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Abstract

Discrete-time coupled algebraic Riccati equations that arise in quadratic optimal
control and H-control of Markovian jump linear systems are considered. First, the
equations that arise from the quadratic optima control problem are studied. The
matrix cost is only assumed to be hermitian. Conditions for existence of the maximal
hermitian solution are derived in terms of the concept of mean square stabilizability
and a convex set not being empty. A connection with convex optimization is
established, leading to a numerical agorithm. A necessary and sufficient condition
for existence of a stahilizing solution (in the mean square sense) is derived. Sufficient
conditions in terms of the usua observability and detectability tests for linear systems
are aso obtained. Finally, the coupled algebraic Riccati equations that arise from the
H-control of discrete-time Markovian jump linear systems are analyzed. An
agorithm for deriving a stabilizing solution, if it exists, is obtained. These results
generdize and unify several previous ones presented in the literature of discrete-
time coupled Riccati equations of Markovian jump linear systems.
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1. Introduction

Algebraic Riccati equations arise in control theory as an important tool for solving many
optimization control and filtering problems, in particular the linear-quadratic and H.-control
problems, and have been extensvely studied in the current literature (see, for instance,
[BLW],[RV],[RT],[SSC],[SW],[W2]). One of the most successful methods for anayzing the
problem is via geometric methods, in which deflating subspaces (sometimes aso caled invariant
subspaces) of the so-called extended sympletic matrix pencil are considered (see for instance
[BLW]). Usudly one is interested in a stabilizing solution, that is, the solution that gives rise to a
state feedback matrix which stabilizes the system in closed loop. In this context the maximal
solution, which will coincide with the stabilizing solution whenever it exists, is aso of interest.
Some papers are devoted to characterize such solutions and we can mention, in particular, [OZ]
and [RV], where a sufficient condition, written in terms of a convex set not being empty and the
concept of stabilizability, is derived for the existence of the maxima hermitian solution of a Riccati
equation.

Discrete-time coupled agebraic Riccati equations (CARE) that arise in quadratic optimal control
and H.-control of Markovian jump linear systems are considered in this paper. First, we consider
the quadratic optima control problem. Such equations arise when one desires to minimize the
following functiona
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and 0(k) denotes a Markov chain taking values in {1,...,N} with transtion probability matrix
L.

P = [p;;]. In most cases the matrices [gﬁ R ] are positive semi-definite for i=1, ..., N, but
. : :

the indefinite case is aso of interest for quadratic control (see for instance, [D],[FCS] for the
deterministic quadratic discrete-time optimal control problem). Models as above are known in the
current literature as discrete time Markovian jump linear systems, and have been extensively
studied recently. This follows in part due to the fact that a great number of dynamic systems are
vulnerable to abrupt changes in their structures caused by failures, sudden environmental changes,
variation of the operating point of a nonlinear plant, etc. Severa aspects related to applications,
stability theory, optimal control theory and H-control of these systems can be found nowadays
in the literature (see, for instance, [C],[CF1],[CV1],[CF2],[CV2],[JFL],[M1],[M2],[M3],[RG]).

The linear quadratic optima control problem of Markovian jump linear systems with L; =0,
Q; >0, R; >0, and the associated CARE, have been studied in [C],[CF2],[JFL],[M2],[RG].
Conditions for existence of the maximal solution and stabilizing solution (in the mean square sense,
as will be defined in Definition 1 below) were presented in [C],[CF2] in terms of the concept of
mean square stabilizability and mean square detectability. Mean square stability can be replaced
by some conditions on the unobservable modes of the system (see [C],[M2]) or stochastic
observability [JFL]. Characterization of the maximal solution in terms of a LMI optimization
problem has been presented in [RG]. Continuous time results related to the problem posed here



can be found in [FCS and [W3], where conditions for existence of maxima and stabilizing
solution of a linearly perturbed Riccati equation are presented. In this paper we unify and
generdize al previous results related to the quadratic CARE. The matrix cost is only assumed to
be Hermitian. When restricted to the case in which L; =0, @Q; >0, R; > 0, the conditions
derived here generaize the previous ones. The CARE that arise in the H.-control of Markovian
jump linear systems (cf. [CV1]) is dso studied, and an agorithm for deriving a stabilizing solution,
whenever it exists, is presented.

This paper is organized in the following way. Section 2 presents some preliminary results and the
notation that will be adopted throughout the paper. Section 3 presents sufficient conditions for the
existence of the maximal solution for the CARE associated to the quadratic optima control
problem (Theorem 1), as well as a representation of this solution in terms of the solution of a
convex optimization problem (Theorem 2). Section 4 deds with necessary and sufficient
conditions for the existence of a stabilizing solution (Theorems 3 and 4). Section 5 presents a
recursive procedure for obtaining a stabilizing solution of the CARE associated to the H,-control
problem, whenever it exits (Theorem 6). The paper is concluded in Section 6 with some final
comments. The proofs of some auxiliary results are presented in the Appendix.

2. Notation and Preliminary Results

For X and Y complex Banach spaces we set B(X,Y) the Banach space of al bounded linear
operators of X into Y, with the uniform induced norm represented by ||.||. For smplicity we shall
set B(X) := B(X,X). The spectral radius of an operator 7 € B(X) will be denoted by r, (7). If
X is a Hilbert space then the inner product will be denoted by (.;.), and for 7 € B(X), 7* will
denote the adjoint operator of 7. As usud, 7 > 0 (7 > 0 respectively) will denote that the
operator 7 € B(X) will be positive semi-definite (podtive definite). In particular we shall denote
by C" the n dimensona complex Euclidean spaces and by B(C", C™) the normed bounded
linear space of al m x n complex matrices, with B(C") := B(C",C").

Set H™™ the linear space made up of dl N-sequences of complex matrices V = (V4,...,Vy)
with  V; e B(C*,C™), i=1,...,N and, for smplicity, st H":=H"". For
V= (V1,...,Vy) € H™" we congder the following normsin H"™

N
IV =Y Vil (2.3)
=1
N 1
Vil = (Yot (vivi))? (21)
=1

It is easy to verify that H™™ equipped with any of the above norms is a Banach space and, in
fact, (|||, H™™) is a Hilbert space, with the inner product given, for V = (V1,...,Vy) and
S = (S, ...,Sy) inH™™ by

(V;8)=> tr(V,*S)). (2.0)



We shdl say that V = (Vi,...,Vy) € H" is hermitian if V; =V* fori=1,. N, ad
denote this set by H™. We shal write H™ :={V = (V;,...,Vy) €H"™;V; >0 ,i =
1,...,N} ad for VeH" Se H' we wite tha V>S5 Iif
V—S:(Vl—Sl,...,VN—SN)eH”+,andthatV> SifV,—S5;,>0fori=1,...,N.

ForI'= (Iy,..., I'y) € H" and matrix P = [p;],i,j=1,...,N, with p;; >0 for al
i,j=1,...,N, we define the following operators &(.) = (&1(.),...,En(.)) € B(H"),
L() = (£1(-),---, £n() € BH") and T(.) = (T1(.),---, Tn(.)) € B(H");

N
EV) = piV; (3.8)
j=1
Li(V) = I; &V (3b)
N
T;(V) =Y pyliVil} (3.0)

1=1

whereV = (V7,...,Vy) € H". It is easy to verify that with the inner product given by (2.c)
above we havethat 7 = L£*. It isaso easy to check that the operators £, £, and 7 map H™* into
H"™ and H"™* into H"T.

