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Abstract

In this paper, we present necessary and su�cient conditions for the existence of a non-singular invariant probability
measure for a Feller Markov chain taking values on a locally compact separable metric space. The necessary and su�cient
condition is written in terms of the Foster’s criterion with an extra requirement. Furthermore, we extend an assumption
recently presented by the authors Costa and Dufour, Statist. Probab. Lett. 50 (3) (2000) 13–21, named T2 condition,
which generalizes T-chain and irreducibility assumptions for Feller Markov chains on a locally compact separable metric
space, and show that under this assumption the extra requirement on the Foster’s criterion can be eliminated. c© 2001
Elsevier Science B.V. All rights reserved
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1. Introduction

We consider Markov chains de?ned on a locally separable metric space satisfying the Feller property. This
work is concerned with the existence of an invariant probability measure (i.p.m. for short) for those chains.
This problem of great importance corresponds to a form of stochastic stability and it is the ?rst step towards
an ergodic analysis of the process. In general it is not a simple matter to determine whether a given process
in a general state space has an invariant probability measure. For a small sample of the huge theory nowadays

� This work has been supported by a USP=COFECUB Franco-Brazilian grant (number UC 40=97).
∗ Corresponding author. Tel.: +55-11-3818-5771; fax: +55-11-3818-5718.
E-mail addresses: oswaldo@lac.usp.br (O.L.V. Costa), dufour@labri.u-bordeaux.fr (F. Dufour).
1 This author received ?nancial support from FAPESP (Research Council of the State of São Paulo), grant 97=04668-1, CNPq (Brazilian

National Research Council), grant 305173/88, and PRONEX, grant 015=98.

0167-7152/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved
PII: S0167 -7152(01)00016 -5



48 O.L.V. Costa, F. Dufour / Statistics & Probability Letters 53 (2001) 47–57

available on this subject, see Hernandez-Lerma and Lasserre (1998a), Lasserre (1997), Meyn and Tweedie
(1992, 1993a, 1993b).

In Costa and Dufour (2000), it was shown that the Foster–Lyapunov criteria is equivalent to the existence
of a non-singular i.p.m. under a new assumption which generalizes the concept of T-chain and irreducibility.
The current paper can be considered as a continuation of Costa and Dufour (2000), in the sense that we
present here a necessary and su�cient condition to ensure the existence of a non-singular i.p.m. without any
additional assumptions. This condition is given in terms of the Foster–Lyapunov criteria and an extra technical
condition.

More speci?cally, let (X;B(X )) be a locally compact metric space equipped with its Borel �-?eld and
N∗

:= N−{0}. For any A ∈ B(X ); Ac := X −A and IA(x) is the indicator function associated to A. Let P be
a stochastic kernel de?ned on (X;B(X )) satisfying the Feller hypothesis (i.e. P maps the space of continuous
bounded functions into itself). We shall denote by {Yn}n∈N the Markov chain generated by the stochastic
kernel P (i.e. P(x; A) = Px(Y1 ∈ A) for all x ∈ X and A ∈ B(X )). We shall write Pn(x; A) = Px(Yn ∈ A) for
all n¿ 1. Let us consider the following de?nitions.

De�nition 1.1. A probability measure � is said to be non-singular with respect to P if there exists an integer
k such that the Radon–Nikodym derivative of Pk(x; :) with respect to �, that is, dPk(x; :)=d� := pk

�(x; :) (note
that pk

�(: ; :) can be chosen to be measurable on X × X ) satis?es
∫
X

∫
X p

k
�(x; y)�(dx)�(dy)¿ 0.

De�nition 1.2. The stochastic kernel Qn(: ; :) is de?ned on X ×B(X ) by

(∀x ∈ X ); (∀A ∈ B(X )); Qn(x; A) :=
1
n

n−1∑
k=0

Pk(x; A): (1)

De�nition 1.3. For any set B ∈ B(X ), we de?ne

V(B) := {y ∈ X : lim inf n→∞Qn(y; B) = 0}:

De�nition 1.4. For any set A ∈ B(X ), we de?ne

A
◦ := {y ∈ X : Pk(y; A) = 0 for all k ∈ N∗}: (2)

LA := [A
◦
]c; (3)

Remark 1.5. If A ⊂ B then B◦ ⊂ A◦, (see Eq. (2)).

Our necessary and su�cient condition for the existence of a non-singular invariant probability measure for P
reads as follows.

