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Discrete-time coupled algebraic Riccati equations that arise in quadratic optimal
control and -control of Markovian jump linear systems are considered. First, theL_

equations that arise from the quadratic optimal control problem are studied. The
matrix cost is only assumed to be hermitian. Conditions for existence of the maximal
hermitian solution are derived in terms of the concept of mean square stabilizability
and a convex set not being empty. A connection with convex optimization is
established, leading to a numerical algorithm. A necessary and sufficient condition
for existence of a stabilizing solution (in the mean square sense) is derived. Sufficient
conditions in terms of the usual observability and detectability tests for linear systems
are also obtained. Finally, the coupled algebraic Riccati equations that arise from the
L_-control of discrete-time Markovian jump linear systems are analyzed. An
algorithm for deriving a stabilizing solution, if it exists, is obtained. These results
generalize and unify several previous ones presented in the literature of  discrete-
time coupled Riccati equations of Markovian jump linear systems.
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1. Introduction

Algebraic Riccati equations arise in control theory as an important tool for solving many
optimization control and filtering problems, in particular the linear-quadratic and -controlL_

problems, and have been extensively studied in the current literature (see, for instance,
[BLW],[RV],[RT],[SSC],[SW],[W2]). One of the most successful methods for analyzing the
problem is via geometric methods, in which deflating subspaces (sometimes also called invariant
subspaces) of the so-called extended sympletic matrix pencil are considered (see for instance
[BLW]). Usually one is interested in a stabilizing solution, that is, the solution that gives rise to a
state feedback matrix which stabilizes the system in closed loop. In this context the maximal
solution, which will coincide with the stabilizing solution whenever it exists, is also of interest.
Some papers are devoted to characterize such solutions and we can mention, in particular, [OZ]
and [RV], where a sufficient condition, written in terms of a convex set not being empty and the
concept of stabilizability, is derived for the existence of the maximal hermitian solution of a Riccati
equation.

Discrete-time coupled algebraic Riccati equations (CARE) that arise in quadratic optimal control
and -control of Markovian jump linear systems are considered in this paper. First, we considerL_

the quadratic optimal control problem. Such equations arise when one desires to minimize the
following functional
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. In most cases the matrices are positive semi-definite for , but” •

the indefinite case is also of interest for quadratic control (see for instance, [D],[FCS] for the
deterministic quadratic discrete-time optimal control problem). Models as above are known in the
current literature as discrete time Markovian jump linear systems, and have been extensively
studied recently.  This follows in part due to the fact that a great number of dynamic systems are
vulnerable to abrupt changes in their structures caused by failures, sudden environmental changes,
variation of the operating point of a nonlinear plant, etc. Several aspects related to applications,
stability theory, optimal control theory and -control of these systems can be found nowadaysL_

in the literature (see, for instance, [C],[CF1],[CV1],[CF2],[CV2],[JFL],[M1],[M2],[M3],[RG]).

The linear quadratic optimal control problem of Markovian jump linear systems with P œ!ß3
U   ! ß V � !3 3 , and the associated CARE, have been studied in [C],[CF2],[JFL],[M2],[RG].
Conditions for existence of the maximal solution and stabilizing solution (in the mean square sense,
as will be defined in Definition 1 below) were presented in [C],[CF2] in terms of the concept of
mean square stabilizability and mean square detectability. Mean square stability can be replaced
by some conditions on the unobservable modes of the system (see [C],[M2]) or stochastic
observability [JFL]. Characterization of the maximal solution in terms of a LMI optimization
problem has been presented in [RG]. Continuous time results related to the problem posed here
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can be found in [FCS] and [W3], where conditions for existence of maximal and stabilizing
solution of a linearly perturbed Riccati equation are presented. In this paper we unify and
generalize all previous results related to the quadratic CARE. The matrix cost is only assumed to
be Hermitian. When restricted to the case in which , the conditionsP œ ! ß U   ! ß V � !3 3 3
derived here generalize the previous ones. The CARE that arise in the -control of MarkovianL_

jump linear systems (cf. [CV1]) is also studied, and an algorithm for deriving a stabilizing solution,
whenever it exists, is presented.

This paper is organized in the following way. Section 2 presents some preliminary results and the
notation that will be adopted throughout the paper. Section 3 presents sufficient conditions for the
existence of the maximal solution for the CARE associated to the quadratic optimal control
problem (Theorem 1), as well as a representation of this solution in terms of the solution of a
convex optimization problem (Theorem 2). Section 4 deals with necessary and sufficient
conditions for the existence of a stabilizing solution (Theorems 3 and 4). Section 5 presents a
recursive procedure for obtaining a stabilizing solution of the CARE associated to the -controlL_

problem, whenever it exits (Theorem 6). The paper is concluded in Section 6 with some final
comments. The proofs of some auxiliary results are presented in the Appendix.

2. Notation and Preliminary Results

For  and  complex Banach spaces we set  the Banach space of all bounded linear— ˜ � — ˜Ð ß Ñ
operators of  into , with the uniform induced norm represented by . . For simplicity we shall— ˜ l l
set , . The spectral radius of an operator  will be denoted by . If� — � — — g � — gÐ Ñ ³ Ð Ñ − Ð Ñ < Ð Ñ5

— g � — g is a Hilbert space then the inner product will be denoted by , and for ,  will  ¡Þ à Þ − Ð Ñ ‡

denote the adjoint operator of . As usual,  (  respectively) will denote that theg g g  ! � !
operator  will be positive semi-definite (positive definite). In particular we shall denoteg � —− Ð Ñ
by  the  dimensional complex Euclidean spaces and by  the normed bounded‚ � ‚ ‚8 8 78 Ð ß Ñ
linear space of all  complex matrices, with .7‚8 Ð Ñ ³ Ð ß Ñ� ‚ � ‚ ‚8 8 8

Set  the linear space made up of all -sequences of complex matrices ‡8ß7
" RR Z œ ÐZ ßÞÞÞßZ Ñ

with ,  and, for simplicity, set . ForZ − Ð ß Ñ 3 œ " ßá ß R ³3
8 7 8 8ß8� ‚ ‚ ‡ ‡

Z œ ÐZ ßÞÞÞßZ Ñ −" R
8ß7 8ß7‡ ‡, we consider the following norms in 

l l l l"Z ³ Z"
3œ"

R

3 (2.a)

l l Š ‹" ˆZ ³ >< Z Z Ñ#
3œ"

R
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‡

3

"
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It is easy to verify that  equipped with any of the above norms is a Banach space and, in‡8ß7

fact, . ,  is a Hilbert space, with the inner product given for  andˆ ‰l l# 8ß7
" R‡ ß Z œ ÐZ ßÞÞÞßZ Ñ

W œ ÐW ß ÞÞÞßW Ñ" R
8ß7 in , by‡

ØZ à W Ù ³ >< Z W Ñ" ˆ
3œ"

R

3
‡

3 . (2.c)
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We shall say that  is hermitian if  for andZ œ ÐZ ßÞÞÞßZ Ñ − Z œ Z 3 œ "ßáßRß" R 3
8 ‡

3
‡

denote this set by . We shall write ‡ ‡ ‡8‡ 8 8‡
" R 3

+ ³ÖZ œ ÐZ ßÞÞÞßZ Ñ − à Z   ! ß 3 œ

" ßá ßR Z − W − Z   W™ and for ,  , we write that  if‡ ‡8 8

Z � W œ ÐZ � W ß ÞÞÞßZ � W Ñ − Z � W Z � W � ! 3 œ " ßá ß R" " R R 3 3
8�‡ , and that  if  for .

For  and matrix , with  for allI I I ‡ �œ Ð ßÞÞÞß Ñ − œ Ò: Ó ß 3 ß 4œ" ßá ßR :   !" R 34 34
8

3 ß 4œ " ßá ßR ÐÞÑ œ Ð ÐÞÑßáß ÐÞÑÑ − Ð Ñ, we define the following operators ,X X X � ‡" R
8

_ _ _ � ‡ g g g � ‡ÐÞÑ œ Ð ÐÞÑßáß ÐÞÑÑ − Ð Ñ ÐÞÑ œ Ð ÐÞÑßáß ÐÞÑÑ − Ð Ñà" R " R
8 8 and 

X3 34 4
4œ"

R

ÐZ Ñ ³ : Z" (3.a)

_ I X I3 3 3
‡
3ÐZ Ñ ³ ÐZ Ñ (3.b)

g I I4 34 3 3
3œ"

R
‡
3ÐZ Ñ ³ : Z" (3.c)

where . It is easy to verify that with the inner product given by (2.c)Z œ ÐZ ßÞÞÞßZ Ñ −" R
8‡

above we have that . It is also easy to check that the operators , , and  map  intog _ X _ g ‡œ ‡ 8‡

‡ ‡ ‡8‡ 8� 8�and  into .

For  and  consider model (1) withEœ ÐE ß ÞÞÞßE Ñ − FœÐF ß Þ Þ Þ ßF Ñ −" R " R
8 7ß8‡ ‡

?Ð5 ÑœJ BÐ5Ñ J œ ÐJ ßÞÞÞßJ Ñ −)Ð5Ñ " R
8ß7, where . It has been shown in [CF1] that, for‡

Z Ð5Ñœ ÐBÐ5ÑBÐ5Ñ " Ñ Z Ð5 ÑœÐZ Ð5Ñ ßáßZ Ð5Ñ Ñ−3 " R
‡ 8�

Ö Ð5Ñœ3×E ) ,  , we have that‡

Z Ð5 � " Ñ œ ÐZ Ð5ÑÑß 5 œ !ß" ßág

where  in (3.c). We define next the stability and stabilizability concepts that weI3 3 3 3œ E � F J
shall consider in the following sections.

Definition 1: We say that J œ ÐJ ßÞÞÞßJ Ñ − ÐEßFÑ" R
8ß7‡  stabilizes  in the mean square sense

if, when we make  in system (1), we have that  as ?Ð5 ÑœJ BÐ5Ñ Ð BÐ5Ñ Ñ Ä ! 5 Ä _)Ð5Ñ
#E l l

for any initial condition  and .BÐ!Ñ Ð!Ñ)

Definition 2: We say that  is mean square stabilizable if for someÐEßFÑ
J œ ÐJ ßá ß J Ñ − ß J ÐEßFÑ" R

8ß7‡ we have that  stabilizes  in the mean square sense.

The following result, proved in [3], shows that  stabilizes system (1) in the meanJ œ ÐJ ßÞÞÞßJ Ñ" R
square sense if and only if the expectral radius of the operator (3.c) in closed loop is less than one.