For A=(Ay ..,Ay)eH" and B=(Bj...,By) € H™" condder modd (1) with

u(k)=Fygyx(k), where F'= (Fy,...,Fy) € H™™. It has been shown in [CF]] that, for

Vz(k)z E(Z‘(k):t(k‘)*l{g(k):l}),v(k):(vl(k),,VN(k))GH”+ , we have that
V(k+1)=T(V(k)),k=0,1,...

where I; = A;+ B;F; in (3.c). We define next the stability and stabilizability concepts that we

shall consider in the following sections.

Definition 1: We say that F' = (Fy,...,Fy) € H»™ gabilizes (A, B) in the mean square sense
if, when we make u (k)= Fy(;,z (k) in system (1), we have that E(||z(k)||*) — 0 as k — oo
for any initial condition z(0) and 6(0).

Definition 2: We say tha (A,B) is mesn square dabilizable if for some
F=(Fy,...,Fy) € H" wehavethat F sabilizes (A,B) in the mean square sense.

The following result, proved in [3], shows that F' = (F1,...,Fy) stabilizes system (1) in the mean
square sense if and only if the expectral radius of the operator (3.¢) in closed loop is less than one.

Lemmal: F = (Fy,...,Fy) € H»™ stabilizes (A,B) in the mean square sense if and only
ifr (7) < 1,where7 isasin (3.c) with I; = A, + B;F;.

We make the following definition, smilar to the detectability concept for deterministic systems.



Definition 3: Consider C = (C,, ...,Cy) € H"™". We say that (C,A) is mean square detectable
if for some H = (Hy, ..., Hy) e H"", ro(4 < 1, where £(.) = (£,(.),...,£Ln(.)) isasin
(3.b) abovewith I; = A, + H;C;,i=1,...,N.

The next lemma, proved in the Appendix, will be cruciad for the development of the paper.
Consider also the operator £ (.) = (£ 1(.),..., £ n(.)) € B(H") defined as

Zz() = A;kgz()/ll, i=1,...,N (4)
where A, = A+ B;G;,i=1,...,N, forsomeG = (Gy,...,Gy) € HV™.

Lemma 2: Let £ and £ be as defined in (3.b) and (4) above, with I; = A;+ B,F; and
A=A+ BG;, i=1,...,N.Suppose that r,(L)<1 and  for some
P= (Pl,...,PN) >0and 6 >0,

P — AXE(P)A; >6(Gi — B (G — F)i=1,...,N. 5

Thenr, (L) < 1.
Findly we conclude this section with the next lemma (see proof in the Appendix).

Lemma 3: Consider S = (S5,,...,Sy) € H". Suppose that r, (L) < 1, where £(.) is as
defined in (3) above. Then there exist a unique solution Y= (Y|,...,Yy) € H" which
satisfies

Y, -7 =S, i=1,..,N. (6)
Moreover if S ishermitian ( > 0, > 0 respectively) then Y is hermitian (>0, >0) . On the
other hand if for some S > 0 there exists Y > 0 satisfying equation (6) then r, (£) < 1.

Remark 1: From Lemma 3 it is clear that if r,(£) < 1 then from the standard discrete-time
Lyapunov equation we have that rg(p;/;]}-) < 1foreachi=1,...,N.

3. Maximal Solution

Consder L=(Ly, ...,Ly) e H™", Q = (Q1, ...,Qn) € H"™ and R=(R;...,Ry) € H™*.
Therefore, regarding @ and R, we only assume that they are hermitian.We will study the
following set of coupled agebraic Riccati equations (CARE):

0=— Xi+ AT&(X)Ai + Qi— (ATE(X)Bi + L) (BI&(X)Bi + Ri) M(Bi&(X)Ai + LY)  (7)

and we shall say that X=(X;...,Xy) € H™ will be a hermitian solution for the CARE if
B;“ & (X)B; + R; isinvertible and X satisfies the equation above.
Set

L:={X=(Xy...,Xy) € H"; (B! &(X)B; + R) ! exissfori=1,...,N}.

We define the following nonlinearoperator R(.) = (R1(.),...,R n(.)) : L — H".



Definition 4: For X = ( X ...,Xy) € L, we define R(X) = (R (X),..., Rn(X)) as
Ri(X)= — Xi+ AXE(X)Ai+ Qi— (AX&(X)Bi+ L) ( BI&(X)Bi + Ri) H(Br&(X)Ai + LY).
We introduce the following notation
N={X=(Xy,...,Xy) € Land B/ §;(X)B; + R; >0,i=1,...,N}
M={X=(X;..,Xy) € N,R(X)>0}
M:={X=(X.. Xy) €eN,R(X)=0}.

As we shall see in the proof of Theorem 2, M can be written as a convex set represented by the
equations (10.b) below.

Remark 2: For the deterministic discrete-time algebraic Riccati equation (that is, N = 1) with
L=0,Q>0,R=1,itwasshown in [23] that if R(X) = 0 (and thus (B* X B+1) ! exists)
then B* X B+ I > 0. The extension of this result for the CARE does not hold as can be seen in
the following counterexample. Consider N = 2, 4 =1,A4, = % By =By=1,Q1 =Q2 =0,
Ri=Ry=1, [} = Ly =0, p;1 = %, p,, = 3. Then it can be shown that the CARE has the
following four solutions:

X;=X;=0,X]=15562 X;= —3.42

X3= —0.8308, X3 = —0.3999,X}= —9.4754, X3 =0.3199

and it follows that for the second and forth solutions we have
14 E(X?) = — 1.7979, 1 + E(X?) = 0.0681,14 £(X?H = 0.0955, 1 + E(XH) = — 3.5778.

Therefore even with L; =0, Q; >0, R; = I, we cannot say that if X isahermitian solution of
the CARE then [ + BZ.‘EZ-(X)BZ- > 0.

We make the following definitions:

Definition 5: We define S(.) : H™" — H", D(.):H" — H™ and F(.):L — H"™ in the
following way; for F'= (Fy,...,Fy) e H™" and X=(X,...,Xy) in the appropriate
doman (H" or L), S(F)=(Si(F),...,Sny(F)), D(X)=(D1(X),...,Dny(X)) and
F(X) = (F1(X),..., FN(X)) aredefined, fori = 1,...,N,as

et (% 5)(1)
Di(X) = B} &(X)B; + i

Fi(X) = — (B{&(X)Bi + Ry) (B &(X)Ai + L),

The proof of the following lemma is straightforward but otherwise long, and therefore will be
omitted (see [OZ] or [RV] for similar results).

Lemma 4: Suppose that X € L and for some F = (ﬁl, e ﬁN) e Hw™m,



a) X=(X,... ,)A(N) € H" ishermitian and satisfiesfor i=1,..., N
— (4 + BE) &X) (A + BF) = S(F).