Theorem 1.6. The following assertions are equivalent for a Feller Markov chain with stochastic kernel P:
(i) There exists a non-singular invariant probability measure for P.
(ii) There exist a real �¿ 0; a compact set C and a function V : X → [0;∞] which is Bnite at least at

one x0 ∈ X; such that

PV (x) 6 V (x) − � + IC(x); (4)

for all x in X; and for every closed subset with empty interior B ⊂ C such that V(B)c ∩ B �= ∅ we have
B◦ ∩ C = ∅.
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Since the latter condition may be di�cult to check in practice, we introduce a new assumption under which
it is shown that the Foster–Lyapunov criteria is equivalent to the existence of an i.p.m.. It must be pointed
out that this new assumption includes the one introduced in Costa and Dufour (2000).

Our results are related to the problem studied by Hernandez-Lerma and Lasserre (2000). Indeed, a con-
sequence of Theorem 3:3 presented in Hernandez-Lerma and Lasserre (2000) shows that if a Feller Markov
chain has a unique i.p.m. then two cases may occur: the chain is positive recurrent or not. In the last case,
the invariant probability measure is necessarily singular. One may regard our work as a special study of the
?rst case. More speci?cally, the following Corollary holds from Theorem 3:3 (a) of Hernandez-Lerma and
Lasserre (2000), and Theorem 1.6 (ii).

Corollary 1.7. If condition (ii) of Theorem 1:6 holds and the invariant probability measure is unique then
the Feller Markov chain {Yn}n∈N is positive Harris recurrent.

The paper is organized as follow. In Section 2, some classical de?nitions related to Markov chains are
recalled and some preliminaries are established. Our notation follows the same as the one in the book of
Meyn and Tweedie (1992). The proof of Theorem 1.6 is given in Section 3 as well as a simpler su�cient
condition.

2. De�nitions and preliminaries results

We recall now some classical de?nitions related to Markov chains. For a complete exposition on the subject
the reader is referred to the book of Meyn and Tweedie (1993a).

De�nition 2.1. The ?rst hitting time of the set A ∈ B(X ) not including time zero, denoted by �A, is de?ned
as

�A
:= inf{n¿ 1: Yn ∈ A}:

De�nition 2.2. A set A ∈ B(X ) is called absorbing if P(x; A) = 1 for all x ∈ A.

De�nition 2.3. If a={ak}∞k=0 is a sampling distribution, then the stochastic kernel Ka is de?ned on X ×B(X )
by

(∀x ∈ X ); (∀A ∈ B(X )); Ka(x; A) :=
∞∑
k=0

akPk(x; A): (5)

De�nition 2.4. For B a ?xed set in B(X ), the kernel UB(: ; :) is de?ned on X ×B(X ) by

UB(x; A) :=
∞∑
k=1

[(PIB c )k−1P](x; A): (6)

De�nition 2.5. A set E ∈ B(X ) is said to be of maximal probability if for any invariant probability measure
� for P; �(X − E) = 0.

The ergodic decomposition of the state space X was presented in Yosida (1980, pp. 393–397) under
the assumption that the chain is Feller and that P maps Cc(X ) into Cc(X ) (where Cc(X ) is the space of
real-valued bounded continuous functions on X with compact support) Yosida (1980, p. 393) but, as pointed
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out in Hernandez-Lerma and Lasserre (1998b), this assumption is not really required. The purpose of the next
Theorem is to introduce this ergodic decomposition, which will be required in the remaining of our paper.
The proof of this Theorem can be found in Yosida (1980, pp. 393–397) and Hernandez-Lerma and Lasserre
(1998b).

Theorem 2.6. Suppose that � is an invariant probability measure for P. Then there exists a set S ∈ B(X ) of
maximal probability such that for each x ∈ S; Qn(x; :) converges weakly to an invariant probability measure
�x(:) of P as n converges to inBnity. Moreover; for any A ∈ B(X );

�(A) =
∫
S
�x(A)�(dx):

Furthermore for each x ∈ S; there exist sets Tx ∈ B(X ) and T̂ x ∈ B(X ) with T̂ x ⊂ Tx ⊂ S such that
(i) for all x ∈ S and z ∈ S − Tx; Tz ∩ Tx = ∅;
(ii) for all y ∈ Tx

�y(:) = �x(:) (7)

and for y ∈ S − Tx; �y(:) �= �x(:),
(iii) T̂ x is absorbing,
(iv) �x is the unique invariant probability measure for P satisfying �x(T̂ x) = 1.