Lemma 1: J œ ÐJ ßÞÞÞßJ Ñ − ÐEßFÑ" R
8ß7‡  stabilizes  in the mean square sense if and only

if , where  is as in (3.c) with .< Ð Ñ � " œ E � F J5 g g I3 3 3 3

We make the following definition, similar to the detectability concept for deterministic systems.
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Definition 3: Consider . We say that ,  is mean square detectableV V V ‡ Vœ Ð ßá ß Ñ − Ð EÑ" R
8ß<

if for some , where  is as inL œ ÐL ß á ß L Ñ − ß < Ð Ñ � " ÐÞÑ œ Ð ÐÞÑßáß ÐÞÑÑ" R R
<ß8‡ _ _ _ _5 "

(3.b) above with ,  .I V3 3 3 3œ E � L 3 œ " ßá ßR

The next lemma, proved in the Appendix, will be crucial for the development of the paper.
Consider also the operator defined as_ _ _ � ‡

� � �
ÐÞÑ œ Ð ÐÞÑßáß ÐÞÑÑ − Ð Ñ" R

8

_ L X L
�

ÐÞÑ ³ ÐÞÑ ß 3 " ßá ßR3 3 3
‡
3 = (4)

where ,  for some L ‡3 3 3 3 " R
8ß7œ E � F K 3œ " ßá ßR ß K œ ÐK ßá ß K Ñ − Þ

Lemma 2: Let  and  be as defined in (3.b) and (4) above, with and_ _ I
�

œ E � F J3 3 3 3
L _3 3 3 3œ E � F K 3œ " ßá ßR Þ < Ð Ñ � ", Suppose that  and for some5

T œ ÐT ßá ß T Ñ   ! �!ß" R  and $

T � ÐTÑ   ÐK � J Ñ ÐK � J Ñ 3 œ " ßáß Þ3 3 3 3 3 3 3
‡ ‡
3L X L $ , N  (5)

Then .< Ð Ñ � "
�

5 _

Finally we conclude this section with the next lemma (see proof in the Appendix).

Lemma 3: Consider . Suppose that , where  is asW W Wœ Ð ßá ß Ñ − < Ð Ñ � " ÐÞÑ" R
8‡ _ _5

defined in (3) above. Then there exist a unique solution  which] œ Ð] ßá ß ] Ñ −" R
8‡

satisfies

] � Ð]Ñ œ ß 3 œ R3 3 3 33
‡I X I W 1,..., . (6)

Moreover if  is hermitian  respectively  then  is hermitian . On theW Ð   ! ß � ! Ñ ] Ð   ! ß � ! Ñ
other hand if for some  there exists  satisfying equation (6) then .W � ! ] � ! < Ð Ñ � "5 _

Remark 1: From Lemma 3 it is clear that if  then from the standard discrete-time< Ð Ñ � "5 _

Lyapunov equation we have that  for each .< Ð: Ñ � " 3 œ " ßá ß R5 33 3
½I

3. Maximal Solution

Consider ,  and Pœ ÐP ß ÞÞÞßP Ñ − U œ ÐU ß ÞÞÞßU Ñ − VœÐV ß Þ Þ Þ ßV Ñ − Þ" R " R " R
7ß8 8‡ 7‡‡ ‡ ‡

Therefore, regarding  and , we only assume that they are hermitian.We will study theU V
following set of coupled algebraic Riccati equations (CARE):

! œ � \ � E Ð\ÑE � U � ÐE Ð\ÑF �PÑÐF Ð\ÑF � V Ñ ÐF Ð\ÑE � P3 3 3 3 3 3 3 3 3 3 3 33 3 3 3 3
‡ ‡ ‡ �" ‡ ‡X X X X ) (7)

and we shall say that  will be a hermitian solution for the CARE if\œÐ\ß Þ Þ Þ ß\ Ñ −" R
8‡‡

F Ð\ÑF � V \
3
‡

3 3 3X  is invertible and  satisfies the equation above.
Set

‹ ‡ X³Ö\œÐ\ ÞÞÞß\ Ñ − àÐF Ð\ÑF � V Ñ 3œ"ßÞ Þ Þ ßR×"ß R 3 3 3
8‡ ‡ �"

3  exists for .

We define the following nonlinearoperator .e e e ‹ ‡ÐÞÑ œ Ð ÐÞÑßÞÞÞß ÐÞÑÑ À Ä" R
8
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Definition 4: For , we define \œ Ð\ ÞÞÞß\ Ñ −"ß R ‹ e e eÐ\Ñ œ Ð Ð\ÑßÞÞÞß Ð\ÑÑ" R  as

e X X X X3 3 3 3 3 3 3 3 3 3 3 3 33 3 3 3 3
‡ ‡ ‡ �" ‡ ‡Ð\Ñœ � \ � E Ð\ÑE � U � ÐE Ð\ÑF �PÑÐF Ð\ÑF � V Ñ ÐF Ð\ÑE � P ) .

We introduce the following notation

� ‹ X

Œ � e

Œ � e

³Ö\œÐ\ ÞÞÞß\ Ñ − F Ð\ÑF � V �!ß3œ"ß Þ Þ Þ ßR×

³Ö\œÐ\ ÞÞÞß\ Ñ − ß Ð\Ñ !×

s ³Ö\œÐ\ ÞÞÞß\ Ñ − ß Ð\Ñœ!×

"ß R 3 3 33
‡

"ß R

"ß R

 and 

.

As we shall see in the proof of Theorem 2,  can be written as a convex set represented by theŒ
equations (10.b) below.

Remark 2: For the deterministic discrete-time algebraic Riccati equation (that is, ) withR œ "

P œ ! ß U   ! ß V œ M, it was shown in [23] that if eÐ\Ñ œ ! ÐF \F�MÑ (and thus  exists)‡ �"

then . The extension of this result for the CARE does not hold as can be seen inF \F� M � !‡

the following counterexample. Consider  , , ,R œ #ß E œ" ßE œ F œ F œ " U œ U œ !" # " # " #
"
#

V œ V œ" ß P œ P œ ! : œ ß : œ" # " # ""
" "
) # , . Then it can be shown that the CARE has the##

following four solutions:

\ œ \ œ ! ß \ œ ß \ œ �$Þ%#

\ œ �!Þ)$!)ß \ œ �!Þ$***ß\ œ �*Þ%(&%ß \ œ!Þ$"**

" # " #
" " # #

" # " #
$ $ % %

1.5562

and it follows that for the second and forth solutions we have

" � Ð\ Ñ œ � "Þ(*(*ß " � Ð\ Ñ œ !Þ!')"ß"� Ð\ Ñ œ !Þ!*&&ß " � Ð\ Ñ œ � $Þ&(()X X X X" # " #
# # % % .

Therefore even with  we cannot say that if  is a hermitian solution ofP œ ! ß U   ! ß V œ M3 3 3 , \
the CARE then M � F Ð\ÑF � !

3
‡

3 3X .

We make the following definitions:

Definition 5: We define ,  and  in thef ‡ ‡ W ‡ ‡ Y ‹ ‡ÐÞÑ À Ä ÐÞÑÀ Ä ÐÞÑÀ Ä7ß8 8 8 7 8ß7

following way; for  and  in the appropriateJ œ ÐJ ßá ß J Ñ − \ œ Ð \ ßá ß \ Ñ" R " R
7ß8‡

domain (  or ), ,  and‡ ‹ f f f W W W8
" R " RÐ J Ñœ Ð ÐJÑßáß ÐJÑÑ Ð\Ñ œ Ð Ð\Ñßáß Ð\ÑÑ

Y Y YÐ\Ñ œ Ð Ð\Ñßáß Ð\ÑÑ 3 œ " ßá ßR" R  are defined, for  , as

f

W X

Y X X

3 3
‡ 3 3

3
‡

3 3

3 3 3 33
‡

3 3 3 3 3 33 3 3
‡ �" ‡ ‡

Ð J Ñ³ M J
U P

P V
M

J

Ð\Ñ ³ F Ð\ÑF � V

Ð\Ñ ³ � ÐF Ð\ÑF � V Ñ ÐF Ð\ÑE � P Ñ

ˆ ‰Œ �Œ �
.

The proof of the following lemma is straightforward but otherwise long, and therefore will be
omitted (see [OZ] or [RV] for similar results).

Lemma 4: Suppose that X  and for some − J œ ÐJ ßá ß J Ñ −s s s‹ ‡" R
8ß7 ,
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a)  and satisfies for \œ Ð \ ßá ß \ Ñ −s s s
" R

8‡ is hermitian 3 œ " ßá ß R

\ �ÐE � F J Ñ Ð\ÑÐE � F J Ñ œs s s s
3 3 3 3 3 3 3 3 3

‡X f ( . JÑs

Then, for ,3 œ " ßá ß R

Ð\ �\ Ñ� Ð E � F J Ñ Ð\�\ÑÐE � F J Ñ œ Ð\Ñ�s s s s

ÐJ � Ð\ÑÑ Ð\ÑÐJ � Ð\ÑÑs s

3 3 3 3 3 3 3 3 3 3
‡

3 3 3 3 3
‡

X e

Y W Y .

(8.a)

,Ñ \ 3 œ " ßá ß Rs Moreover, if , then for − ‹

Ð\ �\ Ñ� Ð E � F Ð\ÑÑ Ð\�\ÑÐE � F Ð\ÑÑ œ Ð\Ñ�s s s s

Ð Ð\Ñ� Ð\ÑÑ Ð\ÑÐ Ð\Ñ� Ð\ÑÑ�ÐJ � Ð\ÑÑ Ð\ÑÐJ � Ð\ÑÑs s s s s s s

3 3 3 3 3 3 3 3 3 3
‡

3 3 3 3 3 3 3 3 3 3
‡ ‡

Y X Y e

Y Y W Y Y Y W Y .

(8.b)

c) Furthermore, if   and for] œ Ð] ßá ß ] Ñ − 3=2/<73>3+8s s s
" R

8‡ satisfies, 
3 œ " ßá ß R

Y  s s s s s�ÐE � F Ð\ÑÑ Ð]ÑÐE � F Ð\ÑÑ œ Ð\ÑÑ3 3 3 3 3 3 3 3 3
‡Y X Y f Y(

then for ,3 œ " ßá ß R

Ð\ � ] Ñ � ÐE � F Ð\ÑÑ Ð\�]ÑÐE � F Ð\ÑÑ œs s s s s s

ÐJ � Ð\ÑÑ Ð\ÑÐJ � Ð\ÑÑs s s s s

3 3 3 3 3 3 3 3 3
‡

3 3 3 3 3
‡

Y X Y

Y W Y .

(8.c)

We following theorem proves the existence of the maximal solution of (7) in .Œ

Theorem 1: Suppose that  is mean square stabilizable and .  Then forÐEßFÑ Á gŒ

6œ! ß " ß # ßá \ œ Ð\ ßá ß\ Ñ, there exists   which satisfies the following properties:6 6 6
" R

a) , for arbitrary (9.a)\   \   â   \   \ \ − à! " 6 Œ

b) where and for < Ð Ñ � " ß ÐÞÑ œ Ð ÐÞÑßáß ÐÞÑÑ5 _ _ _ _6 6 6 6
" R

3 œ " ßá ß R,

_ X

Y

6 6‡ 6
3 3 33

3 3
6 6

3 3

6 6�"
3 3

ÐÞÑ ³ E ÐÞÑE ß

E ³ E � F J ß

J ³ Ð\ Ñ for (9.b)6œ " ß # ßá . 

c) (  . (9.c)\ �E Ð\ ÑE œ J Ñß6 6‡ 6 6 6
3 3 33 3X f 3 œ " ßá ß R

Moreover there exists  such that  for any X  and\ œ Ð\ ßá ß\ Ñ − \   \ −s+ + + +
" R Œ Œ

\ Ä \ 6 Ä_ < Ð Ñ Ÿ " ÐÞÑ œ Ð ÐÞÑßáß ÐÞÑÑ6
R

+ + + + +as . Furthermore , where  is defined5 _ _ _ _
"

as , for , and_ X+ + +
3 3 3

‡
3ÐÞÑ œ E ÐÞÑE 3 œ " ßá ß R

J œ Ð\ Ñ

E œ E � F J Þ

+

+ +
3 3

�

3 33 3

Y

Proof: Let us apply induction on  to show that equations (9) are satisfied. Consider an arbitrary6
\ − ÐEßFÑŒ. By the hypothesis that is mean square stabilizable (see definition 2) we can find
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J < Ð Ñ � " ÐÞÑ œ Ð ÐÞÑßáß ÐÞÑÑ ÐÞÑ œ E ÐÞÑE! ! ! ! ! ! !‡ !
R 3 3 33such that , where  and  with5 _ _ _ _ _ X

"

E œ E � F J \ œ Ð\ ß á ß \ Ñ −
3 3 "
! ! ! ! 8

3 3 R
!. Thus, from Lemma 3, there exists a unique ‡

satisfying

\ �E Ð\ ÑE œ J Ñß 3 œ " ßá ßR! !‡ ! ! !
3 3 33 3X f (  .