Then,fori=1,..., N,

(X; — X)) — (Ai+ BE) &(X-X)(4; + BF) = R;(X)+ (8.2)

(F; — Fi(X))* Dy(X)(F; — Fi(X)),
b) Moreover, if Xel, thenfori=1,...,N
(Xi = X)) = (A; + BiF (X)) E(X = X) (A; + BiFi(X)) = Ri( X) + (8.b)
(Fi(X) = Fi (X)) Di(X)(Fi(X) = Fi( X))+ (F; — Fi(X)) Di(X)(F; — Fi(X)).

c) Furthermore, if }A/:(171,...,}7]\;)eH”ishermitian and satisfies, for
i=1,...,N

Yi — (A + BiF(X) & (Y) (4 + BiF(X)) = Si(F(X))
thenfori=1,..., N,

(X; = Y) — (A + BF; (X)) &(X=Y) (A; + B,F;(X)) = (8.c)
(F; — Fi(X))* Di(X)(F; — Fi(X)).

We following theorem proves the existence of the maximal solution of (7) in M.

Theorem 1: Suppose that (A,B) is mean square stabilizable and M # (). Then for
1=0,1,2,..., thereexists X' = (X! ,..., X' ) which satisfies the following properties:

a)X0 > x> ... > X! > X, for arbitrary X € M; (9.a)
b) ro(£') <1, where £/(.) = (£L(.),..., £ ())andfori=1,..., N,

4() A& ()AL

Fg = fi(Xl_l)for 1=1,2,.... (9.b)
) X! — A&, (XAl = Sy(FY), i=1,...,N. (9.0)

Moreover there exists X* = (X7,..., X}) € M such that X* > X for any X € M and
X' — X* asl — oo. Furthermore r;(£*) < 1, where £ (.) = (£ (.),..., L}(.)) is defined
asL!(.)=A"&()Ar fori=1,...,N,and

Ff = F;(XT)

Proof: Let us apply induction on/ to show that equations (9) are satisfied. Consider an arbitrary
X € M. By the hypothesis that (A,B) is mean square stabilizable (see definition 2) we can find



FOsuch that 7, (L) < 1, where £9(.) = (£9(.),...,£3.())) and L£I(.) = A¥&;(.)AY with
AY = A;+ B;FY. Thus, from Lemma 3, there exists a unique X = (X9, ..., x%) e H”
satisfying
X0 — A (XA = §;(FY),i=1,...,N.
Moreover, since S(FV) is hermitian, we have that X¥ is aso hermitian. Settingfori=1,..., N,
F; = Fi(X).
we have from Lemma4, equation (8.@) that fori=1,..., N
(X) — X;) — A E(X) = X) A) = Riy(X)+(F) — )" Di(X)(F) - F)
and since R;(X)+(F) — F;)*Dy(X)(F) — F;) >0,i=1,..., N and 7,(£°) <1, we have
from Lemma 3 again that X° — X > 0. Thisalso showsthat X! € N, since that
Di(X") = Bi&(X°)B; + R; > BI &;(X)B; + R; = Dy(X) > 0,
and thus equations (9) hold for I = 0. Suppose now that we already have a sequence { X' };:01
satisfying equations (9). Set
FF = Fy (XM
k._ k
AF = A+ B;FF.
From equation (8.b) in Lemma 4, we get that
(X} = Xp) = AT E(XM = X) Af = Ri(X) +(Ff = F) Di(X)(F} — Fy) +
(FF = FE1) Dy(XE 1) (FF = FEY) > (FF = FEYy Dy (XY (B = FEY)

and since, by the induction hypothesis, D;(X*~1) > 0 fori=1,..., N, wecan find 61 > 0
such that D;(X*~1) > §*=11. Thus, fori=1,..., N,

(XL Xx) — A g (xF - X) AF > S L(FR — FFL(FF - FRL),

and from Lemma 2, (L) < 1. Let X* be the unique hermitian solution of (see Lemma 3 and
recall that S(F") is hermitian)

XF— A e (xF)AF = §;(F!),i=1,...,N.
Equation (8.9) in Lemma4yidds, fori=1,..., N,
(XF— X;) — AP & (XF - X) Af = Ry(X) +(FF - B Di(X)(FF — F)

and since r, (L) < 1, we get from Lemma 3 that X* > X. Thus D(X*) > D(X) > 0, which
shows that X* € N. Equation (8.c) in Lenma4yiddsfori=1,...,N

(081 = X — AP E (X1 - X AF  (FE — 1) Dy (X )(FE - B,

which shows, from the fact that ro(£%) < 1, (FF — FF=1)"D;(X*=1)(FF — FF-1) is positive



semi-definite for each i=1,..., N, and Lemma 3, that X*~1 > X* > X. This completes the
induction argument for equations (9). Since { X'}, is a decreasing sequence with X' > X for
dl1=0,1,..., we get that thereexists X+ hermitian such that (see [W1], page 79) X! | X* as
| — oo. Clearly, X* > X, and thus D(X*) > D(X) >0, showing tha X+ € N. Moreover,
substituting FZZ = F;(X!=1) in (9.c) and taking the limit as I — oo, we get that

0= X1 — (A + F(X") EXT) (A + F(XT)) = Si(F(XT)),i=1,...,N.
Rearranging thetermswe obtainfori =1,..., N, that
X! = AE(XT)A; +Q; — (ATE(X)B; + L) (B E(X")Bi+ Ry) (BI&(X) A+ L)

thet is, R(X ™) = 0, showing the desired result. Since X is arbitrary in M, it follows that X* > X
for dl X € M. Finally notice that since -, (£¥) < 1, we get that (see [S], p. 328, for continuity of
the eigenvalues on finite dimensiona linear operator entries) 7,(L*) <1, where
LH()=AE (VAT AT = A+ BFf and Ff = F;(XT). O

The next result establishes a link between a LMI (linear matrix inequality) optimization problem
and the maxima solution X+ in M, and can be seen as a generdlization of a result presented in
[RG], for the case in which L; # 0 and @; and R; are indefinite. Suppose that al matrices
involved below are real. Consider the following convex programming problem:

maxtr (i Xl> (10.9)

subject, fori=1,..., N,to

X+ ATE(X)A +Q; ATE(X)Bi + L

B;kgz(X)Az—{-L:‘ B;kgz(X)Bz"*'R@ ZO,BiEi(X)Bi+R¢ >0,X'Z'=Xv;E (10.b)

Theorem 2: Suppose that (A,B) is mean square stabilizable. Then there exists X* ¢ NA/I[ such
that X* > X for dl X € Mif and only if there exists a solution X for the above convex
programming problem (10). Moreover, X = X*.

Proof: Firgt of all notice that, from Schur complement (see [SSC], page 13), X = ( Xj, ..., Xyn)
satisfies the restrictions (10.b) if and only if

— X+ AT E(X)Ai + Qi — (ATE(X)B; + L) (B; & (X) B + R) (B &i(X)Aj + L) > 0
and B;‘(‘?Z-(X)BZ-+R@- >0, X; = X7 for i=1,..., N, tha is if and only if X € M. Thus if
X"eM is such tha X" >X for dl XeM, dealy tr(X]+---+X})>tr
(X1 + -+ Xy)fordl X €M and since X* € M C M, it follows that X* is the solution of the
convex programming problem (10) On the other hand, suppose that X is a solution of the convex

programmi ng problem (10). Thus XeM 7é ¢ and from Theorem 1, there exists X* € M such
that X* > X. But from the optimality of X and the fact that M C M,



~

tr(XF— X)) + o+ tr( X — Xy) <0.

