map, and so R is an open subset of IR.
As τ = t is Lie-Bäcklund, this means that for every function φ : R → IR one
has ∂

∂sφ(s) = τ∗( ddt )(φ) = d
dt (φ ◦ τ). Letting φ be the identity map on the last

equation, one obtains α0 = d
dt (τ) = 1. The remarks above can be stated as

an alternate definition of a system. It is easy to note that both definitions are
equivalent.

{d27}
Definition 34 A system S is an ordinary diffiety with Cartan field d

dt and a
function τ : S → IR called time notion, such that:

• Around each point ξ ∈ S, there exists local coordinates (t, z) such that
τ(t, z) = t.

• In these coordinates one may write d
dt = ∂

∂t +
∑∞
i=1 αi(t, z)

∂
∂zi

. In other
words d

dt (t) = 1.

Note that a system (S, τ, IR) is a fiber-bundle. Remember that S is a trivial
fiber bundle if S = IR × S1 and τ is the projection in the first factor. Assume
that S1 is a diffiety with Cartan field d

dt 1
. Let π2 : S → S1 be the projection on

the second factor. Assume that

d

dt 1
◦ π2 = (π2)∗

d

dt
(28) {eTimeInvariant}

Then the Cartan field is said to be time-invariant. In this case it is easy to
see that, for convenient coordinates z of S1 and (t, z) of S, one gets d

dt =
∂
∂t +

∑∞
i=1 αi(z)

∂
∂zi

.
Note that, in general, the fiber bundle S is not necessarily trivial. When S

is trivial, and (28) hold, then the system is called time-invariant. This means
that the notion of time is exogenous to the system, and furthermore the Cartan
field does not depend on time. For a time-invariant system every fiber τ−1(t)
does exist for every time t. Furthermore, the solution of the field ∂

∂t , that is,
the time-translation, has a canonical meaning.

5.3 Lie Bäcklund maps between systems, immersed sys-
tems and subsystems

Let (S1, τ1, IR) and (S2, τ2, IR) be two systems. A Lie-Bäcklund map φ : S1 → S2

is a Lie-Bäcklund map such that τ1 = τ2 ◦φ. In other words, the notions of time
of both systems is compatible with the map φ. One says that S1 is immersed
on S2 if φ is a Lie-Bäcklund immersion.

{p29}
Proposition 32 The map φ : S1 → S2 is a Lie-Bäcklund immersion between
systems S1 and S2 if and only if:
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• Around every point s1 ∈ S1, and around φ(s1) ∈ S2), there exists local
coordinates (t, z1), respectively of S1 and (t, z1, z2) of29 S2, such that the
map φ reads (t, z1) 7→ (t, z1, 0).

• If τ1 and τ2 are the time notions respectively of S1 and S2, then in these
coordinates one may write t = τ1(t, z1) and t = τ2(t, z1, z2).

• In these coordinates, the Cartan field ∂1 of S1 is given by d
dt = ∂

∂t +∑∞
i=1 αi(t, z1)

∂
∂z1i

, whereas the Cartan field ∂2 of S2 reads

∂2|(z1,z2) =
∞∑
i=1

βi(t, z1, z2)
∂

∂z̃1i

+
∞∑
j=1

γi(t, z1, z2)
∂

∂z̃2i

,

where βi(t, z1, 0) = αi(t, z1) and γj(t, z1, 0) = 0. In particular,

∂2|(t,z1,0) =
∞∑
i=1

αi(t, z1)
∂

∂z̃1i

Proof. See Appendix K. �

The following definition is very important in the study of implicit systems.

Definition 35 (Subsystem) A system S2 is said to be a subsystem S1 if and
only if there exists a Lie-Bäcklund submersion φ : S1 → S2 between S1 and S2.
If there exists a Lie-Bäcklund submmersion φ : U ⊂ S1 → S2, where U is an
open subset, then S2 is said to be a local subsystem of S1.

A similar result may be stated for subsystems. The proof of this result is
similar to the last one, and is left to the reader.