According to the Lebesgue decomposition (Meyn and Tweedie, 1993a, p. 107), the transition probability
kernel Pn admits a decomposition into its absolutely continuous and singular parts with respect to �. Therefore,
for a ?xed y ∈ X , we have for all B ∈ B(X )

Pn(y; B) = Pn
�(y; B) + Pn

�⊥(y; B)

with

Pn
�(y; B) =

∫
B
pn
�(x; y)�(dy)

where the density pn
� is a measurable function on X × X for each n and Pn

�⊥(y; :) is orthogonal to �.
Consequently, for each y ∈ X there exists a set L�;y such that �(L�;y)=1 and Pn

�⊥(y; B)=Pn
�⊥(y; B∩ (L�;y)c)

for all B ∈ B(X ). We also de?ne the set

I�(X ) := {y ∈ X : Pn
�(y; X ) = 0 for all n ∈ N∗}:

It is easy to check that I�(X ) ∈ B(X ). It is clear by De?nition 1.1 that � is non-singular if for some n ∈ N∗,∫
X
Pn
�(y; X )�(dy)¿ 0 (8)

and therefore from (8), � is non-singular if and only if �(I�(X )c)¿ 0. In the next results, we use the same
notation and de?nitions as in Theorem 2.6.

Proposition 2.7. For x ∈ S; consider A ∈ B(X ) such that A ⊂ T̂ x. Then

�(A) = �x(A)�(T̂ x):
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Proof. Consider ?rst B ∈ B(X ) such that B ⊂ Tx. Then from Theorem 2.6,

�(B) =
∫
S
�y(B)�(dy) =

∫
Tx
�y(B)�(dy) +

∫
S−Tx

�y(B)�(dy):

Suppose that �y(B)¿ 0 for some y ∈ S − Tx. Since �y(Ty) = 1, we should have �y(B) = �y(B∩ Ty)¿ 0. But
B ∩ Ty = ∅, which leads to a contradiction. Thus �y(B) = 0 for y ∈ S − Tx and from (7),

�(B) = �x(B)�(Tx):

Since �x(Tx − T̂ x) = 0, we have from the above equation with B = Tx − T̂ x that

�(Tx − T̂ x) = �x(Tx − T̂ x)�(Tx) = 0:

and thus �(Tx) = �(T̂ x). Therefore for A ⊂ T̂ x,

�(A) = �x(A)�(Tx) = �x(A)�(T̂ x)

and the result follows.

The next result was presented in Proposition 3:1 of Hernandez-Lerma and Lasserre (2000).

Proposition 2.8. For each x ∈ S we have that either �x(I�x(X )) = 0 or �x(I�x(X )) = 1.

The following corollary is immediate.

Corollary 2.9. For each x ∈ S we have that �x is non-singular if and only if �x(I�x(X )) = 0.

Proof. Recall that �x is non-singular if and only if �x(I�x(X )c)¿ 0. From Proposition 2.8, �x is non-singular
if and only if �x(I�x(X )c) = 1.

We can now establish the main result of this section.

Theorem 2.10. If there exists a non-singular invariant probability measure � for P then there exists x ∈ S
such that �x is a non-singular invariant probability measure for P.

Proof. Suppose � is a non-singular invariant probability measure for P and for every x ∈ S; �x is a singular
invariant probability measure for P. From Corollary 2.9, �x(I�x(X ))=1 for every x ∈ S. Since �(I�(X )c)¿ 0,
we have from Theorem 2.6 that,

�(I�(X )c) =
∫
S
�x(I�(X )c)�(dx)¿ 0:

Select x ∈ S such that �x(I�(X )c)¿ 0. Therefore, since �x(I�x(X )) = 1,

�x(I�(X )c) = �x(I�(X )c ∩ I�x(X ) ∩ T̂ x)¿ 0

and we can ?nd y ∈ I�(X )c ∩ I�x(X ) ∩ T̂ x. By the singularity of �x and since y ∈ I�x(X ), there exists a set
L�x;y such that �x(L�x;y)=1 and Pn(y; Lc

�x;y
)=1 for all n ∈ N∗. Since y ∈ T̂ x, we have Pn(y; Lc

�x;y
∩ T̂ x)=1 for

all n ∈ N∗ (see statement (iii) in Theorem 2.6). Notice that, since Lc
�x;y

∩ T̂ x ⊂ T̂ x, we have from Proposition
2.7 that

�(Lc
�x;y ∩ T̂ x) = �x(Lc

�x;y ∩ T̂ x)�(T̂ x) = 0:

But this implies that y ∈ I�(X ), which is a contradiction since y ∈ I�(X )c, showing the desired result.
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We conclude this section with two auxiliary results which will be required for the main results.