S'nceXI—)A(l 20,...,X7V—JA(N2O,WehaveXI:)A(l,...,XJr :)A(N. O

4. Stabilizing Solutions

In this section we shal be interested in finding conditions for the existence of mean square
stabilizing solutions for the CARE (7), which will be defined below. Before we do so, we need the
following definition:

Definition 6: We say that X = ( Xj, ..., X) € H" isamean square stabilizing solution for the
CARE (7) if XeL, R(X) =0 and 75 (£) < 1, with £(.) = (£,(.),...,£Ln(.)) asin (3b)
aboveand I'; = A+ B;F;(X),i = 1,...,N.

The next lemma establishes uniqueness of the mean sgquare stabilizing solution if M # () (see
proof in the Appendix).

Lemma 5: If M # () then there exists at most one mean square stabilizing solution for the
CARE (7), which will coincide with the maximal solution in M.

In what follows, we write
R(X)% = (R1(X)%, ..., RN(X)") and A+ BF (X) := (A1 + B1Fy(X),..., Ay + ByFn(X)).

Theorem 3: Suppose that M # (). The following assertions are equivalent:

i) (A,B) is mean sguare stabilizable and (R(X)”,A+BF(X)) is mean square
detectable for some X € M.

i) there exists a mean square stabilizing solution to the CARE (7).

Proof: Let us show first that i) implies ii). From the hypothesis that (A,B) is mean square
stabilizable and M # () we get, from Theorem 1, that there exists the maximal solution

Xt =(X],...,X%) €M. Take XeM such that (R(X)"%,A+BF(X)) is mean square
detectable. Setting " = F;(XT), A' = A+ B;F;, F; = F;(X), and reclling that
XT— A E(X)AS = 8§(F 1) ,i=1,...,N
we get from Lemma 4, equation (8.8) that fori=1,..., N,
(X5 = X;) = AT E(XT = X)AT = Ry(X)+(F = B)'Dy(X)(Ff - F). (12

From the fact that R;(X) > 0 and D;(X) >0,i=1,..., N, we get that we can find 6 > 0
suchthatfori=1,..., N,

Ri(X)+(Ff = B)' Di(X)(F = Fy) 2 6(Ri(X)+(F; = Y (F - F)). (12

7

From Definitton 3 and the mean sguare detectability hypothess, we can find
H=(Hy, ..., Hy) € H" suchthat r,(£) < 1, where £(.) = (£,(.),...,Ln(.)) isasin (3.b)



sbove with I = 4 + B F;+ H;R;(X)%Define ' =(F, ...,

(Flv .. FN) € Hnn+m B (Bb .. EN) € H*F™mn g5

~ 0 ~ Ri(X)72\ ~
F;—:: (F;'):Fi::< ;‘Z) )7B£::(Hi Bi).

Thenitiseasy toverify thatfori=1,..., N

B e mmnim, B

Ai+737;ﬁ A1+BF+ A+
and from (11) and (12) we get that

5(F, — T (B - By) = 8(Ri(X)+(F — EY (Ff — F)) <

i} ~ ~
(XF = X;) = A7 E(XT = X)AT = (X[ = X)) = (A + BiF; )" &(XT = X) (A + BiF;).

Satting £7(.) = (L7(.),--, Ly(), L) = AZ**E,L-(.)A;’, fori=1,..., N, and recaling that
Xt — X >0,weget from Lemma2that 7, (L") < 1.

Let us show now that ii) impliesi). Supposethat X = ( X3, ..., Xy) € M is the mean square
stabilizing solution for the CARE (7). Then clearly (A,B) will be mean square stabilizable and
(R(X)”2,A+ BF(X)) = (0,A+ BF(X)) will be mean square detectable. O

Next we present some sufficient conditions for existence of the mean square stabilizing solution,
when M # (). We will replace in Theorem 3 the mean sguare detectability condition by conditions

based on the observable and non-observable modes of (R;(X)”2p*2(A;+B;F;(X))). The results
17

presented here pardld those in [C]. We shdl assume from now on that al matrices involved in
the CARE (7) are real. We make the following definition.

Definition 7: Consider I'= (I, ..., I'y) € H", with ro(p72l;) <1,i= 1,...,N. We set
A € B(H") in the fdlowing way: for V = (V1,..., Vy), A(V) = (Al( ) AN( ) is
defined as,

V)= St (r (Z PV 1) ()" 13

k=0 J=Lj#i

The following result was proved in [C].

Lemma 6: Consider £ and A asin (3.b) and (13) respectively. The following assertions are
equivalent:

i)re (L) < 1.

i) ro(p?20;) < 1,fori= 1,...,N,and ro (A4) < L.

o0
i) ro(p?2l;) < 1,fori= 1,...,N,and >_ A*( H) < oo for some H > 0 in H"*.
k=0

10



In the next Lemma we use the same notation asin Theorem 3, and set D ={ 2 € C; ||2|| =1}
(see proof in the Appendix).

Lemma 7: Suppose that M # (), (A,B) is mean square stabilizable, and for some X € M,
(Ri(X)l/z,pz./Z?(AﬁBi}“Z-(X))) has no unobservable modes in D for i= 1,...,N. Then
rg(p;/Z?Aj) <1, for i= 1,...,N, where AT = A;+ B;F;(X") and X" is the maximal
solution of the CARE (7) in M.

In what follows, we set pg. =P (0(T)=4|6(0)=1) and define min{0} := co. Again we use
the same notation asin Theorem 3, and st E = { z € C; || 2| <1}.

Theorem 4: Suppose that M # () and (A,B) is mean square stabilizable. Suppose also
that for some X € Mandeachi = 1,..., N, one of the conditions below is satisfied:

a) (R;(X)"p(A;+B;F;(X))) has no unobservable modesin E, or
b) (Ri(X)"p72(Ai+B;F;(X))) has no unobservable modes in D, 0 is not an
unobservable mode of (R;(X)"2,A;+ B;F;(X)) and

() = min{T;piTj > 0 for some j € T} < oo

where T = {n €{1,...,N}; x satisfies condition a)}.

Then X+, the maximal solution of the CARE (7) in M, is the mean square stabilizing
solution of the CARE (7). Moreover, XT — X > 0.

Proof: This proof parallels the one in Theorem 2 of [C]. From the hypothesis made and Theorem
1, there exigts the maxima solution X+ € M, and from Lemma 7, rg(p;/Z?A;“) <1, for i =
1,...,N.SetZ = (Zl, ey ZN) and H = (Hb cee HN) as

z; = (RiX)" (Ff - F)*Di(X)*)
o0
1 1
H; = ];0 (PAT ) 277, (pPAT)F > 0 (14)

Set A(.) = (A¢(.),..., An(.)) asin (13) above with I' = A™. The proof of the steps below can
be found in the Appendix (in Step 3bdlow, Y¢ ={1,..., N} —-1T):

Sepl: > AF(H)<oo0.
k=0

Sep 2: ifi € T then H; >0.

11



Sep 3: if i € T¢thenthereexistip, € T¢, k=0,...,{(i) — 1, and j € T such that

)~k
Hj>0and£2 Afk(H)>O,k:O,...,§(i)—1.
=0

_ ¢ _ o0 _
Step 4: Set ¢ = max{¢(i);ie Y} and H = > A*(H). Then H > 0 and >_ A*(H) < oc.
k=0 k=0
Sep 5. X — X > 0.

From Lemma 6 and Step 4, ro(LT) < 1. Step 5 completes the proof of the Theorem. O
We have the following Corollary, proved in the Appendix.