Proposition 33 The map φ : S1 → S2 is an Lie-Bäcklund submersion between
systems S1 and S2 if and only if:

• Around every point s1 ∈ S1 and φ(s1) ∈ S2), there exists local coordinates
(t, z1, z2) of S1 and (t, z1) of30 S2 such that the map φ reads (t, z1, z2) 7→
(t, z1).

• In these coordinates, one may write t = τ1(t, z1, z2) and t = τ2(t, z1).

• In these coordinates, the Cartan field ∂1 of S1 is given by d
dt = ∂

∂t +∑∞
j=1 βj(t, z1, z2)

∂
∂z2j

+
∑∞
i=1 αi(t, z1)

∂
∂z1i

, whereas the Cartan field ∂2 of

S2 reads d
dt = ∂

∂t +
∑∞
i=1 αi(t, z1)

∂
∂z1i

.

29For convenience, we abuse notation letting (t, z1) stands for a set of coordinate functions
of both S1 and S2.

30For convenience, we abuse notation letting z1 stands for a set of coordinate functions of
both S1 and S2.
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A Uniqueness of the differential in IRA

{aA}
It will be shown that the definition of differential stated in definition 5 is inde-
pendent on the chosen local finite representation of the function. Before showing
this fact, consider the following lemma of finite dimensional calculus.

Lemma 4 Let k ≥ p and let πpk : IRk → IRp be defined by πpk(x1, . . . , xk) =
(x1, . . . xp). Let U ⊂ IRk and V ⊂ IRp be two open sets such that πpk(U) = V .
Let f̃1 : U ⊂ IRk → IRs and f̃2 : V ⊂ IRp → IRs be two smooth functions
such that f̃1 = f̃2 ◦ πpk. Then, for all y ∈ U and z ∈ IRk, one may write31

df̃1(y)(z) = df̃2|πp
k(y) ◦ π

p
k(z).

The proof of the last lemma is straightforward and is left to the reader. One
may denote the statement of the Lemma using the following notation, which
means an equality of linear transformations for every fixed y:

df̃1(y) = df̃2(π
p
k(y)) ◦ π

p
k

Now, assume that a function admits two different local representations f =
f̃1 ◦ π1 = f̃2 ◦ π2, where π1(x1, x2, . . .) = (x1, x2, . . . , xk) and π1(x1, x2, . . .) =
(x1, x2, . . . , xp). Without loss of generality, assume that this local representa-
tions are defined on the same open set W and k ≥ p. Then, π2 = πpk ◦π1, where
πpk(x1, . . . , xk) = (x1, . . . xp). Note that f = f̃1◦π1 = f̃2◦π2 = f̃2◦πpk ◦π1. As π1

is surjective, then f̃1 = f̃2 ◦πpk. Let y = π1(x). Note now that df̃2(π2(x)) ◦π2 =
df̃2(π

p
k ◦π1(x))◦(πpk ◦π1) = [(df̃2(π

p
k(y))◦π

p
k]◦π1 = df̃1(y)◦π1 = df̃1(π1(x))◦π1.

This shows the claimed uniqueness.

B Proof of proposition 10
{sFunctional}

Choose an arbitrary k ∈ IN∗. One may write IRA ∼= IRk × IRB , where B =
{j ∈ IN∗|j > k}. Hence, a point of IRA will be denoted by (x, z), where

31Here df1(y)(z) means the linear mapping z 7→ [limt→0
f1(y+tz)−f1(y)

t
]
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x = (x1, . . . , xk) ∈ IRk and z ∈ IRB . Let X ⊂ IRA be the k-dimensional
subspace X = {(x, z) ∈ IRA | z = 0}. It is clear that X ∼= IRk. Hence, as
γ : IRA → IR is IR-linear, it follows that γ|X(x, 0) =

∑k
i=0 αixi, where αi ∈ IR.