Moreover, since (  is hermitian, we have that  is also hermitian. Setting for ,f J Ñ \ 3 œ " ßá ß R! !

J ³ Ð\ÑÞ3 3Y

we have from Lemma 4, equation (8.a) that for 3 œ " ßá ß R

Ð\ � \ Ñ � E Ð\ �\ÑE œ Ð\Ñ�ÐJ � J Ñ Ð\ÑÐJ � J Ñ! !‡ ! ! ! ‡ !
3 3 3 3 33 3 3 3 3 3X e W

and since  and we havee W _3 3 3 3
! ‡ ! !
3 3

Ð\Ñ�ÐJ � J Ñ Ð\ÑÐJ � J Ñ   ! ß 3 œ " ß á ß R < Ð Ñ�" ß5

from Lemma 3 again that This also shows that , since that\ �\  ! Þ \ −! !
3

�

W X X W3 3 3 3 3 3 3 3
! ‡ ! ‡

3 3Ð\ Ñ ³ F Ð\ ÑF � V   F Ð\ÑF � V œ Ð\Ñ � !,

and thus equations (9) hold for . Suppose now that we already have a sequence 6 œ ! \e f6 6œ!
5�"

satisfying equations (9). Set

J ³ Ð\ Ñ

E ³ E � F J

5 5�"
3 3

5 5
3 33 3

Y

.

From equation (8.b) in Lemma 4, we get that

Ð\ � \ Ñ � E Ð\ �\ÑE œ Ð\Ñ�ÐJ � J Ñ Ð\ÑÐJ � J Ñ �

ÐJ � J Ñ Ð\ ÑÐJ � J Ñ   ÐJ � J Ñ Ð\ ÑÐJ � J Ñ

5�" 5‡ 5�" 5 5 ‡ 5
3 3 3 3 33 3 3 3 3 3

5 5�" ‡ 5�" 5 5�" 5 5�" ‡ 5�" 5 5�"
3 3 3 3 3 3 3 33 3

X e W

W W  

and since, by the induction hypothesis,  for 1 , we can find W $3
5�" 5�"Ð\ Ñ � ! 3 œ ßá ß R � !

such that . Thus for ,W $3
5�" 5�"Ð\ Ñ � M ß 3 œ " ßá ß R

Ð\ � \ Ñ � E Ð\ �\ÑE   ÐJ � J Ñ ÐJ � J ÑÞ5�" 5‡ 5�" 5 5�" 5 5�" ‡ 5 5�"
3 3 3 3 3 3 33 3X $

and from  Lemma 2, . Let  be the unique hermitian solution of (see Lemma 3 and< Ð Ñ � " \5 _5 5

recall that (  is hermitian)f J Ñ6

\ �E Ð\ ÑE œ J Ñß 3 œ " ßáßRÞ5 5‡ 5 5 6
3 3 33 3X f (  

Equation (8.a) in Lemma 4 yields, for ,3 œ " ßá ß R

Ð\ � \ Ñ � E Ð\ �\ÑE œ Ð\Ñ�ÐJ � J Ñ Ð\ÑÐJ � J Ñ5 5‡ 5 5 5 ‡ 5
3 3 3 3 33 3 3 3 3 3X e W

and since , we get from Lemma 3 that . Thus , which< Ð Ñ � " \   \ Ð\ Ñ   Ð\Ñ � !5 _ W W5 5 5

shows that .  Equation (8.c) in Lemma 4 yields for \ − 3œ " ßá ßR5 �

Ð\ � \ Ñ � E Ð\ � \ ÑE œ ÐJ � J Ñ Ð\ ÑÐJ � J Ñß5�" 5 5‡ 5�" 5 5 5 5�" 5�" 5 5�"
3 3 3 3 3 3 3 33 3

‡
X W  

which shows, from the fact that ,  is positive< Ð Ñ � " ÐJ � J Ñ Ð\ ÑÐJ � J Ñ5 _ W5 5 5�" 5�" 5 5�"
3 3 3 3

‡
3
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semi-definite for each , and Lemma 3, that This completes the3 œ " ßá ß R \   \   \Þ5�" 5

induction argument for equations (9). Since  is a decreasing sequence with fore f\ \   \6 6
6œ!
_

all , we get that thereexists  hermitian such that (see [W1], page 79) as6 œ ! ß " ßá \ \ Æ \� 6 +

6 Ä _ \   \ Ð\ Ñ   Ð\Ñ�! \ −. Clearly, , and thus , showing that . Moreover,+ W W �� �

substituting  in (9.c) and taking the limit as , we get thatJ œ Ð\ Ñ 6 Ä _6 6�"
3 3Y

! œ \ �ÐE � Ð\ ÑÑ Ð\ ÑÐE � Ð\ ÑÑ� Ð\ ÑÑß 3 œ " ßá ßR� � ‡ � � �
3 3 3 3 3 3 3Y X Y f Y(  .

Rearranging the terms we obtain , thatfor 3 œ " ßá ß R

\ œ E Ð\ ÑE �U �ÐE Ð\ ÑF �PÑ ÐF Ð\ ÑF � V Ñ ÐF Ð\ ÑE � P Ñ+ + + + +
3

‡ ‡ ‡ ‡ ‡
3 3 3 3 33 3 3 3 3 3 3 3 3 3 3

�"
X X X X

that is, , showing the desired result. Since  is arbitrary in , it follows that e ŒÐ\ Ñ œ ! \ \   \� +

for all  Finally notice that since we get that (see [S], p. 328, for continuity of\ − Þ < Ð Ñ�" ßŒ _5
5

the eigenvalues on finite dimensional linear operator entries) , where< Ð Ñ Ÿ "5 _+

_ X+ + + + + +
3 3 3 3 3 3

‡
3 3 3

�ÐÞÑ œ E ÐÞÑE E œ E � F J J œ \ Þ,  and Y3Ð Ñ ¨

The next result establishes a link between a LMI (linear matrix inequality) optimization problem
and the maximal solution  in , and can be seen as a generalization of a result presented in\� Œ
[RG], for the case in which   and  and are indefinite. Suppose that all matricesP Á ! U V3 3 3
involved below are real. Consider the following convex programming problem:

7+B>< \Š ‹"
3œ"

R

3 (10.a)     

subject, for , to3 œ " ßá ß R

– —-
           )(10.b

\ �E Ð\ÑE �U E Ð\ÑF � P

F Ð\ÑE � P F Ð\ÑF � V
  ! ß F Ð\ÑF � V �! ß\ œ \

3 3 3 3 3 3 3
‡ ‡
3 3 ‡ ‡

‡ ‡ ‡ 3 3 3 3
3 3 33 3 3 3 3 3 3

X X

X X
X

Theorem 2: Suppose that  is mean square stabilizable. Then there exists  suchÐEßFÑ \ − s+ Œ

that  for all if and only if  there exists a solution  for the above convex\   \ \ − \s+ Œ

programming problem (10). Moreover, .\ œ \s +

Proof: First of all notice that, from Schur complement (see [SSC], page 13), \œ Ð \ ßá ß \ Ñ" R
satisfies the restrictions (10.b) if and only if

�\ �E Ð\ÑE �U �ÐE Ð\ÑF �PÑ ÐF Ð\ÑF � V Ñ ÐF Ð\ÑE � P   !3 3 3 3 3 3 3 3 3 3 3 33 3 3 3 3
‡ ‡ ‡ �" ‡ ‡X X X X )

and ,  for , that is, if and only if . Thus ifF Ð\ÑF � V � ! \ œ \ 3œ " ßá ßR \ −
3 3
‡ ‡

3 3 3 3X Œ

\ − \   \ \ − ><Ð\ �â�\ Ñ   ><+ + + +Œ Œ is such that  for all , clearly " R

Ð\ �â�\ Ñ \ − \ − § \s
" R for all  and since , it follows that  is the solution of theŒ Œ Œ+ +

convex programming problem (10). On the other hand, suppose that  is a solution of the convex\s

programming problem (10). Thus  and from Theorem 1, there exists  such\ − Á g \ −s Œ Œ+

that . But from the optimality of   and the fact that ,\   \ \ §s s s+ Œ Œ
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><Ð\ � \ Ñ �â � ><Ð\ �\ ÑŸ! Þs s+ +
" R" R

Since , we have .\ �\  ! ßá ß\ �\   ! \ œ \ ß á ß \ œ \s s s s+ + + +
" R " R" R " R ¨

4. Stabilizing Solutions

In this section we shall be interested in finding conditions for the existence of mean square
stabilizing solutions for the CARE (7), which will be defined below. Before we do so, we need the
following definition:

Definition 6: We say that  is a mean square stabilizing solution for the\œ Ð \ ßá ß \ Ñ −" R
8‡

CARE (7) if ,  and , with  as in (3.b)\ − Ð\Ñ œ ! < Ð Ñ � " ÐÞÑ œ Ð ÐÞÑßáß ÐÞÑÑ‹ e _ _ _ _5 " R

above and ,  .I Y3 3 3 3œ E � F Ð\Ñ 3 œ " ßá ßR

The next lemma establishes uniqueness of the mean square stabilizing solution if  (seeŒ Á g
proof in the Appendix).

Lemma 5: I here exists at most one mean square stabilizing solution for thef   then tŒ Á g
CARE (7), which will coincide with the maximal solution in . Œ

In what follows, we write

e e e Y Y YÐ\Ñ ³ Ð Ð\Ñ ßá ß Ð\Ñ Ñ E F Ð\Ñ³ ÐE � F Ð\ÑßáßE � F Ð\ÑÑ½ ½ ½
" R " " " R R R and + .

Theorem 3: Suppose that   The following assertions are equivalent:Œ Á g.
i)  is mean square stabilizable and ( , +  is mean squareÐEßFÑ Ð\Ñ E F Ð\ÑÑe Y½

detectable for some \ − ÞŒ
ii) there exists a mean square stabilizing solution to the CARE (7).

