Cap. 1 — Introdução

Este curso de controle de sistemas não lineares tem como objetivo o estudo das propriedades básicas dos sistemas não lineares e de algumas técnicas de controle não-linear. É importante ressaltar que os sistemas não lineares apresentam comportamento muito mais rico e complexo que os sistemas lineares. Listamos abaixo alguns pontos importantes:

- Um sistema linear tem as propriedades básicas de linearidade e superposição. Um sistema não linear não tem essa propriedade. Por exemplo, a soma dos efeitos de duas entradas não coincide com o efeito da soma destas entradas.
- Um ponto de equilíbrio localmente assintoticamente estável de um sistema linear é globalmente assintoticamente estável. Pontos de equilíbrio de sistemas não lineares podem ser localmente assintoticamente estáveis mas não serem globalmente assintoticamente estáveis.
- Sistemas lineares assintoticamente estáveis são necessariamente estáveis BIBO (ou entrada-saída). Em outras palavras, entradas limitadas provocam sempre saídas limitadas. Uma entrada ou distúrbio limitado pode até instabilizar um sistema não linear, mesmo que ele seja globalmente assintoticamente instável.
- O estado de um sistema não-linear nunca diverge em tempo finito, pois as soluções possuem crescimento (ou decrescimento) exponencial. O módulo ||x(t)|| do estado de um sistema não linear pode tender a infinito em tempo finito.
- Um sistema não linear pode não possuir a propriedade de unicidade de suas soluções. Em outras palavras, para uma condição inicial fixada, podem existir duas ou mais soluções da equação passando por esta condição inicial.
- O comportamento caótico que pode ocorrer em sistemas não lineares nunca ocorre em sistemas lineares.

1 Soluções de Sistemas Unidimensionais

Esta seção tem como objetivo apresentar o problema de Cauchy unidimensional (que nada mais é do que uma equação diferencial unidimensional) e sua solução analítica. Em geral as equações diferenciais n-dimensionais não possuem solução analítica, e somente conseguimos explicitar essas soluções em casos particulares.

Os exemplos apresentados mostram alguns pontos levantados na introdução:

- O fato da solução poder divergir em tempo finito;
- O fato de não haver unicidade de soluções para alguns sistemas;

- O fato de, para sistemas com entradas, não valer o princípio de linearidade e superposição.
- O fato de estabilidade assintótica não implicar em estabilidade BIBO.

Problema de Cauchy Unidimensional : Dado uma função $f : \mathbb{R} \to \mathbb{R}$, e uma condição inicial x_0 , em t_0 , queremos achar uma solução da equação diferencial:

$$\dot{x}(t) = f(x(t)) \tag{1a}$$

$$x_(t_0) = x_0 \tag{1b}$$

Lembre que uma solução de (1) definida em um intervalo $[t_1,t_2]$ com $t_0 \in [t_1,t_2]$ é uma função $\phi:[t_1,t_2] \to \mathbb{R}$ tal que $\dot{\phi}(t)=f(\phi(t))$ a ainda $\phi(t_0)=x_0$. Normalmente denotamos uma solução $\phi(t)$ por $x(t,;t_0,x_0)$, ou simplesmente x(t) quando o contexto permitir. Na maioria dos casos, pelo menos no estudo de sistemas de controle, temos $t_1=t_0$, isto é, estamos interessados no comportamento futuro das soluções, isto é, o seu valor para $t \geq t_0$.

Definição 1 Um ponto de equilíbrio \bar{x} de (1) é um valor real \bar{x} tal que $f(\bar{x})$ seja nulo.

Para soluções x(t) que não passem por pontos de equilíbrio¹, podemos desenvolver uma fórmula para encontrar soluções.

Método de Solução do Problema de Cauchy Unidimensional. : Suponha que buscamos uma solução x(t) que não passe em nenhum ponto de equilíbrio. Neste caso teríamos, após dividir (1) em ambos os lados por f(x(t)):

$$\frac{\dot{x}(t)}{f(x(t))} = 1$$

Integrando a última equação em ambos os lados no intervalo $[t_0, t]$ (isso é possível por exemplo se f é pelo menos contínua por partes) teremos:

$$\int_{t_0}^{t} \frac{\dot{x}(t)}{f(x(t))} dt = \int_{t_0}^{t} dt = t - t_0$$

Aplicando o teorema de mudança de variáveis na integral no lado esquerdo da última equação, vem (vide Teorema 10, p. 258 de [2])

$$\int_{x(t_0)}^{x(t)} \frac{1}{f(x)} dx = t - t_0.$$
 (2)

¹Veremos no futuro que, para sistemas onde vale a unicidade de soluções, se uma solução $\phi(t)$ passa em um ponto de equilíbrio \bar{x} então $\phi(t) = \bar{x}$ para todo t. Porém, para sistemas que não tem unicidade, podemos ter soluções que "escapam" de (ou que "chegam" em) pontos de equilíbrio.