Now fix ε ∈ IR, with ε > 0. As γ is continuous, then A = γ−1 ((−ε, ε)) is an
open subset of IRA. Note that A contains a basic open set containing the origin
(0, 0). From the definition of the basis of the Fréchet topology (see section 2.1),
choosing k big enough, this basic open set must contain every point ξ ∈ IRA of
the form ξ = (0, z), where z ∈ IRB is arbitrary. Let Z ⊂ IRA be the subspace
defined by Z = {ξ = (x, z) ∈ IRA|x = 0}. One will show now that γ(ξ) = 0
for every ξ ∈ Z. In fact, by linearity, one has γ ((0, tz)) = tγ ((0, z)) for every
t ∈ IR. Hence, if γ ((0, z)) = a 6= 0, then one may choose t = 2ε/|a|, obtaining
γ((0, tz)) = 2ε 6∈ (−ε, ε). This is a contradiction, and shows that γ(ξ) = 0.
Hence

γ ((x, z)) = γ ((x, 0)) + γ ((0, z)) = γ ((x, 0)) =
k∑
i=1

αixi

In particular, γ =
∑k
i= αidxi.

C Proof of Theorem 2
{aFormsAreFinite}

Proof. Remember that a section ω of T ∗U must be of the form

ω(x) =
∞∑
i=0

αi(x)dxi|x.

Now take τ = ∂
∂xi

. Then 〈ω, τ〉 = αi(x). In particular, if ω is a one-form, then
αi(x) must be a smooth function, showing 1.

Now if ω(x) =
∑k
i=1 αi(x)dxi|x, with αi being smooth, it is clear that ω is

a smooth section, showing the sufficiency of 2.
To show the necessity of 2, assume, as an absurd, that ω : U → T ∗U is a

one-form and, for every l ∈ IN∗ and for every open neighborhood Vξ ⊂ U of ξ,
there exists x̄ ∈ Vξ and k ≥ l such that

ω(x) =
∞∑
k=1

ωi(x)dxi|x,where ωk(x̄) 6= 0. (29) {eAbsurd}

Let li and U iξ be respectively the minimal index at ξ, and a minimal neigh-
borhood at ξ of ωi : U → IR, i ∈ IN∗. Given k ∈ IN∗, letW k

ξ = U1
ξ

⋂
U2
ξ . . .

⋂
Ukξ

and define l∗0 = 0 and l∗k = max{l1, l2, . . . , lk, l∗k−1 + 1, k}, for k = 1, 2, 3, . . .. By
construction l∗k > l∗k−1 and l∗k ≥ k. Let ξ = (ξ1, ξ2, ξ3, . . .). define the field τ on
U by

τ(x) =
∞∑
i=1

(xl∗i +1 − ξl∗i +1)
∂

∂xi
|x
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By construction, τi(x) = (xl∗i +1 − ξl∗i +1), i ∈ IN∗. In particular, τi(ξ) = 0, i ∈
IN∗.

Now assume that Vξ ⊂ U is a minimal neighborhood of the smooth function
〈ω, τ〉 : U → IR. Suppose also that l is the minimal index the function 〈ω, τ〉 at
ξ. Let Z be a basic open set such that Z ⊂ Vξ

⋂
W k
ξ . By absurd, there exists

x̄ ∈ Z and k ≥ l such that (29) holds.
Now note that, inside Z, ωi, i = 1, . . . , k does not depend on xj for j > l∗k.

Let x̄ = (x̄1, x̄2, x̄3, . . .) and let ξ = (ξ1, ξ2, ξ3, . . .). Define the map Ψ : IR→ IRA

by
Ψ(t) = (x̄1, x̄2, . . . , x̄l∗k , ξl∗k+1 + t, ξl∗k+2, ξl∗k+3, . . .)

As Z is a basic open set, it is easy to show that Ψ(0) ∈ Z. As Ψ is continuous,
then Ψ(t) ∈ Z for |t| < ε, for ε small enough. By construction it is easy to see
that

τ(Ψ(t)) =
k−1∑
i=1

(x̄l∗i +1 − ξl∗i +1)
∂

∂xi
+ t

∂

∂xk

Hence

〈ω, τ〉(Ψ(t)) =
k−1∑
i=1

(x̄l∗i +1 − ξl∗i +1)ωi(Ψ(t)) + tωk(ψ(t))

By construction, ωi depend only on the first li coordinates and l∗k ≥ li, i =
1, . . . k on Z. It follows that ωi(Ψ(t)) = ωi(x̄), i = 1, . . . k. In particular, h =
ωk(Ψ(t)) 6= 0. One concludes that

〈ω, τ〉(Ψ(t))− 〈ω, τ〉(Ψ(0)) = th

By Proposition 6, it follows that the minimal index of 〈ω, τ〉 is greater than
l∗k + 1 > k ≥ l. This is an absurd.