Proof: Let us show first that i) implies ii). From the hypothesis that  is mean squareÐEßFÑ
stabilizable and  we get, from Theorem 1, that there exists the maximal solutionŒ Á g

\ œ Ð\ ßá ß\ Ñ − \ − Ð\Ñ E F Ð\ÑÑs+ + + ½
" R Œ Œ e Y. Take  such that ( , +  is mean square

detectable. Setting , , , and recalling thatJ œ Ð\ Ñ E œ E � F J J œ Ð\Ñ+ + +
3 3 33 3 3 3 3

�Y Y

\ �E Ð\ÑE œ ÐJ Ñ ß 3œ " ßá ßRs
3 3 3 3
� �‡ � �

3 3X f  

we get from Lemma 4, equation (8.a) that for 3œ " ßá ßR ß

Ð\ � \ Ñ � E Ð\ �\ÑE œ Ð\Ñ�ÐJ � J Ñ Ð\ÑÐJ � J ÑÞ
3 3 3 3 3
� �‡ � � � ‡ �

3 3 3 3 3 3X e W (11)

From the fact that  and , , we get that we can find e W $3 3Ð\Ñ   ! Ð\Ñ � ! 3 œ " ßá ß R � !
such that for ,3 œ " ßá ß R

e W $ e3 3 3 3 3 3 33 3 3 3
� ‡ � � ‡ �Ð\Ñ�ÐJ � J Ñ Ð\ÑÐJ � J Ñ   Ð\Ñ�ÐJ � J Ñ ÐJ � J Ñˆ ‰. (12)

From Definition 3 and the mean square detectability hypothesis, we can find
L œ ÐL ß á ß L Ñ − < Ð Ñ � " ÐÞÑ œ Ð ÐÞÑßáß ÐÞÑÑ" R R

8‡ _ _ _ _ such that , where  is as in (3.b)5 "
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above with .Define , I e ‡3 3 3 3 3 3
� � �

" R
8ß8�7œ E � F J � L Ð\Ñ J ³ÐJ ßá ß J Ñ − J ³s s s s½

ÐJ ßá ß J Ñ − ß F ³ ÐF ß á ß F Ñ −s s s s s
" R " R

8ß8�7 8�7ß8‡ ‡ as

J ³ ß J ³ ß F ³s s s
!

J
Ð\Ñ

J
L F3

�

3
� 3 3

3

3
3 3� � � � a be ½

.

Then it is easy to verify that for 3 œ " ßá ß R

E � F J œ E � F J � L Ð\Ñ œs s

E � F J œ E � F J œ Es s

3 3 3 3 3 3 3 3 3

3 3 3 33
�

3
�

3

e I½

+

and from (11) and (12) we get that

$ $ e

X X

ˆ ˆ ˆJ � J Ñ J � J Ñ œ Ð\Ñ�ÐJ � J Ñ ÐJ � J Ñ Ñ Ÿs s s s

Ð\ � \ Ñ � E Ð\ �\ÑE œ Ð\ �\ Ñ� Ð E � F J Ñ Ð\ �\ÑÐE � F J Ñs s s s

3 3
� �

3 3 3 3 3
‡ � ‡ �

3 3

3 3 3 3
� �‡ � � � ‡ �

3 3 3 3 3 3 3 33 3
� �

.

Setting , , for , and recalling that_ _ _ _ X+ + + + + +ÐÞÑ œ Ð ÐÞÑßáß ÐÞÑÑ ÐÞÑ œ E ÐÞÑE 3 œ " ßá ß R
" R 3 3 3

‡
3

\ �\  ! ß < Ð Ñ � "� we get from Lemma 2 that .5 _+

Let us show now that ii) implies i). Suppose that  is the mean square\œ Ð \ ßá ß \ Ñ − s
" R Œ

stabilizing solution for the CARE (7). Then clearly  will be mean square stabilizable andÐEßFÑ

( (X) , + ( , +  will be mean square detectable.e Y Y½ E F Ð\ÑÑ œ ! E F Ð\ÑÑ ¨

Next we present some sufficient conditions for existence of the mean square stabilizing solution,
when . We will replace in Theorem 3 the mean square detectability condition by conditionsŒ Á g

based on the observable and non-observable modes of ( , + . The resultse Y3 3 3 333
Ð\Ñ : ÐE F Ð\ÑÑÑ½ ½

presented here parallel those in [C]. We shall assume from now on that all matrices involved in
the CARE (7) are real. We make the following definition.

Definition 7: Consider , with ,  . We setI I I ‡ Iœ Ð ßá ß Ñ − < Ð: Ñ � " 3 œ " ßá ßR" R 3
8

335
½

T � ‡ T T T− Ð Ñ Z œ ÐZ ßá ß Z Ñ ÐZ Ñ œ Ð ÐZ Ñ ßáß ÐZ ÑÑ8
" R " R in the following way: for ,  is

defined as,

T I I I I3 34 4 3 3
5œ!

_ R

33 3 3 33
‡ 5 ‡ 5

4œ"ß4Á3

ÐZ Ñ œ Ð: Ñ : Z Ð: Ñ" "Š Š ‹ ‹½ ½ . (13)

The following result was proved in [C].

Lemma 6: Consider  and  as in (3.b) and (13) respectively. The following assertions are_ T
equivalent:

i) .< Ð Ñ � "5 _

ii) , for  , a n d  .< Ð: Ñ � " 3 œ " ßá ßR < Ð Ñ � "5 533 3
½I T

iii) , for  , and for some  in .< Ð: Ñ � " 3 œ " ßá ßR ÐLÑ�_ L � !5 33 3
5œ!

_
5 8�½I T ‡!
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In the next Lemma we use the same notation as in Theorem 3, and set ƒ ‚œ Ö D − à D œ"×l l
(see proof in the Appendix).

Lemma 7: Suppose that ,  is mean square stabilizable, and for some ,Œ ŒÁ g ÐEßFÑ \ −

( (X) , +  has no unobservable modes in  for  . Thene Y ƒ3 3 3 333
½ ½: ÐE F Ð\ÑÑÑ 3 œ " ßá ßR

< Ð: E Ñ � " 3 œ " ßá ßR E œ E � F Ð\ Ñ \5 33 3
�

3 3 3 3
� �½ +, for  , where  and  is the maximalY

solution of the CARE (7) in .Œ

In what follows, we set  and define . Again we use: ³T Ð Ð X Ñœ 4 Ð!Ñœ3Ñ 738Ög× ³ _
34
X ) )¸

the same notation as in Theorem 3, and set .„ ‚œ Ö D − à D Ÿ"×l l
Theorem 4: Suppose that   Suppose alsoŒ Á g ÐEßFÑ and  is mean square stabilizable.
that for some each  , one of the conditions below is satisfied:\ − 3 œ " ßá ßRŒ and

a) ( , +  has no unobservable modesin , ore Y3 3 3 333
Ð\Ñ : ÐE F Ð\ÑÑÑ½ ½ „

b) ( , +  has no unobservable modes in ,  is not ane Y ƒ3 3 3 333
Ð\Ñ : ÐE F Ð\ÑÑÑ !½ ½

unobservable mode of  ( (X) , +  ande Y3 3 3 3
½ E F Ð\ÑÑ

' E( )  for some 3 ³ 738ÖXà: � ! 4 − × � _34
X

where satisfies condition .E , ,³ −Ö"ßáßR× à +Ñš ›
Then , the maximal solution of the CARE (7) in \� Œ, is the mean square stabilizing

solution of the CARE (7). Moreover, .\ � \ � !�

Proof: This proof parallels the one in Theorem 2 of [C]. From the hypothesis made and Theorem
1, there exists the maximal solution  and from Lemma 7, , for \ − < Ð: E Ñ � " 3 œ�

33 3
�Œ, 5

½

" ßá ßR ^ œ Ð^ ß á ß ^ Ñ L œ ÐL ß á ß L Ñ. Set  and  as:" R " R

^ œ Ð\Ñ ÐJ � J Ñ Ð\Ñ

L œ Ð: E Ñ ^ ^ Ð: E Ñ   !

3 3
‡ ‡

3 3 3
�

3 3
5œ!

_

33 3 333 3
�‡ 5 ‡ � 5

Š ‹
"
e W½ ½

½ ½ (14)

Set  as in (13) above with . The proof of the steps below canT T T IÐÞÑ œ Ð ÐÞÑßáß ÐÞÑÑ œ E" R
�

be found in the Appendix (in Step 3 below, :E E- œÖ" ßá ßR×� )

Step 1: !
5œ!

_
5T ÐLÑ�_Þ

Step 2: if  then 3 − L �!ÞE 3
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Step 3: if  then there exist ( ) , and  such that3 − 3 − ß 5 œ ! ßá ß 3 � " 4 −E E ' E- -
5

L � ! ÐL Ñ� ! ß 5 œ ! ßá ß 3 �"Þ4
jœ!

3 �5

3
j and ( )"'( )

T '
5

Step 4: Set  and  . Then  and ' ' E T Tœ 7+BÖ Ð3Ñà3− × L œ ÐLÑ L � ! ÐLÑ�_Þ
� � �- 5 5

5œ! 5œ!

_! !'

Step 5: .\ � \ � !�

From Lemma 6 and Step 4, < Ð Ñ � "5 _� . Step 5 completes the proof of the Theorem. ¨

We have the following Corollary, proved in the Appendix.

Corollary 1: Suppose that   and  is mean square stabilizable. Suppose alsoŒ Á g ÐEßFÑ
that for some andeach  , one of the conditions below is satisfied:\ − 3 œ " ßá ßRŒ

a) ( , +  is observable, ore Y3 3 3 333
Ð\Ñ : ÐE F Ð\ÑÑÑ½ ½

b) ( , +  is detectable,  is not an unobservable mode ofe Y3 3 3 333
Ð\Ñ : ÐE F Ð\ÑÑÑ !½ ½

( X , +  and (e Y '3 3 3 3Ð Ñ E F Ð\ÑÑß 3Ñ � _Þ½

Then , the maximal solution of the CARE (7) in \� Œ, is the unique solution of the CARE
(7) such that . Moreover,  and  is the mean square stabilizing\ � \   ! \ � \ � ! \� � �

solution of the CARE (7).

5. The CARE Associated to the -ControlL_

In this section we shall consider the coupled algebraic Riccati equations that arise in the -L_

control theory of Markovian jump linear systems (see [CV1]). In this case we do not have that the
convex set  is not empty, so that the results of the previous section cannot be applied directlyŒ
(see Remark 3 below). However a recursive algorithm for this case can be obtained. This
algorithm can be seen as an adaptation of the algorithm presented in [SW] from the deterministic
to the Markovian jump case.

Before we present the definition of the -control of Markovian jump linear systems, we need toL_

introduce the following definitions. For an increasing filtration , , defined on aÖ × 5 œ !ß" ßá¹5
probability space , we set  as the Hilbert space formed by the sequence of secondÐ ß ß Ñ 6H ¹ c

#
<

order random variables  with  and  adapted for eachD œ ÐDÐ!ÑßDÐ"ÑßáÑ DÐ5Ñ−‚ ¹<
5

5 œ !ß"ßá D ³ DÐ5Ñ � _ DÐ5Ñ ³ Ð DÐ5Ñ Ñ, and such that , where .Thisl l l l l l l l!
# # #
# # # #

5œ!

_
E

norm comes from the inner product , for . See [CV1] for� ³ ÐCÐ5Ñ DÐ5ÑÑ C ß D −C à D� !
5œ!