Proposition 2.11. V(B) is either empty or an absorbing set.

Proof. For y∈V(B), we have from Fatou’s Lemma that 0=lim inf n→∞Ey(Qn(Y1; B))¿Ey(lim inf n→∞Qn(Y1;
B)) ¿ 0, showing that Ey(lim inf n→∞Qn(Y1; B)) = 0, and thus P(y;V(B)) = 1.

Proposition 2.12. For each x ∈ S we have that if �x(B)¿ 0 then �x(V(B)) = 0.

Proof. According to the individual Ergodic theorem,

�x(B) =
∫
S
1B(y)�x(dy) =

∫
S
lim inf n→∞Qn(y; B)�x(dy)¿ 0:

and therefore �x(V(B)c)¿ 0 (and thus �x(V(B))¡ 1). Suppose �x(V(B))¿ 0. From Proposition 10:4:6 in
Meyn and Tweedie (1993a) and using (iv) of Theorem 2.6, we have that for all C in B(X )

�x(C) =
1
c

∫
V(B)

UV(B)(y; C)�x(dy);

where c is a normalizing positive constant. Then,

�x(V(B)c) =
1
c

∫
V(B)

UV(B)(y;V(B)c)�x(dy):

However, for y ∈ V(B), we have from (6) and Proposition 2.11 that

UV(B)(y;V(B)c) 6
∞∑
k=1

Pk(y;V(B)c) = 0:

and therefore �x(V(B)c) = 0, in contradiction with the fact that �x(V(B))¡ 1, showing the desired
result.

3. Necessary and su(cient conditions

We begin by proving Theorem 1.6.

Proof of Theorem 1.6. Suppose ?rst that (ii) holds. From (4) and Theorem 12:3:4 in Meyn and Tweedie
(1993b) we know that there exists an invariant probability measure � for P such that �(C) ¿ �. Then from
Theorem 2.6,

�(C) =
∫
S
�x(C)�(dx) ¿ �;

and we can ?nd x ∈ S such that �x(C)¿ 0. For simplicity we shall suppress the subscript x and �x. As seen
in Proposition 2.8, �(I(X )) = 0 or �(I(X )) = 1. Suppose that �(I(X )) = 1. Then

�(C) = �(C ∩ I(X ) ∩ T̂ )¿ 0;
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and therefore we can ?nd z ∈ C ∩ I(X ) ∩ T̂ . Moreover, there exists a set Lz ∈ B(X ) such that

(∀n ∈ N∗); Pn(z; Lz) = 0 and �(Lz) = 1: (9)

Since Pn(z; int{Lz}) = 0 for all n ∈ N∗ and int{Lz} is open, it follows that

0 = lim inf n→∞Qn(z; int{Lz}) ¿ �z(int{Lz}) = �(int{Lz}); (10)

implying that �(int{Lz})=0. Therefore, �(Lz)=�(Lz−int{Lz})=1 and �(C)=�(C∩(Lz−int{Lz}))¿ 0 so that
we can ?nd, by regularity of the measure �, a closed set B ⊂ C ∩ (Lz − int{Lz}) such that �(B)¿ 0. Clearly
int{B} = ∅. Since B ⊂ Lz, it follows from Remark 1.5 and Eq. (9) that z ∈ L◦

z ⊂ B◦, so that z ∈ B◦ ∩ C �= ∅.
On the other hand, since from Proposition 2.12, �(V(B)c) = 1, we get that �(B) = �(B ∩V(B)c)¿ 0, so

that B∩V(B)c �= ∅. Therefore, we found a closed subset B of C with empty interior such that B∩V(B)c �= ∅
but B◦∩C �= ∅, which is a contradiction with the hypothesis. This shows that �(I(X ))=0 and from Corollary
2.9 we have that � is a non-singular invariant probability measure for P.

