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Abstract
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tracking error when the expected returns of the risky and risk-free assets as well as the
covariance matrix of the risky assets are not exactly known. We assume that these
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of minimum worst case volatility of the tracking error with guaranteed "xed minimum
target expected performance. The second one is to "nd a portfolio of maximum worst
case target expected performance with guaranteed "xed maximum volatility of the
tracking error. We show that these two problems are equivalent to solving linear-matrix
inequalities (LMI) optimization problems, so that the powerful numerical packages
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1. Introduction

The concept of mean-variance optimization, introduced by Markowitz (1959),
is the most used and well-known tool for economic allocation of capital
(Campbell et al., 1997; Elton and Gruber, 1995; Jorion, 1992). More recently, this
concept has been extended to include tracking-error optimization (Roll, 1992).
In this case the professional money manager is judged by total return perfor-
mance relative to a pre-speci"ed benchmark portfolio, usually a broadly diversi-
"ed index of assets. The allocation decision problem is based on the di!erence
between the manager's return and the benchmark return, the so-called tracking
error. This means that tracking-error optimization problems could be posed in
two forms: to "nd a portfolio with minimum tracking error volatility for a given
target expected performance relative to the benchmark, or to "nd a portfolio
with maximum expected performance relative to the benchmark for a given
tracking error volatility.

As pointed out in Rustem et al. (2000), for the optimal mean-variance strategy
to be useful the set of expected return of the component assets and the
covariance matrix should be su$ciently precise. As shown by Black and Litter-
man (1991), small changes in expected returns can produce large changes in asset
allocation decisions. In practice, this lack of robustness with respect to the
inherent inaccuracy of the expected returns and covariance matrix estimates
prevents the widespread use of mean-variance optimization by practitioners.

As an example, of the inherent inaccuracy in the calculation of the covariance
matrix, consider the exponentially weighted moving average (EWMA) model for
estimating the covariance matrix from historical data (which is the method most
widely used by practitioners* see (RiskMetrics Technical Document, 4th Edition,
1996). Weights declining over time are applied to the set of data points with j,
the decay factor, between 0 and 1. A small j implies a small number of data
being used for the parameter calculations, leading to estimation errors. On the
other hand, if j is very close to one a large number of data would be taken into
account, which could be undesirable, especially for non-stable economies.

Another situation that can be critical is when asset allocation is made for
a long period of time with no frequent rebalancing. In this case, future changes of
economic scenarios could lead to di!erent expected returns and covariance
matrices along this period of time. As a consequence, it is not unusual that
mean-variance optimization generates asset allocation decisions that seem to be
unacceptable or non-intuitive.

Linear matrix inequalities (LMI) applied to robust control and related prob-
lems have been extensively studied over the last years (Boyd et al., 1994). Due to
the large number of fast and reliable computational techniques available for
LMI optimization programming nowadays (Oliveira et al., n.d.), this approach
has shown to be an important tool to derive numerical algorithms. In particular,
algorithms using LMI optimization programming for obtaining control for
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uncertain systems have been recently presented in the literature (Boyd et al.,
1994; Costa et al., 1997; Geromel et al., 1991). We refer the reader to these
references for further details on the practical implementation of LMI algo-
rithms.

The main goal of this paper is to use LMI to solve robust tracking-error
optimization problems under the more realistic assumption that the expected
returns and covariance matrix are not exactly known or cannot be con"dential-
ly estimated. We assume that these parameters are in a convex set de"ned by the
convex combination of some known vertices. By robust tracking-error optim-
ization problems we mean a robust generalization of the two tracking error
problems mentioned above. The "rst one (problem MV) is to "nd a portfolio of
minimum worst case tracking error volatility with respect to a benchmark, with
guaranteed "xed target expected performance. The second one (problem MR) is
to "nd a portfolio with maximum worst case expected performance with respect
to a benchmark, with guaranteed "xed maximum tracking error volatility.
We show that the solution to these problems are equivalent to the solution to
LMI optimization problems.

The advantage of this approach is that, besides considering the inaccuracy of
the parameter estimates, it also allows, as in Rustem et al. (2000), the possibility
of including in the analysis possible future scenarios for the expected returns,
risk-free interest rate, and covariance matrix of returns. This could minimize or
reduce rebalancing and associated transaction costs in long-term portfolio
management since possible future changes of scenario would be taken into
account at the moment of the portfolio selection.