_
‡ <E ‚

more details on the construction of the probability  and increasing filtration .Ð ß ß Ñ Ö ×H ¹ c ¹5
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Consider the following discrete-time Markovian jump linear system

B Ð 5�" ÑœE BÐ5Ñ�F ?Ð5Ñ�H AÐ5Ñ

DÐ5Ñ œ Q BÐ5Ñ�N ?Ð5Ñß BÐ!ÑœB ß Ð ! Ñœ

) ) )

) )

Ð5Ñ Ð5Ñ Ð5Ñ

Ð5Ñ Ð5Ñ ! !) ) (15)

with  andHœ Ð H ßá ß H Ñ − ßQœ ÐQ ßá ßQ Ñ − ß N œ ÐN ß á ß N Ñ −" R " R " R
<ß8 8ß= 7ß=‡ ‡ ‡

with . For simplicity we shall assume that  and that N N � ! ß 3 œ " ßá ß R N N œ M Q N œ !
3 3 3
‡ ‡ ‡

3 3 3

for  As pointed out in [CV1], it does not represent any loss of generality for the3œ " ßá ßR Þ
L ? œ Ð?Ð!Ñß?Ð"ÑßáÑ A œ ÐAÐ!ÑßAÐ"ÑßáÑ_-control problem. For  and , set

\Ð ß B ß?ßAÑœÐBÐ!ÑßBÐ"ÑßáÑ ^Ð ß B ß?ßAÑœÐDÐ!ÑßDÐ"ÑßáÑ) )! ! ! ! and 

where  and  are given by equations (15). Clearly  are linearBÐ5Ñ DÐ5Ñ \Ð ßÞßÞßÞÑß ^Ð ßÞßÞßÞÑ) )! !
operators.For , consider equations (15) with  andJ œ ÐJ ßá ß J Ñ − ?Ð5 ÑœJ BÐ5Ñ" R

8ß7
Ð5Ñ‡ )

set:

_ _ _ _ X

)

)

� � � �
ÐÞÑ œ Ð ÐÞÑßáß ÐÞÑÑß ÐÞÑ œ ÐE � F J Ñ ÐÞÑÐE � F J Ñ

\ Ð ßAÑœÐ! ßBÐ"Ñ ßáÑ

^ Ð ßAÑœÐ! ßDÐ"Ñ ßáÑ

" R 3 3 3 3 3 3 3 3
‡

J !

J !

The following lemma was proved in [CV1]:

Lemma 8: < Ð Ñ � " \ Ð ß A Ñ − 6 A − 6
�

5 _ ) if and only if   for any .J ! # #
8 <

From this lemma it follows that if  then ,  and< Ð Ñ � " \ Ð ß Þ Ñ− Ð6 6 Ñ
�

5 _ ) �J ! # #
< 8

^ Ð ß Þ Ñ− Ð6 6 Ñ 6 ^ Ð ßÞÑJ ! # J !# #
< =) � ), . Therefore we can define the -induced norm of the operator  in

the usual way, that is,

l l l l
l l^ Ð ßÞÑ œ =?: Þ

^ Ð ß Ñ
J !

J ! #

#
)

)

A − 6

A

A
#
<

The -control problem  defined in the following way:L_ of Markovian jump linear systems is

L_-control problem : For a fixed , find  which stabilizes 8 ‡� ! J œ ÐJ ßá ß J Ñ − ÐEßFÑ" R
8ß7

in the mean square sense and such that  for every .l l^ Ð ßÞÑ �J ! !) 8 )

In other words we seek for a feedback controller  which stabilizes the system?Ð5 ÑœJ BÐ5Ñ)Ð5Ñ

(15) in the mean square sense and ensures that the -induced norm from the additive input6#
disturbance to the output is less than the attenuation value . For the case with no jumps 8 ÐR œ "Ñ
this definition coincides with the standard L_-control problem definition.

We have the following Theorem, proved in [CV1], regarding the -control of the discrete-timeL_

Markovian jump system given by equation (15). Set .U œ Q Q ß 3 œ " ßá ßR3 33
‡

Theorem 5: Suppose that   is mean square detectable and consider  fixed.ÐQßEÑ � !8
Then there exists  which stabilizes  in the mean squareJ œ ÐJ ßá ß J Ñ − ÐEßFÑ" R

8ß7‡
sense and such that  for every  if and only if there existsl l^ Ð ßÞÑ �J ! !) 8 )
T œ ÐT ßá ß T Ñ −" R

8�‡  satisfying the following conditions:
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i) . (16.a)M � H ÐTÑH � ! ß 3 œ " ßá ß R"
3
‡

3 38#
X

ii)
T œ U � E ÐTÑE �

E ÐTÑ F H � ÐTÑ F H ÐTÑE œ
M !

! � M

F F

H H

U �ÐE � F J � H K Ñ ÐTÑÐE � F J � H K Ñ �
" "

3 3 3 33
‡

3
‡ " "

3 3 3 " 3 3 3 " 3 3
3 3
‡ ‡

3 3
‡ ‡

�"

3 3 3 3 3 3 3 3 3 3 3 3
‡

X

X X X

8 8
X

ˆ ‰ ˆ ‰– � � — � �Œ �8 8
8 8

J J �K K3 3
‡ ‡

3 3 (16.b)

where

J œ � M � F ÐTÑF � F ÐTÑH ÐM� H ÐTÑH Ñ H ÐTÑF
" "

F M � ÐTÑH ÐM� H ÐTÑH Ñ H ÐTÑE œ
" "

� M � F ÐTÑ

3 3 3 3 3 3 3 3 33 3 3 3
‡ ‡ ‡ �" ‡

# #

�"

3 3 3
‡ ‡ �" ‡

# #3 3 3 3 3 3

3
‡

3

Š ‹
Š ‹ˆ ‰
Š

X X X X
8 8

8 8
X X X

X

    

F F ÐTÑÐE � H K Ñ
"

3 3 3 3 3

�"

3
‡‹ X

8
(16.c)

K œ M � H ÐTÑH � H ÐTÑF Ð M�F ÐTÑF Ñ F ÐTÑH
" "

"
H M � ÐTÑF Ð M�F ÐTÑF Ñ F ÐTÑE œ

M � H ÐTÑH Ð
" "

3 3 3 3 3 3 3 3 3# #3 3 3 3
‡ ‡ ‡ �" ‡

�"

3 3 3
‡ ‡ �" ‡

3 3 3 3 3 3

# 3
‡

3 3

�"

Š ‹
Š ‹ˆ ‰
Š ‹

8 8
X X X X

8
X X X

8
X

8
XH Ñ ÐTÑÐE � F J Ñ3

‡
3 3 3 3 (16.d)

iii)  where  is defined as< Ð Ñ � " ÐÞÑ œ Ð ÐÞÑßáß ÐÞÑÑ5 _ _ _ _" R

_ X
8 83 3 3 3 3 3 3 3 3 3 3 3

‡ÐÞÑ œ ÐE � F J � H K Ñ ÐÞÑÐE � F J � H K Ñ
" "

(16.e)

Remark 3: From equations (16.a) and (16.b) we can see that we cannot apply directly the results
of the previous sections.

Remark 4: The condition that  is mean square detectable (together with mean squareÐQßEÑ
stabilizability of ) is only used to guarantee the existence of the mean square stabilizingÐEßFÑ
solution to the CARE (see Theorem 3)

T œ U � E ÐTÑE � E ÐTÑF M � F ÐTÑF F ÐTÑE3 3 3 3 3 3 3 3 3 33 3 3 3
‡ ‡ ‡ ‡

�"
X X X XŠ ‹ . (17)

In view of Theorem 4,  mean square detectability could be replaced byÐQßEÑ  the following
condition. For each , one of the following conditions below is satisfied:3 œ " ßá ß R

a)  has no unobservable modes in , orÐU ß : E Ñ
3
"Î#

33 3 „

b)  has no unobservable modes in ,  is not an unobservable mode of  ÐU ß : E Ñ ! ÐU ß E Ñ
3 3
"Î# "Î#

33 3 3ƒ

and , where  is as in Theorem 4. (18)' 'Ð3Ñ � _ Ð3Ñ
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The next result shows that  as defined in (16.c) stabilizes  in the meanJ œ ÐJ ßá ß J Ñ ÐEßFÑ" R
square sense (see proof in the Appendix).

Lemma 9: Suppose that satisfies equations (16) and setT œ ÐT ßá ß T Ñ −" R
8�‡

_ _ _ _ X _
� � � � �
ÐÞÑ œ Ð ÐÞÑßáß ÐÞÑÑ ÐÞÑ œ ÐE � F J Ñ ÐÞÑÐE � F J Ñ < Ð Ñ � "" R 3 3 3 3 3 3 3 3

‡ with . Then .5

For  such that , setZ œ ÐZ ßá ß Z Ñ − M � H ÐZ ÑH � ! ß 3 œ " ßá ßR" R 3 3
8� ‡"

3
‡ X

8#

` ` ` a a a

j j j i i i

ÐZ Ñ œ Ð ÐZ Ñ ßáß ÐZ ÑÑß ÐZ Ñ œ Ð ÐZ Ñ ßáß ÐZ ÑÑ

ÐZ Ñ œ Ð ÐZ Ñ ßáß ÐZ Ñß ÐZ Ñ œ Ð ÐZ Ñ ßáß ÐZ ÑÑ
" R " R

" R " Rand 

as

 

` X

X X X

j X

a 8 X
8

3 3 3 33
‡

3
‡ " "

3 3 3 " 3 3 3 " 3 3
3 3
‡ ‡

3 3
‡ ‡

�"

3 3 33
‡

3 3
# ‡

# 3

ÐZ Ñ œ U � E ÐZ ÑE �

E ÐZ Ñ F H � ÐZ Ñ F H ÐZ ÑE
M !

! � M

F F

H H

ÐZ Ñ œ M � F ÐZ ÑF

ÐZ Ñ œ ÐM� H ÐZ
"

ˆ ‰ ˆ ‰– � � — � �Œ �8 8
8 8

ÑH � H ÐZ ÑF Ð M�F ÐZ ÑF Ñ F ÐZ ÑH Ñ
"

ÐZ Ñ œ H ÐM� ÐZ ÑF Ð M�F ÐZ ÑF Ñ F Ñ ÐZ ÑE Þ

3 3 3 3 3 3 3# 3 3 3
‡ ‡ �" ‡

3 3 3 3 3 3 33 3 3
‡ ‡ �" ‡

8
X X X

i X X X

Straightforward calculations show that for any  3 œ " ßá ß R ß B − ß ? − ß A − ß! ! !
8 7 <‚ ‚ ‚

l l l l l l
½ ½ ½ ½

Q B � ? � A � ÐEB � F ? � H A Ñ ÐZ ÑÐE B � F ? � H A Ñ œ

B ÐZ ÑB � ÐZ Ñ Ð? �?ÐZ ß 3 ßB ß A ÑÑ � ÐZ Ñ ÐA �AÐZ ß 3 ßB ÑÑs s

3 ! ! ! 3 ! 3 ! 3 ! 3 3 ! 3 ! 3 !
# # # # ‡

!
‡ "Î# "Î#

3 ! 3 ! ! ! 3 ! !

# #

8 X

` j a (19)

whereß

AÐZ ß 3 ß B Ñ œ ÐZ Ñ ÐZ ÑBs

?ÐZß 3 ßB ß A Ñ œ ÐZ Ñ ÐF ÐZ ÑE B � F ÐZ ÑH A Ñs

! 3 3 !
�"

! ! 3 3 3 ! 3 3 !
�" ‡ ‡

3 3

a i

j X X . (20)

The next Theorem is the main result of this section.