Suppose now that (i) holds. From Theorem 2.10, there exists x ∈ S such that �x is a non-singular invariant
probability measure for P. Again let us suppress the subscript x and �x for notational simplicity. As shown
in Theorems 2:6 and 3:9 of Costa and Dufour (2000), we can ?nd a real �¿ 0, a compact set C ⊂ T̂ and a
function V :X → [0;∞] which is ?nite at least at one x0 ∈ X , such that (4) is satis?ed, and for all D ∈ B(X )
with �(D)¿ 0,

sup
z∈C

Ez[�D] 6 M; (11)

for some positive constant M . Consider B a closed subset of C with empty interior and y ∈ B such that
lim inf n→∞Qn(y; B)¿ 0. Since Qn(y; :) converges weakly to �(:) and B is closed, we have that

�(B) ¿ lim sup
n→∞

Qn(y; B) ¿ lim inf
n→∞; Qn(y; B)¿ 0;

and from (11), B◦ ∩ C = ∅.

Now we present a su�cient condition for the existence of a non-singular invariant probability measure for
P which avoids the extra assumption in the Foster’s criterion in Theorem 1.6. This hypothesis is related to
the stochastic kernel P, and generalizes the condition T′ presented in Costa and Dufour (2000).

Condition T2. There exists a substochastic transition kernel T de?ned on X ×B(X ) such that
(i) For all x ∈ X; T (x; :)�Ka(x; :).
(ii) For all x ∈ X; 0¡T (x; X ) 6 1.
(iii) There exists a countable sequence of sets {Bn}∞n=1 in B(X ) such that one of the conditions (a) or (b)

below holds:
(a) for each compact set with empty interior C of X , there exists a subsequence {ni}∞i=1 such that either

{z ∈ X : T (z; LC)¿ 0} =
∞⋃
i=1

Bni (12)

or

{z ∈ X : T (z; LC) = 0} =
∞⋃
i=1

Bni (13)

(b) the same as (a) replacing “compact set C of X ” by “absorbing set E of P”, and “C” by “E” in (12)
and (13).
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Since 0¡T (x; X ) 6 1 there is no loss of generality in assuming that T (x; X )=1. Notice also that T-chains
satisfy condition T2 since, as shown in Costa and Dufour (2000), they satisfy condition T′.

We shall prove the following Theorem.

Theorem 3.1. Suppose that condition T2 is satisBed. Then there exists a non-singular invariant probability
measure for P if and only if exist a real �¿ 0; a compact set C and a function V :X → [0;∞] which is
Bnite at least at one x0 ∈ X; such that Eq. (4) is satisBed.

For A ∈ B(X ), de?ne

A∗ := {y ∈ X : T (y; A) = 0}; (14)

Ã := [A∗]c: (15)

and we have the following remark:

Remark 3.2. For any A ∈ B(X ); A◦ ⊂ A∗; since from T2(i); Ka(x; :)�T (x; :).

In the next results we consider �x for some x ∈ S. For notational simplicity, we suppress the subscript x and
�x. The following result was proved in Proposition 3:4 of Costa and Dufour (2000):

Proposition 3.3. For A ∈ B(X ); A◦ ⊂ [ LA]
◦
and if �(A)¿ 0 then �( LA) = 1.

We have the following result.

Lemma 3.4. Suppose that the set A ∈ B(X ) is such that �(A)¿ 0. Then �( L̃A) = 1.

Proof. From the previous lemma, we obtain that �( LA) = 1. Using the fact that � is an invariant measure, we
have ∫

X
Ka(y; A

◦
)�(dy) = 0;

which gives �([A◦]
◦
) = 1. From Remark 3.2, [A◦]

◦ ⊂ [A◦]∗, and we must have �([A◦]∗) = 1, that is,∫
X
T (y; A

◦
)�(dy) = 0: (16)

However, by hypothesis, T (y; X ) = 1 for all y ∈ X , and thus,∫
X
T (y; X )�(dy) = 1: (17)

Combining Eqs. (16) and (17), we obtain that∫
X
T (y; LA)�(dy) = 1;

so that

�({y ∈ X : T (y; LA) = 1}) = 1;
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and since

{y ∈ X : T (y; LA) = 1} ⊂ L̃A

the result follows.

Let us introduce the set

& := {n ∈ N: �(Bn)¿ 0}:

Lemma 3.5. I(X ) ∩ T̂ ⊂ ⋃
n∈& [Bn]

◦ ∪ [
⋂

n∈&c Bc
n]

◦
.