A equação (2) permite obter analiticamente as soluções de (1), sempre que pudermos calcular a primitiva correspondente à integral do lado esquerdo de (2).

Exemplo 1 Considere o sistema

$$\dot{x}(t) = x^2(t) \tag{3}$$

$$x_l(t_0) = x_0 (4)$$

Mostraremos que as soluções divergem em tempo finito. De fato, de (2) teremos:

$$\int_{x(t_0)}^{x(t)} \frac{1}{x^2} \, dx = t - t_0$$

Como a primitiva de $1/x^2$ é -1/x teremos:

$$-1/x(t) + 1/x_0 = t - t_0$$

Logo $x(t) = 1/[t_0 + 1/x_0 - t]$. Note que o instante de tempo $a = t_0 + 1/x_0$ é um ponto de singularidade da solução. Em particular, **a solução tende para infinito em tempo finito** (vide figura 1).

Exemplo 2 Considere o sistema

$$\dot{x}(t) = u^2(t)x^2(t) \tag{5}$$

$$x_l t_0) = x_0 \tag{6}$$

onde u(t) é uma entrada constante e igual a c para todo $t \leq t_0$. Considere $t_0 = 0$ e $x_0 = 1$. Então aplicando-se a metodologia desenvolvida anteriormente, obtemos a seguinte expressão para solução:

$$x(t) = 1/(1 - tc^2)$$

- 1. Para condição inicial nula e entrada nula, notamos que $\dot{x}(t) \equiv 0$ implica em $x_1(t) = 0$ para todo t (no futuro mostraremos que esta solução é única).
- 2. Para entrada nula e condição inicial $x_0 = 1$ a solução obtida também é constante, e assim $x_2(t) = 1$ para todo t.
- 3. Para entrada u(t) = 1 e $x_0 = 1$ vemos que $x_3(t) = 1/(1-t)$ para $t \in [0,1)$ (a solução explode em tempo finito).
- 4. Para condição inicial nula e entrada constante u(t) = 1, vemos que uma solução possível é $x_4(t) = 0$ para todo t (no futuro mostraremos que esta é a única solução que existe neste caso).

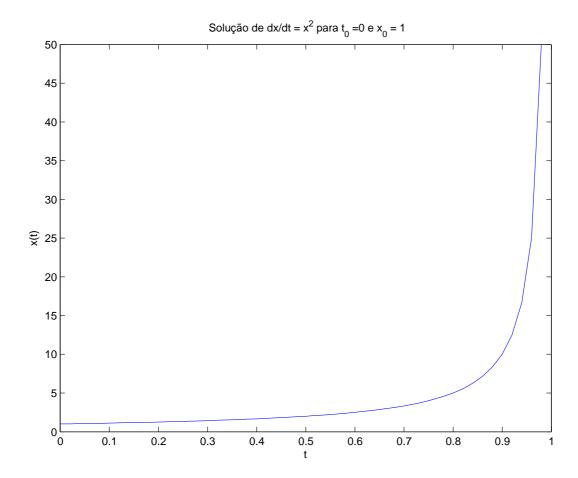


Figura 1: Solução da equação $\dot{x} = x^2$

Suponha, por absurdo que o princípio de linearidade e superposição vale para este sistema. Se isto fosse verdade teríamos para uma condição inicial $x_0 = \alpha$ e uma entrada $u = \beta$ uma relação da forma

$$x(t) = \phi_{x_0 = \alpha} + \psi_{u = \beta}$$

onde $\phi_{x_0=\alpha}$ denota a solução com entrada nula e condição inicial $x=\alpha$ e $\psi_{u=\beta}$ denota a solução com condição inicial nula e entrada $u=\beta$. Mostremos que esta relação não se cumpre para este sistema. De fato note que

- 1. $x_1 = \phi_{x_0=0} + \psi_{u=0}$;
- 2. $x_2 = \phi_{x_0=1} + \psi_{u=0}$;
- 3. $x_3 = \phi_{x_0=1} + \psi_{u=1}$;
- 4. $x_4 = \phi_{x_0=0} + \psi_{u=1}$.