Theorem 6: Suppose that either  is mean square detectable or condition (18) isÐQßEÑ
satisfied. Suppose also that there exists  satisfying the conditionsT œ ÐT ßá ß T Ñ −" R

8�‡

(i), (ii), (iii) of Theorem 5 (equations (16)). Set for  , , where , `œ! ß " ßá T œ ÐT Ñ T,�" 5 !

is the maximal solution of equation (17). Then  converges to  exponentially fast as T T, ,
goes to infinity.

Proof: First of all notice that, from Lemma 9,  as defined in equation (16.c)J œ ÐJ ßá ß J Ñ" R
stabilizes  in the mean square sense and thus,  is mean square stabilizable. FromÐEßFÑ ÐEßFÑ
mean square detectability or condition (18) we get that there exists the mean square stabilizing
solution  to equation (17), which coincides with the maximal solution. Consider equation (15)T!  
with an arbitrary  and the minimization problemA œ ÐAÐ!Ñ ßáÑ−6

#
<

738 Ö DÐ5Ñ ×
? − ”

" l l
5œ!

_
#E
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where  such that  for every” ³Ö?œÐ? Ð ! Ñ ßáÑ− 6 B œ ÐBÐ!Ñ ßáÑ−6
# #
7 8

A œ ÐAÐ!Ñ ßáÑ−6 B ×
#
<  where  is given by (15) . It has been shown in [CV2] (see also [CV1])

that there exists  such that  andh ) � ‚ h ) ”Ð ß Þ ß Þ Ñ− Ð ‚ 6 ß 6 Ñ Ð ß B ß A Ñ −! ! !
8 < 7

# #
? œ Ð?Ð!ÑßáÑœ Ð ß B ßAÑh )! !  solves the minimization problem posed above. For arbitrary
A − 6 ? −

#
<  and , we have from equations (15), (19), and (20), that”

E E E

E E

ÐB T B Ñ � ÐBÐ �"Ñ T BÐ �"Ñ Ñœ BÐ5Ñ T BÐ5Ñ�

BÐ5�"Ñ T BÐ5�"Ñ œ BÐ5Ñ T BÐ5Ñ�BÐ5�"Ñ T BÐ5�"Ñ

!
‡ ‡ ‡

! Ð �"Ñ Ð5Ñ
5œ!

‡ ‡ ‡
Ð5�"Ñ Ð5Ñ Ð5�"Ñ

5œ!
5

) ) / )

/

) ) )

/

!
/ /

¹

" Š
‹ Š Š ¹ ‹" ‹

" "Š ‹ Šl l l l ‹
" Š½ ½ ‹Š ‹
"

œ BÐ5Ñ T BÐ5Ñ�BÐ5�"Ñ ÐTÑBÐ5�"Ñ œ DÐ5Ñ � AÐ5Ñ �

ÐTÑ ?Ð5Ñ�?ÐTß Ð5ÑßBÐ5ÑßAÐ5ÑÑ �s

5œ! 5œ!

‡ ‡ # # #
Ð5Ñ Ð5Ñ

5œ!
Ð5Ñ

"Î#
#

5œ!

/ /

) )

/

)

/

E E

E

X 8

j )

EŠ½ ½ ‹Š ‹a ))Ð5Ñ
"Î#

#
ÐTÑ AÐ5Ñ�AÐTß Ð5ÑßBÐ5ÑÑ Þs

Recalling that  and  so that  goes to zero as  goes to infinity, we get? − A − 6 Ð BÐ5Ñ Ñ 5” #
#E l l

that

" "Šl l l l ‹ Š½ ½ ‹Š ‹
" Š½ ½ ‹Š ‹

5œ! 5œ!

_ _
# # # "Î#

Ð5Ñ

#

5œ!

_

Ð5Ñ
"Î# ‡

#

!

E E

E E

DÐ5Ñ � AÐ5Ñ œ ÐTÑ ?Ð5Ñ�?ÐTß Ð5ÑßBÐ5ÑßAÐ5ÑÑs

� ÐTÑ AÐ5Ñ�AÐTß Ð5ÑßBÐ5ÑÑ � ÐB Ts

8 j )

a )

)

) )!B Ñ!

and it is clear from above that

E EÐB T B Ñ œ =?: 380 Ö DÐ5Ñ � AÐ5Ñ
A − 6 ? −

œ ^Ð ß B ß Ð ß B ßAÑßAÑ � As s s

!
‡ # # #

!

#
<

5œ!

_

! ! ! ! # #
# ##

)!
”

8

) h ) 8

" Šl l l l ‹
l l l l

}

(21)

where ,A œ ÐAÐ!ÑßAÐ"ÑßáÑßAÐ5Ñœ K BÐ5Ñs s s s s"
Ð5Ñ8 )

? œ Ð ß B ßAÑœÐ?Ð!Ñß?Ð"ÑßáÑß?Ð5Ñœ J BÐ5Ñs s s s s sh )! ! Ð5Ñ)  and

BÐ5�" ÑœÐE � F J � H K ÑBÐ5Ñß BÐ!ÑœB ß Ð!Ñœ Þs s s) ) ) ) )8Ð5Ñ Ð5Ñ Ð5Ñ Ð5Ñ Ð5Ñ
"

! !) )  Defining
6 ³ÖAœÐAÐ! Ñ ßáÑ− 6 à AÐ5 Ñœ! 5   × œ! ß " ßá
# #
<ß <,  for  for , and supposing for the, ,

moment that  for , so that  is well defined, weM � H ÐT ÑH � ! � ! T œ ÐT Ñ"
3
‡ �" 5�"

3 38
, ,

# X , `

get in a similar way as above that

E EÐB T B Ñ œ =?: 380 Ö DÐ5Ñ � AÐ5Ñ
A − 6 ? −

œ ^Ð ß B ß Ð ß B ß A ÑßA Ñ � A

!
‡ # # #

!

#
<ß

5œ!

_

! ! ! ! # #
# # #

)
,

,

, , ,

! ”
8

) h ) 8

" Šl l l l ‹
l l l l

}

(22)
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where A œ ÐA Ð!Ñ ßáßA Ð �"Ñ ß! ßáÑßA Ð5Ñœ ÐT Ñ ÐT ÑBÐ5Ñ, , , , , ,
) ), a iÐ5Ñ Ð5Ñ

�5�" �" �5�"

for , and , with, h )œ" ß # ßá ? œ Ð ß B ß A Ñ œ Ð? Ð!Ñß? Ð"Ñ ßáÑ, , , ,
! !

? Ð5Ñœ � ÐT Ñ F ÐT ÑÐE �

H ÐT Ñ ÐT ÑÑBÐ5Ñ 5 œ ! ßáß � "

? Ð5Ñœ � ÐT Ñ F

, , ,
) ) ))

) ) )
, ,

,
) ))

j X

a i ,

j X

Ð5Ñ Ð5Ñ Ð5Ñ
�5�" �" ‡ �5�"

Ð5Ñ

Ð5Ñ Ð5Ñ Ð5Ñ
�5�" �" �5�"

Ð5Ñ Ð
�" ‡

Ð5Ñ

 for 

 0
5Ñ Ð5ÑÐT ÑE BÐ5Ñ 5  0

)  for .,

Let us show by induction on  that,

T Ÿ T Ÿ T M � H ÐT ÑH   M � H ÐTÑH � !
" ", , ,�" ‡ ‡
# #3 33 3 3 3 (and thus  ).

8 8
X X

For  it is clear from (21) and (22) that  Suppose now that , so that, œ ! T ŸT Þ T Ÿ T! 5�"

M � H ÐT ÑH � ! T œ ÐT Ñ 6 § 6 § 6"
3 # # #
‡ �" 5�" <

3 3
<ß �" <ß

8
, , , ,

# X ` and  is well defined. Since  it
follows from (21) and (22) again that , showing the induction argument. SetT Ÿ T Ÿ T, ,�"

A œ ÐA Ð!Ñ ßáßA Ð �"Ñ ß! ßáß!Ñ A Ð5ÑœAÐ5Ñ 5 œ ! ßáß � "s s s s s, , , ,, ,,  for . From the fact
that  (equation (16.e)), we can find  such that .< Ð Ñ � " + � ! ß ! � , � " ß Ÿ +,5 _ _l l5 5

Moreover, we have that (see [CF2], proof of Lemma 1)

l l Š ½ ½ ‹ l l l l l l¼ ¼AÐ5Ñ œ K BÐ5Ñ Ÿ - Ð BÐ5Ñ Ñ Ÿ - B Ÿ - , Bs s s
"

#
# #

Ð5Ñ

#

" ! !
5 # 5 #

# #E E
8

_) # $

for appropriate constants . Therefore- ß - ß -" # $

l l l l l l"A�A œ AÐ5Ñ Ÿ - , Bs s s
"

" � ,
,

,
# #
# #

5œ

_
5 #

! #$ . (23)

Similarly we can show that  for some appropriatel l l l^Ð ß B ß Ð ß B ßAÑßAÑ Ÿ - Bs s) h )! ! ! ! !# #$
w

constant . From equation (21) with , we have that- � ! B œ !$
w

!

! œ =?: Ö ^Ð ß! ß Ð ß!ßAÑßAÑ � A
A − 6

  ^Ð ß! ß Ð ß ! ß A�A Ñ ßA�A Ñ � A� As s s s s s

#
<

! ! # #
# # #

! ! # #
# ##

l l l l
l l l l

) h ) 8

) h ) 8

}

. (24), , ,

Equations (22), (23) and (24) with  and  yieldB − œ 3! !
8‚ )

B T B   ^Ð3ßB ß Ð3ßB ß A ÑßA Ñ � As s s

  ^Ð3ßB ß Ð3ßB ßAÑßAÑ�^Ð3ß!ß Ð 3 ß! ßA�A Ñ ßA�A Ñ � As s s s s s s

  ^Ð3ßB ß Ð3ßB ß A

! 3
‡ #

! ! ! # #
# #

! ! # #
# ##

! !

, , , ,

, ,

l l l l
l l l l
l l

h 8

h h 8

h

.

s s sÑßAÑ � A �

# ^Ð3ßB ß Ð3ßB ßAÑßAÑà^Ð3ß!ß Ð 3 ß! ßA�A Ñ ßA�A Ñs s s s s s

  B T B � # ^Ð3ßB ß Ð3ßB ßAÑßAÑ ^Ð3ß!ß Ð 3 ß! ßA�A Ñßs s s s

# #
# ##

! !