Corollary 1: Suppose that M # () and (A,B) is mean square stabilizable. Suppose also
that for some X € Mlandeachi= 1,..., N, one of the conditions below is satisfied:

8) (Ri(X)"p*(A;+ B;F;(X))) is observable, or

b) (Ri(X)"™p”(A;+B;F;(X))) is detectable, 0 is not an unobservable mode of
(Ri(X)*, 4+ B;F;(X)), and ((i) < oo.

Then X, the maximal solution of the CARE (7) in M, is the unique solution of the CARE

(7) such that X+ — X > 0. Moreover, X* — X >0 and X is the mean square stabilizing
solution of the CARE (7).

5. The CARE Associated to the Hso-Control

In this section we shall consider the coupled algebraic Riccati equations that arise in the Hyo-
control theory of Markovian jump linear systems (see [CV 1]). In this case we do not have that the
convex set M is not empty, so that the results of the previous section cannot be applied directly
(see Remark 3 below). However a recursive agorithm for this case can be obtained. This
agorithm can be seen as an adaptation of the agorithm presented in [SW] from the deterministic
to the Markovian jump case.

Before we present the definition of the H,-control of Markovian jump linear systems, we need to
introduce the following definitions. For an increasing filtretion {3 },k = 0,1,..., defined on a
probability space (2,F,P), we set lg as the Hilbert space formed by the sequence of second

order random variables z = (2(0),z(1),...) with z(k)eC" and §; adapted for each
o0

k=0,1,..., and such that |23 := X" [|lz(k)||5 < oo, where |z(k)|3 = E(||2(k)|/?).This
k=0

o0
norm comes from the inner product < ;2> = > E(y(k)*z(k)),fory,z€ C". See[CV]] for
k=0
more details on the congtruction of the probability (£2,§,7) and increasing filtration {F. } .

12



Consider the following discrete-time Markovian jump linear system

a:(kz+1):Ae(k)x(k)+Be(k)u(k7)+D9(k)w(k:)

z(k) = My (k) +Jpgyu(k), (0)=w0,0(0) =6 (15
with D= (D,...,Dy) e H", M= (My,..., My) e H™, J= (Jy, ..., Jy) € H™S and
with J;‘Ji >0,i=1,..., N. For amplicity we shal assume that Ji*Ji = IandthatM;‘Jl- =0
fori=1,...,N. As pointed out in [CV1], it does not represent any loss of generality for the
Ho-control problem. For u = (u(0),u(1),...) andw = (w(0),w(1),...), se

)

X(907x07u7w):($(0)7x(1) )andZ(HU,mO,u w) ( (O 72( ) )

where z(k) and z(k) are given by equations (15). Clearly X(0y,.,.,.), Z(8y,-,-,. ) are linear
operators.For F'= (Fy,..., Fy) € H™™, consder equations (15) with u (k)= Yz (k ) and
set:

SLN(G)), £i() = (A4 + BF) &()(4 + B F)
Xp (o, w) )
Zp(0y,w)=(0,2(1),...)
The following lemma was proved in [CV1]:

Lemma8: (£ ) < 1ifand only if Xp(6y,w) el for any w € 1.

From this lemma it follows that if r,(L)<1 then Xg(6y,.)€ B(1;]7) and
Zp(0y,.) € B(IJ]3). Therefore we can define the h-induced norm of the operator Zp(6,.) in
the usua way, that is,

1 ZF 6y, )]

| Zr(0y,.)|| = sup
wE lg

The Hxo-control problem of Markovian jump linear systemsiis defined in the following way:

H-control problem: For afixedv > 0, find F = (F, ..., Fy) € H®™ which stabilizes (A, B)
in the mean square sense and such that || Zz(6,,.)|| < v for every 6.

In other words we seek for a feedback controller u (k) = Fy;, z (k) which stabilizes the system
(15) in the mean square sense and ensures that the Is-induced norm from the additive input
disturbance to the output is less than the attenuation value v. For the case with no jumps (N = 1)
this definition coincides with the standard H . -control problem definition.

We have the following Theorem, proved in [CV1], regarding the H.-control of the discrete-time
Markovian jump system given by equation (15). Set Q; = M;.‘MZ-, 1=1,...,N.

Theorem 5: Suppose that (M,A) is mean square detectable and consider v > 0 fixed.
Then there exists F'= (Fy,..., Fy) € H»" which stabilizes (A,B) in the mean square
sense and such that |Zp(6y,.)|| <v for every 6, if and only if there exists
P=(Py,..., Py) € H*"" satisfying the following conditions:

13



)I— 5D E(P)D;>0,i=1,...,N. (16.9)

1

i
Py = Qi+ A;&E(P)A; —

* -1 %
] 1 I 0 B; 1 B;
A&P(B; D) | _) | 1y 8B 3Di) L |Ei(P)A; =
v Vg
1 1
Qi +(Ai + BiF; + ~D;Gi)"E(P) (4 + BiF; + —DiGy) + Fy Fi = GI G, (16.b)
where
1 1 -1
Fi= — (I+ B{&(P)Bi + B &(P)D;(I- — D} &(P)D;) ' D} & (P)B;)
v v

(B (1+ 5 &(P)D; (1= 5 D: E(P)D) ' D7) E(P)A;) =

>k -1 Sk 1
— (1+ B Ei(P)Bi) B &(P)(Ai+ = D) (16.0)
-1

. 1, , i
Gi (I——QDZ-&(P)D@'JF—QDl-gi(P)Bi(IﬂLBigi(P)Bi) 'B! gi(P)Di>
() (%

(20; (1 - &P)B: (1+ B &:(P)B) ™ B)E:(P)A;) =

(1- SD:&(P)D) " (D&)A, + BF) (169)

i)y 7o (£) < 1 where £(.) = (£1(.),..., Ln(.)) isdefined as
1 . 1
Li(.) = (Ai+ BiF; + —D;iGy)" &()(Ai + BiF; + —DiGy) (16.€)
Remark 3: From equations (16.a) and (16.b) we can see that we cannot apply directly the results

of the previous sections.

Remark 4: The condition that (M, A) is mean square detectable (together with mean square
dabilizability of (A,B)) is only used to guarantee the existence of the mean square stabilizing
solution to the CARE (see Theorem 3)

-1
P, = Qi+ ATE(P)A; — ATE(P)B; (I+ B;.k&;(P)Bi> B E(P)A;. 17

In view of Theorem 4, (M,A) mean square detectability could be replaced by the following
condition. Foreachi=1,..., IV, one of the following conditions below is satisfied:

a) (Q;/Q, piiA;) has no unobservable modesin E, or

b) (le, p;iA;) has no unobservable modes in D, 0 is not an unobservable mode of (Q;/z, A)
and (i) < oo, where ((i) isasin Theorem 4. (18)
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The next result shows that F'= (FY, ..., Fy) as defined in (16.c) stabilizes (A,B) in the mean
sguare sense (see proof in the Appendix).

Lemma 9: Suppose that P= (P;,..., Py) € H"" satisfies equations (16) and set
L()=(L1(.),..,Ln(.))withL; () = (A; + B F)*& () (A4; + B/F;). Thenrs (L) < 1.