Portanto

- (a) Temos $x_2 x_1 = \phi_{x_0=1} \phi_{x_0=0}$ e $x_3 x_4 = \phi_{x_0=1} \phi_{x_0=0}$. Mas da figura 2 vemos que $x_2 x_1 \neq x_3 x_4$!
- (b) Temos $x_3 x_2 = \psi_{u=1} \psi_{u=0}$ e $x_4 x_1 = \psi_{u=1} \psi_{u=0}$. Mas da figura 2 vemos que $x_3 x_2 \neq x_4 x_1!$

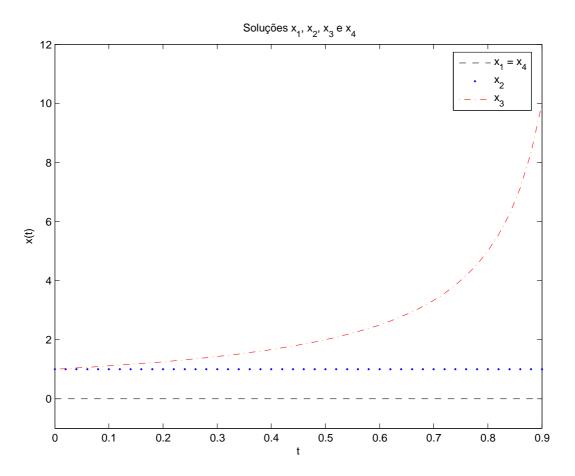


Figura 2: Soluções da equação $\dot{x} = x^2 u^2$

2 Sistemas bidimensionais

Consideramos agora sistemas bidimensionais

$$\dot{x}_1(t) = f_1(x_1(t), x_2(t))
\dot{x}_2(t) = f_2(x_1(t), x_2(t))
x(t_0) = (x_1^0, x_2^0) \in \mathbb{R}^2$$
(7)

Note que a aplicação $f: \mathbb{R}^2 \to \mathbb{R}^2$ que associa (x_1, x_2) a $(f_1(x_1, x_2), f_2(x_1, x_2))$ é um campo de velocidades, isto é, a cada ponto do \mathbb{R}^2 associa o vetor velocidade da solução

que passa neste ponto. Isto é conseqüência da definição de solução. Lembre que uma solução de 7 definida em um intervalo $[t_1, t_2]$ com $t_0 \in [t_1, t_2]$ é uma aplicação $\phi : [t_1, t_2] \to \mathbb{R}^2$ tal que $\dot{\phi}(t) = f(\phi(t))$ a ainda $\phi(t_0) = x_0$. Normalmente denotamos uma solução $\phi(t)$ por $x(t, t_0, x_0)$, ou simplesmente x(t) quando o contexto permitir.

Sob certas condições podemos obter os gráficos das soluções x_2 em função de x_1 (abstraindo-se o tempo). Admitindo que a solução $x(t) = (x_1(t), x_2(t))$ que procuramos não anula $f_1(x_1(t), x_2(t))$ para nenhum instante t, se dividirmos dx_2/dt por dx_1/dt obtidos de (7), podemos escrever:

$$\frac{dx_2/dt}{dx_1/dt} = f_2(x_1, x_2)/f_1(x_1, x_2)$$

Dizermos que $dx_1(t)/dt$ não se anula em torno de um intervalo (a,b) contendo t_0 é o mesmo que dizer que $x_1(t)$ é crescente ou decrescente neste intervalo. Logo existe a função inversa² $\bar{t}(\bar{x}_1)$ definida localmente em torno de um intervalo (c,d) contendo $x_1(t_0)$, tal que $\bar{t}(x_1(t)) = t$. Mais ainda

$$\left. \frac{d\bar{t}}{dx_1} \right|_{x_1(t)} = \frac{1}{dx_1(t)/dt}$$

(a derivada da função inversa é a inversa da derivada). Agora componha a função $x_2(t)$ com a função $\bar{t}(x_1)$ (que calcula o tempo em função de x_1). Vamos obter a função $\bar{x}_2(x_1) = x_2 \circ \bar{t}(x_1)$. Derivando-se e aplicando a regra da cadeia³:

$$\frac{d\bar{x}_2}{dx_1}\bigg|_{x_1(t)} = \left\{ \frac{dx_2}{dt} \bigg|_{\bar{t}(x_1(t))} \right\} \left\{ \frac{d\bar{t}}{dx_1} \bigg|_{x_1(t)} \right\} = \frac{f_2(x_1(t), x_2(t))}{f_1(x_1(t), x_2(t))}$$

Como a última igualdade vale para todo t em que pudermos escrever o tempo em função de x_1 , obtemos a equação diferencial

$$\frac{d\bar{x}_2}{dx_1} = \frac{f_2(x_1, \bar{x}_2)}{f_1(x_1, \bar{x}_2)}$$

esta última equação diferencial permite muitas vezes obtermos a expressão da solução $\bar{x}_2(x_1)$ no plano de fase (abstraindo-se o tempo).

OBSERVAÇÃO. Depois da obtenção de \bar{x}_2 , pode-se obter o tempo solucionando-se a equação diferencial $dt/dx_1 = 1/f_1(x_1, \bar{x}_2(x_1))$.