One has already shown that, for every ξ ∈ U there exists k ∈ IN∗ and an
open neighborhood Vξ of ξ such that ω(x) =

∑k
i=1 ωi(x)dxi for x ∈ Vξ. Without

loss of generality, assume that Vξ is a minimal neighborhood of ωi at ξ, and the
minimal index of ωi is l∗i , i = 1, . . . k. Let k∗ = max{k, l∗1, l∗2, . . . , l∗k}. It is clear
that ωi|Vξ

= ω̃i ◦ πk∗ |Vξ
for convenient smooth functions ω̃i. In particular, on

Vx one may write ω(x) =
∑k
i=1(ω̃i ◦ πk∗)dxi. Hence ω|Vξ

= (πk∗)∗ω̃, for a
convenient ω̃.

�

D Proof of Proposition 9
{aLieWell}

It is easy to see from (7a) that [τ, θ](f1 + f2) = [τ, θ](f1) + [τ, θ](f2). Now,

[τ, θ](f1f2) = Lτ (Lθ(f1f2))− Lθ(Lτ (f1f2))
= Lτ [f2Lθ(f1) + f1Lθ(f2)]− Lθ[f2Lτ (f1) + f1Lτ (f2)]
= {f1Lτ (Lθ(f2)) + (Lθf2)(Lτf1)+
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f2Lτ (Lθ(f1)) + (Lθf1)(Lτf2)} −
{f1Lθ(Lτ (f2)) + (Lτf2)(Lθf1)+
f2Lθ(Lτ (f1)) + (Lτf1)(Lθf2)}

= f1[τ, θ](f2) + f2[τ, θ](f1).

In particular, [τ, θ](x) is a tangent vector for all x ∈ IRA. To show that [τ, θ] is a
field (that is, a smooth section of TIRA), one may compute the expression [τ, θ]
in coordinates by taking f = xi, obtaining [τ, θ]i = αi = τ(η(xi))− η(τ(xi)). In
particular, [τ, θ](x) =

∑∞
i=1 αi(x)

∂
∂xi

|x, where αi is a smooth function.

E Proof of Proposition 17
{aChainRule}

Let vx ∈ TxX. Let y = g(x) and z = h(y). Let λ : Vz → IR be a smooth
function, where Vz is an open neighborhood of z. By definition (h◦g)∗(vx)(λ) =
vx(λ ◦ h ◦ g) = (g∗(x)vx) (λ ◦ h). Since τy = g∗(x)(vx) ∈ TyY , then τy(λ ◦ h) =
h∗(y)(τy)(λ) = (h∗(g(x)) ◦ g∗(x)(vx)) (λ). This shows the chain rule. Now, let
X be a IRA-manifold and let Ψ : X → X be the identity map. Then, by
definition, it is clear that Ψ∗(x) is the identity map on the linear space TxX.
If g = h−1, then Ψ = h ◦ g is the identity map on X, and so h∗(g(x)) is the
left-inverse of g∗(x). As Φ = g ◦h is the identity map on Y , one concludes easily
that h∗(g(x)) is also the right-inverse of g∗(x). This shows 2.

The proof of 3 is identical to the proof of 2. By section 2.3, one may induce
a topology on TxX. It is easy to show that the topology induced on TxX does
not depend on the chosen local chart φ. In fact, if ψ is another chart defined
around x, one may write φ∗(x) = (φ ◦ ψ−1)∗|ψ(x)ψ∗(x). Now, from 2, it follows
that (φ ◦ ψ−1)∗|ψ(x) is an isomorphism, and so the uniqueness of the induced
topology follows.