!
‡

3 ! ! ! #

8

h h

h h

l l
¹ ¹  ¡

l l l l
, ,

, A�A Ñs s

  B T B � - B A � A   B T B � - B ,s s

,

,
#

! ! #
‡ ‡ #

3 ! % ! 3 ! & !# #l l l l l l ,
#

for appropriate positive constants  and . Thus- -% &
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! Ÿ B ÐT � T ÑB Ÿ - ,
"

Bl l! #
# ! 3

‡
3 ! &

, ,
#

which shows that  converges to  exponentially fast as  goes to infinity.T T, , ¨

In summary, we have the following procedure for deriving a stabilizing solution  satisfyingT
equations (16), whenever it exits:
i) Solve the convex programming problem given by equations (10). Set the solution of this problem
as .T!

ii) Determine  through the following iterations: .T T œ ÐT Ñ, , ,�" `
iii) If  converges to  as  goes to infinity, then check if , where  is given byT T < Ð Ñ � ",

5, _ _
equation (16.e). If it is, then  is the desired solution.T

6. Conclusion

In this paper we have studied the discrete-time coupled algebraic Riccati equations (CARE) that
arise in quadratic optimal control and -control of Markovian jump linear systems. For theL_

equations that arise in the quadratic optimal control problem, we considered the matrix cost to be
only hermitian. Contrarily to the deterministic case, the hamiltonian approach, which leads to
extended matrix pencils, fails to characterize the solutions of the CARE via the generalized
eigenvalues and eigenvectors of the extended matrix pencils. In fact, as illustrated in Remark 2,
some results that hold for the usual discrete-time algebraic Riccati equations cannot be extended
to the CARE. In this paper we adopted the approach used in [RV] to derive our conditions for the
existence of maximal and stabilizing solutions for the CARE. It was shown in Section 3 that under
the assumption of a convex set not being empty and mean square stabilizability, there exists the
maximal solution for the CARE. This solution can also be characterized as the solution of a
convex optimization problem, a result that leads to numerical procedures. In Section 4 necessary
and sufficient conditions for the existence of the stabilizing solution were derived, using the
concept of mean square detectability. This condition can be replaced by the usual observability
and detectability tests for linear systems, leading to sufficient conditions for the existence of the
stabilizing solution of the CARE. Section 5 presented a recursive procedure for obtaining a
stabilizing solution of the CARE associated to the -control problem, whenever it exits. TheseL_

results generalize and unify several previous ones presented in the literature of discrete-time
coupled Riccati equations of Markovian jump linear systems.
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APPENDIX

In this appendix we present the proofs of Lemmas 2, 3, 5, 7, 9, Corollary 1, and Steps 1 to 5 in the
proof of Theorem 4. For the proof of Lemma 2, we use the following fact:

Remark A1: For any , we can find ,  such thatW W W Wœ Ð ßÞÞÞß Ñ − − 4œ" ß # ß $ ß %" R
8 4 8‡ ‡ +

W W W W Wœ Ð � Ñ � Ð � Ñ Þ1 2 3 4È-1  (cf. [14])

Proof of Lemma 2: Set so that for any V V V ,g _ ‡
�

œ ß œ Ð ßá ß Ñ −
� ‡

" R
8

g L L
�

ÐZ Ñ œ : Z ß 4 œ " ßáßRÞ Ð Ñ4 34 3 3
3œ"

R

3" * A1

Note that for arbitrary  and ,% � ! Z œ ÐZ ßá ß Z Ñ   !" R

ÐE � F J ÑZ ÐK � J Ñ F �F ÐK � J ÑZ ÐE � F J Ñ

Ÿ ÐE � F J ÑZ ÐE � F J Ñ � F ÐK � J ÑZ ÐK � J Ñ F
"

3 3 3 3 3 3 3 3 3 3 3 3 3
‡ ‡ ‡

3

# ‡ ‡ ‡
3 3 3 3 3 3 3 3 3 3 3 3 3# 3%

%
(A2)
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and combining (A1) with (A2),

! Ÿ ÐZ Ñ œ : Z
�

œ : E � F J �F ÐK � J Ñ Z E � F J �F ÐK � J Ñ

œ : ÐE � F J ÑZ ÐE � F J Ñ �F ÐK � J ÑZ ÐE � F J Ñ �

g L L4 34 3 3
3œ"

R

3
‡

3œ"

R

34 3 3 3 3 3 3 3 3 3 3 3 3 3

‡

3œ"

R

34 3 3 3 3 3 3 3 3 3 3 3 3 3 3
‡ ‡

"
" Š ‹ Š ‹
" ”

ÐE � F J ÑZ ÐK � J Ñ F �F ÐK � J ÑZ ÐK � J Ñ F

Ÿ Ð"� Ñ : ÐE � F J ÑZ ÐE � F J Ñ �Ð "� Ñ : F ÐK � J ÑZ ÐK � J Ñ F
"

œ Ð"� Ñ

3 3 3 3 3 3 3 3 3 3 3 3
‡ ‡ ‡ ‡

3 3

# ‡ ‡ ‡

3œ" 3œ"

R R

34 3 3 3 3 3 3 3 34 3 3 3 3 3 3# 3

#

•
" "%

%

% g4 # 4ÐZ Ñ � Ð " � Ñ ÐZ Ñ
"

%
d (A3)

where  is defined asd d dÐZ Ñ œ Ð ÐZ Ñ ßáß ÐZ ÑÑ
" R

d4
3œ"

R

34 3 3 3 3 3 3
‡ ‡

3ÐZ Ñ œ : F ÐK � J ÑZ ÐK � J Ñ F"
and Since  =  by hypothesis, we can choose  such thatg _ g _ %œ Þ < Ð Ñ < Ð Ñ � " � !‡

5 5

< Ð Ñ � " ÐÞÑ œ Ð"� Ñ ÐÞÑ >œ ! ß " ßá
µ µ

5 g g % g, where .Define for the sequences#

\Ð>�"Ñœ Ð\Ð>ÑÑ \Ð!Ñ −
�

]Ð >�" Ñœ Ð]Ð>ÑÑ� Ð\Ð>ÑÑ ]Ð!Ñœ\Ð!Ñ
µ µ

g ‡

g d

8+

, (A4)

with . Then for d d
µ

ÐÞÑ œ Ð"� Ñ ÐÞÑ > œ !ß" ß# ßá"
%#

]Ð>Ñ \Ð>Ñ !Þ (A5)

Indeed, (A5) is immediate from (A4) for . Suppose (A5) holds for . Then from (A3)> œ ! >

] Ð >�" Ñœ Ð]Ð>ÑÑ Ð\Ð>ÑÑ œ Ð"� Ñ Ð]Ð>ÑÑ�Ð"� Ñ Ð\Ð> Ñ
µ µ "

  Ð"� Ñ Ð\Ð>ÑÑ�Ð"� Ñ Ð\Ð>ÑÑ   \Ð>ÑÑ œ \Ð>�"Ñ
" �

g d % g d
%

% g d g
%

 + )

(

#
#

#
#

showing the result for . From (A4) it follows that> � "

]Ð>Ñœ Ð\Ð!ÑÑ� Ð\Ð=ÑÑ
µ µ µ
g g d

> >�"�=

=œ!

>�"" Š ‹
and taking the1-norm (equation (2.a)) of the above expression, we have that
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l l l l ½ ½¾ ¾ ¾ ¾"]Ð>Ñ Ÿ \Ð!Ñ � Ð\Ð=ÑÑ Þ
µ µ µ

" "

> >�"�=

=œ!

>�"

"
g g d

Since , it is possible to find , , such that < Ð Ñ � " + � ! ! � , � " Ÿ +, ß
µ µ

5 g g½ ½= =

=œ! ß " ßá , andthus,
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and therefore from (A4) and (A5), for any \Ð!Ñ œ Ð\ Ð!Ñßáß\ Ð!ÑÑ !ß" R

! Ÿ Ð\Ð!ÑÑ œ \Ð>Ñ Ÿ ]Ð>Ñ � _
�" " "½ ½ l l l l

>œ! >œ! >œ!

_ _ _
>

" " "g .

As pointed out in Remark A1, any , can be decomposed asW œ ÐW ß ÞÞÞßW Ñ −" R
8‡

W œ ÐW � W Ñ � " ÐW � W Ñ" # $ %È-  
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Ÿ Ð"� Ñ : F ><ÐÐK � J Ñ\ Ð=ÑÐK � J Ñ Ñ
"

Ÿ

"
4œ" 3œ" 4œ"

R R R

4 34 3 3 3 3 3 3#
‡ ‡

3

#
3œ" 4œ"

R R

34 3 3 3 3 3 3
# ‡

•l l Še f e f ‹"
" ˆ ‰Š ‹ ¢ £
š ›¢ £ ¢

Ð"� Ñ7+B F R >< \ Ð=Ñ ÐK � J Ñ ÐK � J Ñ \ Ð=Ñ
"

Ÿ - >< \ Ð=Ñ T � ÐTÑ œ - \Ð=ÑàT� ÐTÑ
� �

œ - \Ð=ÑàT � \Ð=Ñà

%

_ _

_

# 3
3 3 3 3 3 3 3

# "Î# ‡ "Î#

3œ"

R

! 3 3 3 !
3œ"

R

!
�

ÐTÑ œ - \Ð=ÑàT � Ð\Ð=ÑÑàTÑ
�

œ - \Ð=ÑàT � \Ð=�"ÑàT

£ š ›¢ £ ¢ £
š ›¢ £ ¢ £

!

!

g

.

Taking the sum for  to , we get that= œ ! <

"½ ½ š › ¢ £¢ £ ¢ £
=œ!

<

"
! !d

µ
Ð\Ð=ÑÑ Ÿ - \Ð!ÑàT � \Ð<�"ÑàT Ÿ - \Ð!ÑàT

since that  and thus 0. Taking the limit as , weT œ ÐT ßá ß T Ñ   ! \Ð<�"ÑàT   < Ä _" R ¢ £
obtain the desired result. ¨

Proof of Lemma 3: Since , we have that (see [22], page 102)< Ð Ñ � "5 _

Ð � Ñ Ð Ñ œ ÐÞÑ\ _ _�" 4

4œ!

_

. "
where  represents the identity operator. Therefore the unique solution of (6) is given by\ ]

] œ Ð Ñ − Ð − � ! Ñ ] − Ð] −!
4œ!

_
4 8‡ 8� 8‡ 8�_ ‡ ‡ ‡ ‡W W W W and if  ,  respectively  then  ,

] � !Ñ. For the remaining of the proof, see [3]. ¨

Proof of Lemma 5: Suppose that  is a mean square stabilizing solution for\œ Ð \ ßá ß \ Ñs s s
" R

the CARE (7). Clearly  is mean square stabilizable and since  we get, fromÐEßFÑ Á gŒ

Theorem 1, that there exists the maximal solution .  We have that\ − s� Œ

\ � E �F Ñ Ð\Ñ E � F Ñ œ Ð ÑÑßs s s s s
3 3 3 3 3 3 3( (Y Y Y3 3

‡Ð\ Ñ Ð\ Ñ Ð\ 3 œ " ßá ßRX f  

and from Lemma 4, equation (8.a),

Ð\ �\ Ñ�ÐE � F Ð\ÑÑ Ð\�\ ÑÐE � F Ð\ÑÑ œs s s s

Ð Ð\Ñ� Ð\ ÑÑ Ð\ ÑÐ Ð\Ñ� Ð\ ÑÑß Þs s

3 3 3 3 3 3 3 33
� ‡ �

3 3 3 3 3
� ‡ � �

Y X Y

Y Y W Y Y 3 œ " ßá ßR 

Since  we get thatWÐ\ Ñ � !�
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Ð Ð\Ñ� Ð\ ÑÑ Ð\ ÑÐ Ð\Ñ� Ð\ ÑÑ ! ßs sY Y W Y Y3 3 3 3 3
� ‡ � � 3 œ " ßá ßR 

and combining the last two equations and recalling that  is a mean square stabilizing solution, we\s

have from Lemma 3 that . But this also implies that  and thus\�\   ! Ð\Ñ   Ð\ Ñ � !s s� �W W

\ − \�\ Ÿ !s s sŒ. From Theorem 1, , showing the desired result.� ¨

Proof of Lemma 7: From the hypothesis made and Theorem 1, it is clear that there exists the
maximal solution  for the CARE (7) in  . As seen in Theorem 1,  and from this\ < Ð Ñ Ÿ "� �Œ _5

it is easy to verify that , for  . Indeed,  for all< Ð: E Ñ Ÿ " 3 œ " ßá ßR < Ð Ñ � "5 533 3
� �½ !_

! ! !−Ð!ß"Ñ < ÐÐ : Ñ E Ñ � " 3 œ " ßá ßR and from Remark 1, , for  . Taking the limit as 5 33 3
�½

goes up to  we have the desired result. Suppose now by contradiction that, for some  and some" 3

- ‚ - ‚ -− œ " B Á ! : E B œ BÞ, with , and  in ,  From equation (11) we get thatl l 8
33 3

�½

! œ B Ð\ � \ Ñ � : E Ð\ �\ ÑE B œ B E : \ �\ E B �

B Ð\Ñ�ÐJ � J Ñ Ð\ÑÐJ � J Ñ B

‡ � �‡ � � ‡ �‡ � �
3 3 3 3 3 4 33 33 3 34 4

R

4œ"ß4Á3

‡ � ‡ �
3 3 3 33 3

Š ‹ Š Š ‹‹"
Š ‹e W

and since , we can conclude that\ �\  ! ß Ð\Ñ � ! ß Ð\Ñ   !� W e

B E : \ �\ E B œ !