Proof. We shall assume that (a) holds for condition T2(iii). The proof for case (b) is similar. If y ∈ I(X )∩ T̂
then for k ∈ N∗; 1=Pk(y; X )=Pk

⊥(y; Lc
y) and so Pk(y; Lc

y)=1, where �(Ly)=1. As in the proof of Theorem
1.6, there is no loss of generality in assuming that Ly is absorbing with empty interior (indeed, if this is not
the case we have, as in (10), that �(int{Ly}) = 0 and thus �(Ly − int{Ly}) = 1 and by repeating the same
arguments as in Yosida (1980, p. 396–397) we can ?nd L̂y ⊂ Ly − int{Ly} such that L̂y is absorbing and
�(L̂y)= 1; then we could just re-de?ne Ly as L̂y). Since � is a regular measure (Theorem D:3:2 in Meyn and
Tweedie (1993a)) we can ?nd a compact set Cy ⊂ Ly (clearly C has empty interior) such that �(Cy)¿ 0.
Consequently, from Remark 1.5,

y ∈ I(X ) ∩ T̂ ⇒ y ∈ [Ly]
◦ ⊂ [Cy]

◦
: (18)

Now, from Proposition 3.3 and since �(Cy)¿ 0, we obtain that

�(Cy) = 1; (19)

[Cy]
◦ ⊂ [Cy]

◦ ⊂ [Cy]
◦
: (20)

Therefore, from Remarks 1.5 and 3.2

[Cy]
◦ ⊂ [C̃y]

◦
: (21)

Recalling that Cy is a compact set we have from condition T2(iii)(a) that either (12) or (13) hold for some
subsequence {ni(y)}∞i=1. If (12) holds, then

C̃y = {z ∈ X : T (z; Cy)¿ 0}

=
∞⋃
i=1

Bni(y): (22)

From Lemma 3.4 and using the fact that �(Cy)¿ 0, it follows that �(C̃y) = 1. This means that there exists
at least one integer (depending on y), denoted by k(y), such that �(Bk(y))¿ 0. Consequently, using Eq. (22)
and Remark 1.5, we have

[C̃y]
◦ ⊂ [Bk(y)]

◦ ⊂
⋃
n∈&

[Bn]
◦
: (23)

Now, combining Eqs. (18), (21) and (23), we obtain that

y ∈
⋃
n∈&

[Bn]
◦
: (24)
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Suppose now that (13) holds, that is,

[Cy]∗ = {z ∈ X : T (z; Cy) = 0}

=
∞⋃
i=1

Bni(y): (25)

From Lemma 3.4 and using the fact that �(Cy)¿ 0, it follows that �(C̃y) = 1 and thus �([Cy]∗) = 0. This
means that �(Bni(y)) = 0 for all i and from (25)⋂

n∈&c

Bc
n ⊂

∞⋂
i=1

Bc
ni(y) = C̃y: (26)

Note that �(
⋂

n∈&c Bc
n) = 1 since �(Bc

n) = 1 for each n ∈ &c. From Remark 1.5 and (26) we obtain that

[C̃y]
◦ ⊂

[ ⋂
n∈&c

Bc
n

]◦

; (27)

and combining (18), (21) and (27), we obtain that

y ∈
[ ⋂
n∈&c

Bc
n

]◦

: (28)

Since either (24) or (28) holds, we get the desired result.

Proposition 3.6. �(I(X )) = 0:

Proof. Since �(Bn)¿ 0 for n ∈ &, we have from Proposition 3.3 that �([Bn]
◦
)=0. Similarly, since �(

⋂
n∈&c Bc

n)
= 1, we have from Proposition 3.3 that �([

⋂
n∈&c Bc

n]
◦
) = 0, and the result follows from Lemma 3.5 and (iv)

of Theorem 2.6.

Therefore, Theorem 3.1 follows from Theorem 2.10, Corollary 2.9, and Proposition 3.6.
It can be shown that the identity kernel does not satisfy the condition T′ presented in Costa and Dufour

(2000). However, we can show (see the following example) that it satis?es the new condition T2.

Example. Let P be the identity kernel, and take T =P. Let us choose for {Bn}∞n=1 in B(X ) a countable basis
for the open sets. Then for any compact set C; LC = C and [ LC]∗ = Cc =

⋃∞
i=1 Bni since Cc is an open set.

Therefore, the identity kernel satis?es the condition T2.
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