It is important to stress that the vertices of the polytope are assumed to be
known and should be provided by the asset manager based on numerical
estimations and investment analysis, and we shall not be particularly concerned
here on how to derive them. Indeed we believe that this point would be
interesting in itself and could be further developed in the future. Other ap-
proaches presented in the portfolio optimization literature which consider
high-order moments of the distribution assets returns (David, 1997; David and
Veronesi, 1999) will not be considered here either. As mentioned before, the
main objective of this paper will be to cast the robust tracking-error optimiza-
tion problems into LMI formulations so that the powerful numerical packages
nowadays available for LMI optimization problems can be used. We believe
that this technique represents a computational tool in the direction of overcom-
ing the main limitations of standard mean-variance optimization mentioned
above, with a special focus on real problems.

As examples of previous works on tracking error we can mention Roll (1992)
who considers the problem of minimizing the volatility of the tracking error, and
Rudolf et al. (1999), who used linear models for tracking error minimization.
A paper very closely related to this one is Rustem et al. (2000), where the authors
present a min}max strategy for robust portfolio strategies to multiple return and
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risk scenarios. As shown in Remark 3 below, the LMI problems presented in this
paper could be written as min}max problems as de"ned in Rustem et al. (2000).
Other related papers include Howe and Rustem (1997); Howe et al. (1996).

The paper is organized as follows: Section 2 presents the notation, basic
results, and problem formulation that will be considered throughout the
work. Section 3 presents the equivalence between the robust portfolio tracking-
error optimization problems and the LMI optimization problems. In Section
4 we present some numerical examples in the Sa8 o Paulo stock exchange
(BOVESPA). The paper is concluded in Section 5 with some "nal conclusions
and future works. We recall in appendix some basic facts from the LMI
literature.

2. Preliminaries

We consider a "nancial model in which there are N risky assets represented
by the random return vector A, with mean vector k3RN, and covariance matrix
X (N]N). Therefore A can be written as

A"k#e, (2.1)

where e is a random vector with zero mean and covariance matrix X. We also
consider a risk-free asset with return r3R. It is convenient to de"ne the vector
u3RN`1 as follows:

u :"A
k

rB.

A portfolio u will be a vector belonging to a set C of the following form:

C"Gu3RN;F
0
#

N
+
i/1

u
i
F

i
50H,

where F
i
, i"0,2, N, are the given symmetric matrices. Notice that the set

C corresponds to a LMI (see appendix). The components of the vector u repres-
ent the weights on the risky assets A, that is, the ith entry u

i
of u is the

portfolio's proportion invested in asset i. The set C is suitable for representing
constraints like the sum of the portfolio components is equal or less than 1, and
no short sales are permitted, that is, constraints of the form

u@141, 04u
i
, i"1,2, N,
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where 1 represents the N vector formed by 1 in all positions, and @ denotes
transpose. In this case the matrices F

i
would be

F
0
"A

1 0 2 0 0

0 0 2 0 0

F F } F F

0 0 2 0 0

0 0 2 0 0B
and

F
1
"A

!1 0 2 0 0

0 1 2 0 0

F F } F F

0 0 2 0 0

0 0 2 0 0B,2, F
N
"A

!1 0 2 0 0

0 0 2 0 0

F F } F F

0 0 2 0 0

0 0 2 0 1B.
We consider that (1!u@1) is invested in a risk-free asset r. Therefore the

return of the investor is

u@A#(1!u@1)r. (2.2)

Let us denote by u
B

a "xed portfolio provided by the manager, called
benchmark portfolio. As in (2.2), the return of the benchmark portfolio is

u@
B
A#(1!u@

B
1)r. (2.3)

From (2.2) and (2.3) we have that the di!erence between the return of the
investor's portfolio u and the benchmark portfolio, de"ned as the tracking error
e(u), is

e(u)"(u!u
B
)@A#(u

B
!u)@1r. (2.4)

From (2.1) and (2.4) we have that the expected value of the tracking error e(u),
denoted by or(u), is given by

or(u)"(u!u
B
)@k#(u

B
!u)@1r"(u!u

B
)@(k!1r) (2.5)

and the variance (volatility), denoted by p2X (u), by

p2X(u)"(u!u
B
)@X(u!u

B
). (2.6)

For the case in which the expected returns k and r, and covariance matrix
X are perfectly known, two kinds of problem are usually considered in the
literature. The "rst one is to minimize the volatility of the tracking error
conditional on a target expected performance q. By target expected performance
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we mean a real number q provided by the investor which represents the
minimum value that the expected value of the tracking error could achieve.
More formally, the problem can be written as

min
u

p2X (u)

s.t. or(u)5q,

u3C.

(2.7)

The other problem is to maximize the expected value of the tracking error
conditional on a maximum value 02 for the volatility of the tracking error. The
value 02, provided by the manager, represents the maximum value that the
volatility of the tracking error could achieve. Mathematically, this problem can
be written as

max
u

or(u)

s.t. p2X(u)402,

u3C.