For V.= (V1,...,Vy) € H"" suchthat I — 5 D &(V)D; >0,i=1,..., N, set

MV) = (Mi(V),.... Mn(V)), N(V) = (M(V),..., Nn(V))
W(V) = (Wl(V),..., WN(V),and V(V) = (Vl(V),...,VN(V))

as
M;(V) = Qi+ A E(V)A; —

B* B
(5 20+ (ih Jewrm 00| (15, Jama

Wi(V) =1+ B:&(V)B;

A:E(V)(B; 4Di)

v

Ni(V) = (1= 2D; E(V)D; + =D} (V) B I+ B E(V)B) ™ BL&(V)Dy)
Vi(V) = D (1= &(V)Bi(1+BiE{(V)By) ' BHE(V ) A; .
Straightforward calculations show that forany i =1,..., N, zg € C", ug € C™, wy € C7,
[ Mizol|® + llugll® — v*lwoll* + (Ao + Biuo + D, up)* E(V)(Aizg + Biug + Dyuyp) =
ey MV ) + i) Y2 (g + @ (Vi) | = [0 2 (Vi 20))| 29
where,
w(V,i,z0) = Ni(V)"V(V)g
u(V,i,xo,wp) = Wi(V) " HBIE(V) Ajzg + B &(V) Djuy). (20)
The next Theorem is the main result of this section.

Theorem 6: Suppose that either (M, A) is mean square detectable or condition (18) is
satisfied. Suppose also that there exists P = (P, ..., Py) € H"" satisfying the conditions
(i), (ii), (iii) of Theorem 5 (equations (16)). Set for x =0,1,... , Pt = M(PF), where P
is the maximal solution of equation (17). Then P converges to P exponentially fast as s
goes to infinity.

Proof: First of dl rotice that, from Lemma 9, F'= (F1, ..., Fy) as defined in equation (16.c)
dabilizes (A, B) in the mean square sense and thus, (A,B) is mean square stabilizable. From
mean square detectability or condition (18) we get that there exists the mean square stabilizing
solution PP to equation (17), which coincides with the maximal solution. Consider equation (15)
with an arbitrary w = (w(0),...) €, and the minimization problem

. S 2
Tty 2B}
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where  U:={u=(u(0),...)€ly’ such tha =z=(z(0),...)ell for every
w=(w(0),...)€l] where z is given by (15)}. It has been shown in [CV2] (see also [CV1])
that there exists M(QO,.,.)GIB%((C”XZS,ZT) such that U(6y,zp,w)eU and

u=(u(0),...)=U(bOy, xg,w) solves the minimization problem posed above. For arbitrary
w el and u € U, we have from eguations (15), (19), and (20), that

E(ef Py, o) — E(a(v +1)* Py (v +1) ZE( vz (k) -

P (k4 1) Py (k1)) = ZE(( <k>—x<k+1>*Pe(k+Dx<k+1>\@k))
=gE(mm*Pe(k)x(k)—x<k+1>*ee<k>< patheD) = S (I - o) -
S 7 0.0, ) )

S 1 et >—w<m<k>,x<k>>>u2>-

Recaling that v € U and w € Iy so that E(||z(k)||?) goes to zero as k goes to infinity, we get
that

ZE(H BI1% = Plwk)]?) = ZE(HWQ P2 (u(k) +@(P,0(k). (k). (k) )

+ Ze(HNe P2 (w (k)@ (P oK) 2 (k) ) + Bt Poy o)

and it is clear from above that

E(u Pyyw0) = sup_ inf {ZE(H )12 = ?lw(k)]?)}

elT uelU
= szo,xo,uwo,xo,w),w)n% — w3 (21)
where w=(w(0),w(1),...),w(k)= G T(k),
ﬂ:M(QO,xO,A)—(uA(O),ﬁ(l),),ﬂ(k) ( ZB\( ) and
T (k+1)=(Ag) + Bowy Foky + v Do) Gog) ) E(K), Z(0) =0, 0(0)= 6p. Defining

" ={w=(w(0),...) €l w(k)=0 fork:>;<;} for k=0,1,..., and supposing for the
moment that 1 — = D*E(P*~1)D; > 0 fork > 0, so that P* = M (P*~1) iswell defined, we
getin asmllarway asabovethat

E(w} Py @) = sup_inf {ZE(H B2 = (k)3

welM uelU

= [12(60, 0, U (B0, o, w") ,w")||5 — v*[|lw||3 (22
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where wk = (w(0),...,w" (k= 1),0,...) (k) = Ny (P11 (PEF-1)a (k)

fork =1,2,...,andu” =U(0y, xg, w") = (u(0),u"(1),...), with
W)= = Way (P07 By €0 (PR (4
Dyt Nty (P 1) Wy (P41 o= 0,1

u”(k) = — W@(k) (PO)_lBg(k) gﬁ(k) (PO)Ag(k) (k}) fork > k.
Let us show by induction on « that
Pl < PR < P (andthus I — —DE&(P¥)D; > T— =Di&(P)D; > 0).
v v

For x = 0 it is clear from (21) and (22) that P < P. Suppose now that P*—1 < P, so that
I— 5D &(P~1)D; >0 and PX = M(P"1) is well defined. Since I~ c 2% C It it
follows from (21) and (22) again that P"~1 < P* < P, showing the induction argument. Set
w" = (w"(0),...,w" (k—1),0,...,0), w"(k)=w(k) for k=0,...,x — 1. From the fact
that 7, (L) <1 (equation (16.€)), we can find a>0,0<b<1, such tha |L£F|| < abF.
Moreover, we have that (see [CF2], proof of Lemma 1)

@0k) 1 = E(+ | Gow 20 |) < crBURWN) < o, ¥l < 0ol

for appropriate constants ¢y, co, c3. Therefore

. 1
@ — @l = lew )5 < &0 |zo|3- (23)
—b

Similarly we can show that || Z(6y, zo, U(0p, zg,w),w)lly < cl2oll, for some appropriate
constant c/3 > 0. From equation (21) with xy = 0, we have that

0= sup {||Z(6,0,U(09,0,w),w)||? - v?[w]|%}
welg
> || Z(69,0,U (8,0, — ") 7w — ") |5 — v?[|[w — w"3. (24)
Equations (22), (23) and (24) with 2y € C™ and 6, = i yidd
ol PPy > Z (1,30, Ui, w0, w"),w") |5 — 0*|w"|3
> || Z (im0, U(i 20,0, @) — Z(5,0,U(i,0,0—0") o — @) |3 — *|| @3
> HZ(Z,(IZ‘(),Z/{(Z,$O,QU),/(U)H2—UQH HQ
(Z(i,20,U(i,20,w),w);Z(4,0,U(i,0 ?u—@“)ﬁu—?u“»\
> xf Pyay — 2|| Z(i,20, U (i, 20, @), @)l Z(7,0,U(,0,w—w"), @ — )|,

> wy Py — eqllaoll, |1 — @l > Py — es ol 302

for appropriate positive constants ¢4 and ¢;. Thus
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< ——z (P — Pizg < &5 b2
[zoll5

which shows that P converges to P exponentialy fast as x goesto infinity. O

In summary, we have the following procedure for deriving a stabilizing solution P satisfying
equations (16), whenever it exits:

i) Solve the convex programming problem given by equations (10). Set the solution of this problem
as PV,

ii) Determine P through the following iterations. P+l = M(P¥).

iii) If P converges to P as x goes to infinity, then check if 7, (£) < 1, where L is given by
equation (16.€). If it is, then P isthe desired solution.