F Smoothness of vector fields trasformed by dif-
feomorphisms

{aTransfer}
The following results are instrumental for the definition of fields on IRA-manifolds.
They are useful in order to show that the notion of smoothness that is introduced
in the Def. 24 does not depend on the chosen local chart.

{pTransfer}
Proposition 34 (Diffeomorphisms induce a transformation of fields) If φ : U ⊂
IRA → V ⊂ IRB is a diffeomorphism of open sets, then given a field τ : U → TU ,
the map τ̃ : V → TV is a field, where τ̃(y) = φ∗(x)τ(x), with x = φ−1(y)).

Proof. Note that τ̃ is well defined as a section from V to TV . Let {yj , j ∈ IN∗}
be canonical coordinates of V ⊂ IRA. To show that τ̃ is a field, it suffices
to show that τ̃(y) =

∑∞
j=1 τj(y)

∂
∂yj

, where τj : V → IR is a smooth func-
tion. Denote the functions yj ◦ φ by φj . Now remember that, τj = τ̃(yj) =
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φ∗(x)τ(x)(yj)|x=φ−1(y) = τ(x)(yj ◦ φ)|x=φ−1(y) = τ(x)(φj)|x=φ−1(y) = τ(φj) ◦
φ−1(y). As φ and τ are smooth, τ(φ) : U → IR is smooth, and so is τ(φj) ◦φ−1.
�

{p10}

Proposition 35 Let (U, φ1) and (U, φ2) be local charts of the IRA-manifold S.
Let τ : S → TS be a section of TS. Take some x ∈ U and let yi = φi(x) and
Vi = φi(U) ⊂ IRA, i = 1, 2.

1. The map τ̃i : Vi → TVi defined by τ̃i(yi) = (φi)∗(x)τ(x), where x =
φ−1(yi) is a section of TVi for i = 1, 2.

2. The section τ̃1 is smooth (that is, τ̃1 is a field) if and only if τ̃2 is smooth.

Proof. The fact that τ̃i is a section of TVi is a consequence of the fact that
(φi)∗ maps a a tangent vector of TxS onto a tangent vector of Tφ(x)V . To
show 2, note that τ̃2(y2) = (φ2)∗(x)τ(x) = (φ2 ◦ φ−1

1 ◦ φ1)∗(x)τ(x) = (φ2 ◦
φ−1

1 )∗(y1)(φ1)∗(x)τ(x) = (φ2 ◦ φ−1
1 )∗(y1)τ̃1(y1), with y1 = φ1 ◦ φ−1

2 (y2). By
Prop. 34, as φ1 ◦ φ−1

2 : U2 → U1 is a local diffeomorphism, then if τ1 is smooth,
it follows that τ2 is also smooth. By similar arguments, if τ2 is smooth, then τ1
is smooth. �

G Proof of Proposition 22
{a13}

Let τx be a tangent vector in TxX, and let θx̃ ∈ T ∗x̃ Ũ . Remember that φ∗(x)(θx̃)(τx) =
θx̃ (φ∗(x)τx). As φ∗ is an isomorphism, it is clear that φ∗(x)(θx̃)(τx) = 0 for
all τx ∈ TxX if and only if θx̃ = 0. Hence kerφ∗(x) = {0}. Now, given a con-
tinuous linear function h : TxX → IR, as φ∗(x) is continuous with continuous
inverse, then h̃ = h ◦ (φ∗)−1 ∈ Tx̃Ũ , and φ∗(x)h̃ = h. This shows 1. Now,
to show 2, remember that a smooth vector field on U is of the form τ(x) =
φ−1
∗ (φ(x))(τ̃(φ(x)), where τ̃ : Ũ → T Ũ is a field. Now let θ = φ∗θ̃ be a one-form

on U . Then 〈θ(x), τ〉(x) = 〈θ(x), τ(x)〉 = 〈φ∗(x)θ̃(φ(x)), φ−1
∗ (φ(x))(τ̃(φ(x))〉 =