B Ð\ÑB œ ! B ÐJ � J Ñ Ð\ÑÐJ � J ÑB œ !

‡ �‡ � �
3 4 3

R

4œ"ß4Á3
34 4

‡ ‡ � ‡ �
3 3 3 33 3

Š Š ‹‹"
e W, and 

which implies that . Thuse
3 3

�
3

½Ð\ÑBœ! ß Ð J � J ÑB œ !

: ÐE � F J ÑB œ : ÐE � F J ÑB œ B Ð\ÑB œ !33 33 33 3 3 3 33
�½ ½ ½- eand 

which is equivalent to saying that  is an unobservable mode of ( (X) , +  in- e Y3 3 3 333
½ ½: ÐE F Ð\ÑÑÑ

ƒ, incontradiction with the hypothesis made. ¨

Proof of step 1 in Theorem 4: We have from equation (11) that

Ð\ � \ Ñ � : E Ð\ �\ ÑE œ E : \ �\ E � ^ ^
3 3 3 3 3 4 3
� �‡ � � �‡ � � ‡

3 33 3 34 4 3

R

4œ"ß4Á3
3Š Š ‹‹"

and thus

Ð\ �\ ÑœL� Ð\ �\Ñ LÞ� �T (A6)
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Iterating equation (A6) it follows that

\ �\œ Ð\ �\Ñ� ÐLÑ  ÐLÑ ! Ð Ñ� >�" � 5 5

5œ! 5œ!

> >

T T T" " A7

which shows that .!
5œ!

_
5T ÐL Ñ�_ ¨

Proof of step 2 in Theorem 4: From equation (14), it is enough to show that  isÐ^ ß : E Ñ3 33 3
�½

observable. By contradiction, suppose that  is an unobservable mode of , that is,- ‚− Ð^ ß : E Ñ3 33 3
�½

for some  in ,B Á ! ‚8

: E B œ B

^ B œ œ !
Ð\Ñ B

Ð\Ñ ÐJ � J ÑB

33 3
�

3
3

3 33
�

½

½

½

 -

e

W� �
which implies that , and . Thus we get thatJ B œ J B Ð\Ñ B œ !3 33

� e ½

: E B œ : ÐE � F J ÑB œ : ÐE � F J ÑB œ B Ð\Ñ B œ !33 33 333 3
� �

3 3 3 3 3 3
½ ½ ½ ½- e, and 

that is,  is an unobservable mode of ( (X) , + . Since , we must- e3 3 3 333 33 3
½ ½ ½ +: ÐE F J ÑÑ < Ð: E Ñ � "5

have that , which is a contradiction with a).l l- � " ¨

Proof of step 3 in Theorem 4: Suppose now that  satisfies condition b). Set  and3 X œ Ð3Ñ'
recall that  represents the minimum time that the Markov chain  takes to reach the set ' ) EÐ3Ñ Ð5Ñ

starting from the point . Therefore  for some  and we can find a sequence of3 − : � ! 4 −E E- X
34

distinct elements ,  and such that  andÖ3 ß 3 ßá ß 3 ß 3 × 3 œ 3 3 œ 4ß : : á : � !! " X�" X ! X 33 3 3 3 4" " # X�"

each , , satisfies condition b) (otherwise  would not be minimum). Let us3 5 œ ! ßá ß X� " Ð3Ñ5 '

show by induction that (recall that  represents the operator T T T T5 5 5
" R

ÐL ÑœÐ ÐLÑßáß ÐLÑÑ

applied  times to )5 L

L �! ßL � ÐLÑ�! ßá ßL � ÐLÑ�á � ÐLÑ�!Þ4 3 3 3 3 3
X

X�" X�"
T T T

As seen in Step 2, . Suppose that . Let us showL � ! L � ÐLÑ�á � ÐL Ñ� !4 3 3 3
X�5

5 5 5
T T

that

L � ÐLÑ�á � ÐL Ñ� !3 3 3
X�5�"

5�" 5�" 5�"
T T .

Suppose by contradiction that for some  in ,B Á ! ‚8

( )L � ÐLÑ�á � ÐLÑ B œ !Þ3 3 3
X�5�"

5�" 5�" 5�"
T T

Then we must have that , and thusL Bœ ! ßá ß ÐLÑB œ !3 3
X�5�"

5�" 5�"
T
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! œ B Ð ÐL Ñ�á� ÐL Ñ BœB ÐL� ÐL Ñ�á� ÐLÑB

œ B Ð: E Ñ E Ð : ÐL � á � ÐLÑÑ

‡ ‡ X�5
3 33

X�5�"

‡ = X�5

=œ!

_ R

3 3 3 3
�‡ �‡

6œ"ß6Á3
3 6 6 6

T T T T T

T

5�" 5�"5�"

5�" 5�" 5�" 5�"
5�"

5�"

) )

Š" "½ ÑE Ð: E Ñ B

  B E Ð : ÐL � á � ÐLÑÑÑE B   !

3 3 3 3
� � =

‡ X�5
3 3
�‡ �

6œ"ß6Á3

R

3 6 6 6

5�" 5�" 5�" 5�"

5�" 5�"
5�"

5�"

½ ‹
Š ‹" T

and since , we conclude that : � ! ß 3 Á 3 ß L � á � ÐLÑ�! E Bœ! Þ3 3 5�" 5 3 3 3
X�5 �

5�" 5 5 5 5�"
T

Note now that  implies (see (14)) that , and thus andL B œ ! ^ B œ ! Ð\ÑBœ! ß3 3 35�" 5�" 5�"
e

J B œ J BÞ
3
�

3
5�" 5�"

 Therefore,

E B œ ÐE � F J ÑB œ ÐE � F J ÑB œ ! Ð\ÑB œ !
3 3
� �

3 3 3 3 3 35�" 5�"5�" 5�" 5�" 5�" 5�" 5�"
, and e½

which implies that  is an unobservable mode of  ( (X) , , contradicting! E � F J Ñe3 3 3 35�" 5�" 5�" 5�"
½

the hypothesis b) of the Theorem. ¨

Proof of steps 4 and 5 in Theorem 4: From Steps 2 and 3,

L œ ÐLÑ�!ß
� "

5œ!

5
'

T (A8)

and thus, from Step 1,

! Ÿ L œ ÐLÑ œ L Ÿ L � _Þ
�" " " " "Š ‹ Š ‹ Š ‹ Š ‹

5œ! 5œ! =œ! 5œ= 5œ!

_ _ _ _
5 5 = 5 5T T T T T

'

Finally, notice from (A7)and (A8), that \ �\  ÐLÑ�!Þ� =

=œ!

!' T ¨

Proof of Corollary 1: This proof parallels Theorem 3 in [2]. As seen in Theorem 4,  is the\�

unique mean square stabilizing solution of the CARE (7) and . Suppose that  is\ � \ � ! \
��

another solution of the CARE (7) and that (thus ). If we show that\ � \   ! \ −
� � sŒ

< ÐE F Ð\Ñ Ñ�" 3 œ " ßá ßR
�

5 3 3 3+ ,  , then by repeating the same arguments as the proof ofY

Theorem 4, we get that  is the mean square stabilizing solution, and thus  Suppose by\ \ œ \ Þ
� � �

contradiction that for some  and some , with , and  in ,3 −   " B Á !- ‚ - ‚l l 8

: ÐE � F Ð\ÑÑBœ BÞ
�

33 3 3 3
½ Y -

Then from Lemma 4, equation (8.a) and setting , we get thatJ œ Ð\Ñ
� �

3 3Y

B Ð\ � \ Ñ � : ÐE � F J Ñ Ð\ �\ÑÐE � F J Ñ B œ Ð"� ÑB Ð\ �\ Ñ B œ
� � � � �

B ÐE � F J Ñ : \ �\ ÐE � F J Ñ � Ð\Ñ�ÐJ � J Ñ
� � � �

‡ ‡ # ‡
3 3 33 3 3 3 3 3 3 3 3 3 3

‡ ‡
3 3 3 34 4 4 3 3 3 3 3 3

R

4œ"ß4Á3

Š ‹ l l
Œ Š Š ‹‹"

-

e ‡
3 3 3W Ð\ÑÐJ � J Ñ B

� �
and since  and , we can conclude thatl l- W e  " \ �\  ! ß Ð\Ñ � ! ß Ð\Ñ   !

�
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Ð"� ÑB Ð\ � \ Ñ B œ !
�

B ÐE � F J Ñ : \ �\ ÐE � F J ÑB œ !
� � �

B Ð\ÑB œ ! B ÐJ � J Ñ Ð\ÑÐJ � J ÑB œ !
� �

l l
Š Š ‹‹"

-

e W

# ‡
3 3

‡ ‡
3 3 3 34 4 4 3 3 3

R

4œ"ß4Á3

‡ ‡ ‡
3 3 3 3 3 3, and .

Therefore ) , and , which shows that : ÐE � F J ÑB œ : ÐE � F J B œ B Ð\Ñ B œ !
�

33 333 3 3 3 3 3 3
½ ½ ½- e -

in an unobservable mode of  ( (X) , + , contradicting a) or b).e3 3 3 333
½ ½: ÐE F J ÑÑ ¨

Proof of Lemma 9: Setting

J œ ß K œ ß F œ F H
J J

! K
µ µ µ

3 3 3 3 3
3 3

3

"Œ � Œ � ˆ ‰
8

we get from (16) that for some ,! � !

T �ÐE � F J Ñ ÐTÑÐE � F J Ñ   ÐJ � K Ñ ÐJ � K Ñ3 3 3 3 3 3 3 3 3 3 3 3
‡ ‡µ µ µ µ µ µ µ µ
X !

and noticing that  with  (from equation_ X _3 3 3 3 3 3 3 3
‡ÐÞÑ œ ÐE � F K Ñ ÐÞÑÐE � F K Ñ < Ð Ñ � "

µ µ µ µ
5

(16.e)), we get from Lemma 2 that .< Ð Ñ � "
�

5 _ ¨