6. Conclusion

In this paper we have studied the discrete-time coupled algebraic Riccati equations (CARE) that
arise in quadratic optimal control and H.-control of Markovian jump linear systems. For the
equations that arise in the quadratic optimal control problem, we considered the matrix cost to be
only hermitian. Contrarily to the deterministic case, the hamiltonian approach, which leads to
extended matrix pencils, fails to characterize the solutions of the CARE via the generalized
eigenvalues and eigenvectors of the extended matrix pencils. In fact, as illustrated in Remark 2,
some results that hold for the usual discrete-time algebraic Riccati equations cannot be extended
to the CARE. In this paper we adopted the approach used in [RV] to derive our conditions for the
existence of maximal and stabilizing solutions for the CARE. It was shown in Section 3 that under
the assumption of a convex set not being empty and mean square stabilizability, there exists the
maximal solution for the CARE. This solution can aso be characterized as the solution of a
convex optimization problem, a result that leads to numerical procedures. In Section 4 necessary
and sufficient conditions for the existence of the stabilizing solution were derived, using the
concept of mean sguare detectability. This condition can be replaced by the usua observability
and detectability tests for linear systems, leading to sufficient conditions for the existence of the
stabilizing solution of the CARE. Section 5 presented a recursive procedure for obtaining a
gtabilizing solution of the CARE associated to the H.-control problem, whenever it exits. These
results generalize and unify severa previous ones presented in the literature of discrete-time
coupled Riccati equations of Markovian jump linear systems.
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APPENDI X

In this appendix we present the proofs of Lemmas 2, 3, 5, 7, 9, Corallary 1, and Steps 1 to 5 in the
proof of Theorem 4. For the proof of Lemma 2, we use the following fact:

Remark Al: For any S = (Sy,..., Sy) € H", we can find S € H"*, j=1,2,3,4 such that
S = (1= 82) 4+ /-1(53 — §%4) (cf. [14)]).

Proof of Lemma2: Set7 = L£*, sothatforany V = (V4,...,Vy) € H",

N
T;(V)=) pij AVidi, j=1,...,N. (A1)
=1

Note that for arbitrary e > 0 and V' = (V,...,Vy) > 0,

(A + BF)V{G; — E) B +B{(G; — ;)Viy(A; + B E)*
|
< E(Ai+ BE)ViAi+ BR) + 5Bi(Gi - R)Vi(Gi - B] B (A)
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and combining (A1) with (A2),

'\‘i |

0< Zp,]AVA*

i=1

Dij (Ai + BiF; + B{G; — Fz))Vz’ (Ai + BiF; + B{G; — F%))

M= L=

s
I
—

Pij [(Az‘ + B E)Vi(Ai+ B F)" +B{(G; — B)Vi(Ai + B F;)" +

(Ai + B F)Vi(G; — FJ B + B(G; — F;)V{(G; — F } H]

[

N
< (149D pij (A + B F)Vi(A; + B F)* pr )G — KT B
i=1
=(1+ 62)7}(‘/) +(1+ 52) Q;(V) (A3)
where Q(V') = (Q (V),..., Qu(V)) isdefined as
N
V)= i B{Gi— F)V{G;— E} B
i=1
and 7 = L*.9nce 75(7T) = r,(L) <1 by hypothesis, we can choose ¢ > 0 such that
rg(%) < 1,where§i() (14 €2)7T(.).Definefort=0,1,... the sequences
X(t+1)=T (X(t)) X(0) e H™
Y(t+1)="T (Y(t))+ S (X(1)), Y(0)=X(0) (Ad)
withQ () = (1+ £)Q(). Thenfort = 0,1,2, ...
Y(£)>X(1)>0. (A5)

Indeed, (A5) isimmediate from (A4) for ¢ = 0. Suppose (A5) holds for ¢. Then from (A3)
Y(t+1)=T (Y(t)) + G (X(1) = (1+ )T (Y(£))+(1+ 6%)Q(X(t))
> (14 )T (X(t))+(1+ 3)QX(1) > T (X(t)) = X(t+1)
showing the result for ¢ + 1. From (A4) it follows that

o to1-s / ~
vn=T"(xo)+ 37" (3 (x(s)
5=0

and taking thel-norm (equation (2.8)) of the above expression, we have that
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tls

S (xs)).

1

~t
ol < |7 ixo,

Since rg(%)<1, it is possble to find a >0, 0<b<1, such that H%SHgabs,
s=0,1,..., andthus,

t—1
IVl < bt XO)], +aY_ 6717 Q (x(5))]| .
s=0
Suppose for the moment that ioj H fo) (X(s))H1 < o00. Then
00 a oo t—1
DIVl < T IXO) N +ay > v || S (x|
t=0 t=0 s=0
. a X a B ~
- ol + 53 | 3o <

and therefore from (A4) and (A5), for any X(0) = (X1(0),...,Xn(0))>0,

o0

ogiH?t(x N, = 1xw ||1<Z;HY i < o
t= t=

=0

o~

As pointed out in Remark AL, any S = (S, ...,Sy) € H", can be decomposed as

S =(S'—82%)++/-1(8°

for some S* = (Sli, <oy S4) 20,0 = 1,2,3,4.Therefore,

ECEIIS ol EXE

t=0

M“>

Il
—_

7

— _ &8}
which shows, from [10] that 7,(7 )=r,(L) <1l. Remans to prove tha
s=0

o) (X(s))H1 < 0. Indeed, from (5) and setting ¢) = [(1+ )maa ||BZ~||2] X we obtain tht
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Taking the sum for s = 0 to r, we get that
io H < (X(S))H1 = CO{<X(O)3P> - <X(T+1);P>} < co<X(O);P>

sncethat P = (P, ..., Py) > 0 and thus <X(r+1);P> > 0. Taking the limit asrr — oo, we
obtain the desired result. O

Proof of Lemma 3: Sincer, (£) < 1, we have that (see [22], page 102)
S .
(T-Ly'()=>_£0)
=0

where 7 represents the identity operator. Therefore the unique solution Y of (6) is given by
o0

Y =>L/(S) ad if S € H™ (S € H"", S > 0 respectively) then Y ¢ H™ (Y € H"T,
j=0

Y > 0). For the remaining of the proof, see [3]. O

Proof of Lemma 5: Suppose that X= (3(1, e )A(N) is a mean square stabilizing solution for
the CARE (7). Clearly (A,B) is mean square stabilizable and since M # () we get, from

Theorem 1, that there exists the maximal solution X+ € M. We have that
— (A + BiF(X) &(X) A+ BiF(X)) = Si(F(X)),i= 1,...,N
and from Lemma 4, equation (8.a),
(Xi = XF) = (A + BiF;(X))" &;(X = XT)(A; + B Fi(X)) =
(Fo(X) = F(XD) Di(XT)(FdX) = Fi(XT)),i= 1,...,N.