〈θ̃(x), φ∗(x)φ−1
∗ (φ(x))(τ̃)◦φ〉 = 〈θ̃(φ(x)), τ̃(φ(x))〉 = 〈θ̃, τ̃〉◦φ(x). In particular,

this function is smooth if and only if the function 〈θ̃, τ̃〉 is smooth on φ(U).
Hence, by Def. 14, θ̃ must be a one form on φ(U). Now given a one-form ω
on Z and a field τ on X, then 〈(f ◦ g)∗ω, τ〉 = 〈ω, (f ◦ g)∗τ〉 = 〈ω, f∗(g∗τ)〉 =
〈f∗ω, g∗τ〉 = 〈g∗f∗ω, τ〉. To show (4), note first that g∗ω is a section of TX∗.
Hence, it suffices to show that 〈g∗ω, τ〉 is smooth for every field τ : Y → TY . For
this, let (V,Ψ) be a local chart around y = g(x). From Part 3 of Proposition 18,
one locally has τ = Ψ−1

∗ (x̃)τ̃(x̃), where x̃ = ψ(x) and τ̃(x̃) =
∑∞
j=1 τ̃j(x̃)

∂
∂x̃j

|x̃.
From Part 1 of Prop. 17 and Prop. 20, one may write

φ∗(g(x))g∗(x)τ(x) = φ∗g∗ψ
−1
∗ (x̃)τ̃(x̃)

= (φ ◦ g ◦ ψ−1)∗τ̃(x)

=
∞∑
i=1

k∗g̃i∑
j=1

τ̃j(x̃)
∂g̃i
∂x̃j

|x̃
∂

∂ỹi
|y.
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Now let ω̃(ỹ) =
∑k
i=1 αi(ỹ)dỹi be such that ω = φ∗ω̃. Then

〈g∗ω, τ〉 = 〈ω, g∗τ〉
= 〈φ∗ω̃, g∗τ〉
= 〈ω̃, φ∗g∗ψ−1

∗ τ̃〉

=
k∑
i=1

k∗g̃i∑
j=1

αi(ỹ)τ̃j(x̃)
∂g̃i
∂x̃j

|x̃

where ỹ = Ψ ◦ g ◦ φ−1(x̃). From the smoothness of the last equation, the result
follows directly by the third part 3 of Def. 25.

H Proof of Proposition 25
{aComputational}

By definition 26, 〈dxi|x, ∂
∂xj

|x〉 = ∂
∂xj

|x(xj). By Prop. 18, it follows that

〈dxi|x, ∂
∂xj

|x〉 = δij . Now, as xi = yi ◦ φ and xi = zi ◦ πφk , then 2 and 3
follows from Proposition 24. Now, by proposition 23, on Vξ one may write
ω = (πφk )∗ω̃, where ω̃ is a one-form on V , where V ⊂ IRk is the open subset of
IRk given by πφk (Vξ). Since ω̃(z) =

∑k
i=1 ω̃i(z)dzi|z, then by 3 and Prop. 24,

one has ω(x) =
∑k
i=1 ωi(x)dxi|x, where ωi = ω̃i ◦πφk . By 1, it follows easily that

ωi = 〈ω, ∂
∂xi

|x. Since (φ−1 ◦ φ)∗ is the identity map, note from part 3 of Prop.
22, that

(φ−1)∗ = (φ∗)−1. (30) {ePhiEst}

Note that (φ−1)∗ω =
∑k
i=1 ωi ◦ φ−1(φ−1)∗ωdxi|x. By 2, and (30), one may

write(φ−1)∗dxi|x = (φ−1)∗φ∗dyi|y = dyi|y. So (φ−1)∗ω =
∑k
i=1 αi(y)dyi|y.

Hence ω(x) = φ∗
∑k
i=1 αi(y)dyi|y. This shows 4. Note that 〈df(x), ∂

∂xi
|x〉 =

∂
∂xi

|x(f) = (φ−1)∗(φ(x)) ∂
∂xi

|φ(x)(f) = ∂
∂yi

|φ(x)(f ◦ φ−1) = ∂f̃
∂yi

|φ(x).