Exercício 1 Obtenha um método semelhante quando podemos escrever o tempo em função de x_2 . Obtenha uma forma de obter o tempo em função de x_2 . (resposta parcial: $\frac{d\bar{x}_1}{dx_2} = \frac{f_1(\bar{x}_1, x_2)}{f_2(\bar{x}_1, x_2)}$).

 $^{^{2}}$ Vide teorema da função inversa [2, 4, 3].

³Aqui estamos usando o fato de que $\bar{t}(x_1(t)) = t$, e portanto $\bar{x}_2(x_1(t)) = x_2(t)$

3 Linearização de sistemas não lineares

Resumimos aqui o método de linearização de sistemas não lineares em torno de pontos de equilíbrio⁴. Considere um sistema de controle:

$$\dot{x}(t) = f(x(t), u(t))$$

onde $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$ e $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ é diferenciável. Assuma que $(x_0, u_0) \in \mathbb{R}^n \times \mathbb{R}^m$ é tal que $f(x_0, u_0) = 0$, isto é x_0 é ponto de equilíbrio para entrada constante u_0 . Lembremos da fórmula de Taylor⁵

$$f(x,u) = f(x_0, u_0) + \frac{\partial f}{\partial x} \Big|_{(x_0, u_0)} (x - x_0) + \frac{\partial f}{\partial u} \Big|_{(x_0, u_0)} (u - u_0) + \mathcal{O}(x, x_0, u, u_0)$$

onde

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{f_1}{x_1} & \frac{f_1}{x_2} & \dots & \frac{f_1}{x_n} \\ \frac{f_2}{f_2} & \frac{f_2}{x_2} & \dots & \frac{f_2}{x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{f_n}{x_1} & \frac{f_n}{x_2} & \dots & \frac{f_n}{x_n} \end{bmatrix}$$

$$\frac{\partial f}{\partial u} = \begin{bmatrix} \frac{f_1}{u_1} & \frac{f_1}{u_2} & \dots & \frac{f_1}{u_m} \\ \frac{f_2}{u_1} & \frac{f_2}{u_2} & \dots & \frac{f_2}{u_m} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{f_n}{u_1} & \frac{f_n}{u_2} & \dots & \frac{f_n}{u_m} \end{bmatrix}$$

Denote as variações $z = x - x_0$ e $v = u - u_0$. Defina $A = \frac{\partial f}{\partial x}\big|_{(x_0, u_0)}$ e $B = \frac{\partial f}{\partial u}\big|_{(x_0, u_0)}$. Note que A é uma matriz $n \times n$ e B é uma matriz $n \times m$ de constantes reais.

Como $f(x_0, u_0) = 0$, pode-se mostrar que a melhor aproximação linear para f(x, u) em torno de (x_0, u_0) é

$$f(x,u) \approx Az + Bv \tag{8}$$

A partir desta aproximação e do fato de $\dot{x} = \frac{d(z+x_0)}{dt} = \dot{z}$, define-se o sistema linearizado

$$\dot{z}(t) = Az(t) + Bv(t)$$

A linearização de um sistema é muito usada em Engenharia. É razoável esperar que o sistema linearizado seja uma boa aproximação do sistema não linear, pelo menos para as soluções que x(t) não se afastem muito de x_0 e entradas u(t) que não se afastem

⁴É possível generalizar tal metodologia para linearização em torno de trajetórias (soluções) do sistema. Neste caso obteríamos um sistema linear variante no tempo. Tal generalização não será tratada aqui nesta apostila.

⁵O resto de Taylor $\mathcal{O}(x, x_0, u, u_0)$ é tal que $\lim_{t\to\infty} \frac{\mathcal{O}(x, x_0, u, u_0)}{\|(x, u) - (x_0, u_0)\|} = 0$.

muito de u_0). De fato, isto é razoável devido à (8). Um dos resultados importantes de Lyapunov foi justamente mostrar que o sistema Linearizado é um bom modelo para estudar a estabilidade local de sistemas não lineares, como veremos no capítulo sobre estabilidade de Lyapunov.

IMPORTANTE: Como complementação deste capítulo, recomendamos a leitura do capítulo 1 de [1] e os exemplos das páginas 602 a 624 do Cap. 14 de [5].

Referências

- [1] Hassan K. Khalil. *Nonlinear Systems*. Prentice Hall, Upper Saddle River, NJ, second edition, 1996.
- [2] Elon Lages Lima. Curso de Análise. IMPA Projeto Euclides, Rio de janeiro, 1976.
- [3] Elon Lages Lima. Curso de Análise, vol. 2. IMPA Projeto Euclides, Rio de janeiro, 1981.
- [4] Elon Lages Lima. Análise Real, vol. 2. IMPA, Rio de janeiro, 2004.
- [5] I. J. Nagrath and M. Gopal. *Control systems engineering*. Wiley Eastern, New Delhi, India, segunda edição edition, 1982.