Since D(XT) > 0 we get that
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(Fi(X) = Fi (X)) Dy (X (FAX) - Fi(XH))>0,i= 1,...,N

and combining the last two equations and recaling that X isamean square stabilizing solution, we
have from Lemma 3 that X — X > 0. But this also implies that D(X) > D(X") > 0 and thus
X € M. From Theorem 1, X — X+ < 0, showing the desired resuilt. O

Proof of Lemma 7: From the hypothesis made and Theorem 1, it is clear that there exigts the
maxima solution X for the CARE (7) in M. Asseenin Theorem 1, r,(£*) < 1 and from this
it is easy to verify that r,(p/2AT) <1, for i= 1,...,N. Indeed, ro(alt) <1 for dll
a €(0,1) and from Remark 1, ro((ap;)*AT) <1, for i= 1,..., N. Taking the limit & «
goes up to 1 we have the desired result. Suppose now by contradiction that, for some ¢ and some
A e C,with [Al = 1,and z # 0 inC", p72ATw = \x. From equation (11) we get that

0=z* ((Xj — X)) - pa AT (X - X) Aj)x = 2 A (i Dij (Xj . Xj))ij +

J=Ly#i

o (Ri(X)+(Ff = BY DyX)(Ff = )
andsince Xt — X >0,D(X)>0,R(X) > 0, we can conclude that

N
ac*A;r*j(:;#ipij (X;r — Xj))Ajac =0

" Ri(X)x = 0,and =™ (F;" — F;)" Di(X)(F = F)z =0
which impliesthat R**(X)z =0, ( F — F;)z = 0. Thus

P(Ai + BiF )z = p2(A; + B F,)z = Az and R*(X)z = 0
which is equivalent to saying that \ is an unobserveble mode of (R;(X)",p?2(A;+B;F;(X))) in
D, incontradiction with the hypothesis made. O

Proof of step 1in Theorem 4: We have from equation (11) that

N
(XF = X;) — pu A (XF = X) AT = A (Z Dij (XJ+ . Xj))Aj + 27,
oL
and thus
(XT-X)=H+AX"-X)>H. (A6)
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Iterating equation (A6) it follows that

4 t

> AR(H)>0 (A7)

S
S
b
sl
s
+

]
=
=
IV

o0
which shows that > A*( H) < oc. O
k=0
Proof of step 2 in Theorem 4: From equation (14), it is enough to show that (Z;, p;/;A;L) is
observable. By contradiction, suppose that A € C is an unobservable mode of (Z;, p;/;A:r), that is,
for somez # 0 inC",

1
./?A;r:v = Az

Ri(X)"x
=\ mort - mye ) 7

which impliesthat Fyz = F"z, and R;(X)*x = 0. Thus we get that
pZZA:Fx = p;/;(Ai + BZFZ“L)x = pi/f(AZ + B F)z = x,and R;(X)%z =0

that is, A is an unobservable mode of (Ri(X)l/z,p;/;(Ai +B; F};)). Since rg(p;/l?A;) < 1, we must
havethat || A|| < 1, which isa contradiction with ). d

Proof of step 3 in Theorem 4: Suppose now that i satisfies condition b). Set 7'= ((i) and
recall that ((¢) represents the minimum time that the Markov chain 6( k) takes to reach the set T
gtarting from the point i € Y¢. Thereforep;rj > 0 for some j € T and we can find a sequence of
distinct elements {ig, 71, ..., i7_1,ir}, i = i and ip = j, suchthat p;; p; i, --- Pi; ,j > 0 and
each iy, k=0,...,T— 1, satisfies condition b) (otherwise (i) would not be minimum). Let us
show by induction that (recall that A*( H)= (A¥(H),..., A% (H)) represents the operator A
applied k timesto H)

H;>0,H;  +A, (H)>0,.. H+A(H)+... +A'(H)>0.

As seen in Step 2, H; > 0. Suppose that H; + A; (H)+... +A£*k(H) > 0. Let us show
that

Zk1+AZk 1( )++Az;ilf+l(H)>O

Suppose by contradiction that for some x # 0 inC",

(H;, , +A;, (H )+...+A§;’f+1(ﬂ))x:o.

Then we must have that H;, 2 =0, ... ,Ag];"f“(H)x = 0, and thus
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0=a*(Ai_ (H)+...+ Agj“(H)m:x*Aikfl (H+ A(H)+...+ ATF(H)x

00 N
Lk 12 +k \s f4+* X Tk + 73 + s
-7 (szo(p’ik—lik—lAik—l) Aik71l< 1; Piyt(Hi+ o+ Al (H)))Aik—l (pik—lik—lAik—l) )x
= =LiFk—1

N
> o (A;;:( S py (o AR AT )x >0

=111
and since p;, ;> 0, ip1 # ip, H + ... +Ag;—’€(H) > (), we conclude that Ai: =0,
Note now that H;, = =0 implies (see (14)) that Z;, = =0, and thus R;,  (X)z=0, and
F© x=F;  x. Therefore,
Zk71 k—1
+ _ _ Y _

Al = (Aj_, + BikleZ.:_l)a: = (A, , +Bj,  Fi, )z =0,and R} (X)z =0
which implies that 0 is an unobservable mode of (R;, | (X)*2,4;, | + B, F;, ), contradicting
the hypothesis b) of the Theorem. O
Proof of steps4 and 5in Theorem 4: From Steps 2 and 3,

_ ¢
H=>Y AH)>0, (A8)
k=0
and thus, from Step 1,
00 _ 00 ¢ 00 0
0< Y AF(H) =Y AN(Doar(m) =D AR (1) <Y AF(H) < oo
k=0 k=0 s=0 k=s k=0
- - C
Findly, notice from (A7)and (A8), that X+ — X > > A%(H)>0. O

s=0

Proof of Corollary 1. This proof parallels Theorem 3 in [2]. As seen in Theorem 4, X isthe
unique mean square stabilizing solution of the CARE (7) and X+ — X > 0. Suppose that X is
another solution of the CARE (7) and that X — X > 0 (thus X € M). If we show that
ro(A;+B;F;(X))<1,i= 1,...,N, then by repedting the same arguments as the proof of
Theorem 4, we get that X is the mean square stabilizing solution, and thus X = X . Suppose by
contradiction that for some i and some A € C, with [|A|| > 1,and = # 0 inC",

P(A; + BiFi(X))x= Az
Then from Lemma 4, equation (8.8) and setting F'; = F;( X ), we get that
(X = X0) = pa(A + BF )" (X = X) (A + BF ) o = (1— |\ (X, - X;) o =
E— N _ E— _ _
o (04 BE) (3 90a(X5- X)) (i BE) + RiC0+(Fi = B) DUCO(F - ) )
J=Lj#1

andsince|[ A >1and X — X >0,D(X)>0,R(X) > 0, we can conclude that
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(1= JAI)2* (X = X)) 2 =0

N

a* (A + BiF;)" (Z Pij <Xj - Xj)) (A4 + Bl )z =0
Tt

*R;(X)x =0,and 2* (F; — B)*D;(X)(F; — F)z = 0.

Therefore pZ.Z(AZ- + BiF )z = pZ.Z(AZ- + BiF))r = Az, and R;(X)"2 = 0, which shows that A

in an unobserveble mode of (R;(X),p?%(A; +B; F;)), contradicting &) or b).

Proof of Lemma 9: Setting

we get from (16) that for some « > 0,

~ o~ ~ ~

Pi— (4 +BF) &P (A+BF)>aF; -G ) (F;-Gy)

~

and noticing that £;(.) = (4; + B ;G ;)*&(.)(A
(16.€)), we get from Lemma 2 that r, (£ ) < 1.

~.
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+Bi5i) with 7 (£) < 1 (from equation

O