I Proof of Lemma 1
{aLemma2}

Let (φ,W ) be a coordinate system around ξ, where φ = {xi : i ∈ A}. Without
loss of generality, one may assume that W = V , otherwise we may restrict V
to V ∩W . Let Ṽ be the open set Ṽ = φ(V ) ⊂ IRA. Up to a restriction to
the open set Ṽ , one may write θ̃i = θi ◦ φ−1 = θ̃i(x1, . . . , xni), i = 1, . . . , k,
where ni is the maximal index of θi at ξ. Let n = max{n1, . . . , nk} and denote
x = (x1, . . . , xn) and x̂ = (xn+1, xn+2, xn+3, . . .). Consider the projection π :
Ṽ → V1 ⊂ IRn defined by π(x, x̂) = x. The set θ̃ = {θ̃1, . . . , θ̃k} may be regarded
as a set of functions defined on V1 ⊂ IRn. Note that the independence of dθ
on V implies the independence of dθ̃ on V1. So, a convenient application of
the (finite dimensional) inverse function theorem, shows that one may choose a
set of coordinates x̃ = {xi1 , . . . , xin−k

} and an open neighborhood U1 ⊂ V1 ⊂
IRn of π ◦ φ(ξ), such that the map H : U1 → U2 ⊂ IRn defined by H(x) =
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(θ̃(x), x̃) is a difeomorphism. Let Ũ = π−1(U1). Then the map F : Ũ 7→ Ũ1

defined by F (x, x̂) = (H(x), x̂) is a difeomorphism with inverse F−1(θ̃, x̃, x̂) =
(H−1(θ̃, x̃), x̂). Let U = φ−1(Ũ). Then, (ψ,U) is a coordinate system of S
around ξ, where ψ = {θ, x̃, x̂}, with ψ = F ◦ φ. Let Ũ1 = ψ(U), and define the
open surjective map π1 : Ũ1 → V̂ ⊂ IRk by π1(θ, x̃, x̂) = θ. Let ũ = u ◦ψ−1. As
du ∈ span {dθ}, then ũ(θ, x̃, x̂) = µ(θ). Hence, one may regard µ as a function
defined in V̂ such that µ ◦ π1 = ũ. Hence, µ ◦ π1 ◦ ψ = u. One may take
δ = π1 ◦ ψ, and δ and µ, constructed in this way, have the desired properties.
This shows 1 and 2.

To show 3, let φ = (θ, w). By part 2, one may construct δ : Vξ → V̂ and
µ : V̂ → W such that η is locally given by µ(θ). By dimensional arguments,
the set {dη} is pointwise independent. By parts 1 and 2, one may construct a
local coordinate system φ1 = (η, z), and maps δ1 : V 1

ξ → V̂1 and µ1 : V̂1 → W1

such that θ is locally given by µ1(η). Without loss of generality, the two local
coordinate systems φ and φ1 are defined on the same open neighborhood of Vξ
of ξ. In particular the map µ is the inverse of µ1, and so µ is a local diffeomor-
phism. So the map h such that (θ, w) 7→ (µ(θ), w) is a local diffeomorphism. In
particular, the map h ◦ φ = (η, w) is a local cooordinate system.

J Proof of Theorem 3
{aT3}

The following result is useful for the Proof of Theorem 3.
{lObs}

Lemma 5 Assume that g : X → Y is a smooth map between IRA-manifolds
such that g(x) is surjective, and g∗(x) is a surjective linear map for every x ∈ X.
Let ω1 and ω2 be two k-forms on Y . If g∗ω1 = g∗ω2, then ω1 = ω2.

Proof. As y = g(x) ∈ Y is arbitrary, it suffices to note that, given any
one θi ∈ TyY , can choose τi ∈ TxX in a way that θi = g∗(x)τi. Hence,
ω1(g∗τ1, . . . , g∗τk) = ω2(g∗τ1, . . . , g∗τk) implies that ω1(θ1, . . . , θk) = ω2(θ1, . . . , θk),
with θ1, . . . , θk arbitrary vectors in TyY , with y arbitrary. �

Proof. (Of theorem 3.) If Γ is integrable around ξ, our definition implies that
ξ is a regular point of Γ. If Γ is integrable, then Γ|U = span {dx1, . . . , dxr} |U .
In particular, as d(dxi) = 0, then d(Γ|U ) ⊂ Γ̃. This shows that the statement of
the theorem is a necessary condition of integrability. To show that the statement
of the theorem gives sufficient conditions, note that, by part 4 of Proposition 25,
one may construct a local chart (U, φ), with coordinate functions (xi : i ∈ IN∗),
such that, around any ξ ∈ S, for k big enough, ωi = (πφk )∗ω̃i, where ω̃i are
one-forms on the open set V = πφk (U) of IRk. Now, from the assumptions of
Theorem 3, one will show from the finite dimensional Frobenius theorem that
the codistribution Γ̃ = span {ω̃1, . . . , ω̃k} is locally integrable around x̃ ∈ V . In
fact, by Part 5 of Prop. 29, it follows that

dωi = (πφk )∗dω̃i
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and dω =
∑pi

j=1 θj ∧ ωj . From Part 2 of Prop. 29, one has

(πφk )∗dω̃i =
pi∑
j=1

(πφk )∗
{
θ̃ij ∧ ω̃j

}
,

As πφk is surjective and (πφk )∗ is pointwise surjective, by Lemma 5, the assump-
tions of the finite dimensional Frobenius theorem holds. In particular, there
exists a local diffeomorphism θ given by (x̃1, . . . , x̃k) 7→ (z̃1, . . . , z̃k), defined
around x̃, such that Γ̃ = span {dz̃1, . . . , dz̃r}. Assume that the coordinate func-
tions of the local chart φ are given by (x, x̂), where x = (x1, . . . , xk), and
x̂ = (xk+1, xk+2, xk+3, . . .). Note that the map (x, x̂) 7→ (z, x̂) is a local diffeo-
morphism. In particular, ψ = (z, x̂) is a local chart of S around ξ. It is easy to
see that zi = z̃i ◦ πk ◦ψ = z̃i ◦ πψk , where z̃i is the i-th component of the map θ.

It follows that32 Γ = span
{

(πψk )∗dz1, . . . , (π
ψ
k )∗dzr

}
. Then

Γ = span
{

(πψk )∗dz̃1, . . . , (π
ψ
k )∗dz̃r

}
= span {(πk ◦ ψ)∗dz1, . . . , (πk ◦ ψ)∗dz̃r} .

By Proposition 24, one has

Γ = span {d(z̃1 ◦ πk ◦ ψ), . . . , d(z̃r ◦ πk ◦ ψ)} = span {dz1, . . . , dzk} ,

showing our claim. �

K Proof of Proposition 32
{a29}

(if). Assume that φ a Lie-Bäcklund immersion between two systems. Note that,
from Definition 34, there exists local coordinates (t, z1) of S1 and (t̃, y2) of S2

such that the map τ1 reads (t, z1) 7→ t and the map τ2 reads (t̃, y2) 7→ t̃. Writing
φ in these coordinates one gets (t, z1) → ((t̃, z1), y2(t, z1)). As τ1 = τ2 ◦ φ,
then t = t̃. So the map φ in these coordinates reads (t, z1) 7→ (t, y2(t, z1)). So
one may abuse notation, taking t̃ = t. Now, as φ is a immersion, there exists
local coordinates w1 of S1 and (w̃1, z2) of S2 such that φ reads w1 7→ (w1, 0).
Abusing notation, one may let w̃1 stand for w1. After a convenient restriction,
the coordinate change map (t, z1) 7→ w1(t, z1) is a local diffeomorphism. So the
map (t, z1, z2) 7→ (w1(t, z1), z2) is also a local diffeomorphism. In particular,
(t, z1, z2) are local coordinates for S2 with the claimed properties. From the
fact that φ is Lie-Bäcklund, the second statement follows from Definition 34
and Proposition 30.
(only if). Straightforward from the Definition 34 and from Proposition 30.

32Here one uses the fact that, for nonsingular codistributions, the pointwise definition of
codistributions coincides with the definition of a codistribution as a submodule, as shown in
Part 4 of Proposition 28.
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