(2.8)

The above problems can be solved for the case in which the expected returns
k and r, and covariance matrix X are perfectly known.

In this paper we shall assume that these quantities are not exactly known.
De"ne the (N#1)](N#1) matrix U as follows:

U :"A
X k

0 rB.
We will suppose that (see Eq. (A.4) for notation)

U3ConMU
1
,2,U

n
N,

where the elements

U
i
:"A

X
i

k
i

0 r
i
B, i"1,2, n,

are assumed to be known. It will be also convenient to de"ne

u
i
:"A

k
i

r
i
B, i"1,2, n

and

X"ConMX
1
,2,X

n
N,

Y"ConMu
1
,2,u

n
N.
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Consider l3Rn where

l"A
l
1
F

l
n
B. (2.9)

The value l
i
will denote the target-expected performance if the expected return

vector is k
i
and the risk-free return is r

i
, i"1,2, n. We shall call l the vector of

target-expected performance. For a generic u3Y, where

u"

n
+
i/1

j
i
u
i
, 04j

i
41, i"1,2, n,

the target-expected performance q(l,k, r) will be the corresponding convex
combination as follows:

q(l,u) :"
n
+
i/1

j
i
l
i
. (2.10)

In this way the value of the target-expected performance q(l, u) is determined
according to the expected return u3Y of the risky assets and risk-free return.
Clearly q(l,u

i
)"l

i
.

Similarly consider t3Rn, where

t"A
t
1
F

t
n
B, t

i
50, i"1,2, n. (2.11)

The value t
i

will denote the maximum volatility of the tracking error if the
covariance matrix of the risky assets is X

i
, i"1,2, n. We shall call t the vector

of maximum volatility. For a generic X3X, where

X"

n
+
i/1

j
i
X

i
, 04j

i
41, i"1,2, n,

the maximum volatility 0 (t, X) of the tracking error will be the corresponding
convex combination as follows:

0 (t,X)"
n
+
i/1

j
i
t

i
. (2.12)

In this way, the values of the maximum volatility of the tracking error 0 (t, X) is
determined according to the covariance matrix X3X. Clearly 0 (t,X

i
)"t

i
.
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We present the following de"nitions regarding the robustness properties we
shall consider:

Dexnition 1. For a "xed l3Rn as in (2.9) we say that a portfolio u is robust with
respect to the vector of target-expected performance l if

or(u)5q(l, u) (2.13)

for every u3Y, where or (u) and q(l, u) are given as in (2.5) and (2.10), respecti-
vely. Similarly, for t3Rn as in (2.11), we say that a portfolio u is robust with
respect to the vector of maximum volatility t if

p2X(u)40 (t, X) (2.14)

for every X3X, where p2X(u) and 0 (t,X) are given by (2.6) and (2.12), respectively.

Two kinds of problem are considered, which can be seen as robust versions of
problems (2.7) and (2.8), respectively.

Dexnition 2. The MVGRU problem (minimum worst case variance, guaranteed
return under uncertainty): For a "xed l3Rn as in (2.9), "nd a portfolio ul such
that

(a) it is robust with respect to the vector of target-expected performance l,
(b) for any other portfolio u robust with respect to the vector of target-

expected performance l, we have

max
X|X

p2X(ul)4max
X|X

p2X(u). (2.15)

Therefore, in the MVGRU problem we want to "nd a portfolio ul such that
the target-expected performance (2.13) is satis"ed for every u3Y and if u is
another portfolio with this property then there exists X33X (in fact, X3"X

i
for

some i3M1,2, nN) such that the tracking-error volatility of the portfolio u with
respect to X3 will be greater than the tracking-error volatility of the portfolio
ul with respect to any X3X (Eq. (2.15)).

Dexnition 3. The MRGVU problem (maximum worst case return, guaranteed
variance under uncertainty): For a "xed t3Rn as in (2.11), "nd a portfolio
ut such that

(a) it is robust with respect to the vector of maximum volatility t,
(b) for any other portfolio u robust with respect to the vector of maximum

volatility t, we have

min
r|Y

or(u)4min
r|Y

or(ut ). (2.16)
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Therefore, in the MRGVU problem we want to "nd a portfolio ut such that
its tracking-error volatility satis"es (2.14) for all the values X3X, and if u is
another portfolio with this property then there exists u33Y (in fact, u3"u

i
for

some i3M1,2, nN) such that the expected tracking error of the portfolio u with
respect to u3 will be less than the expected-tracking error of the portfolio
ut with respect to any u3Y (Eq. (2.16)).

Remark 1. It is worth noticing that by taking u
B
"0 we obtain the traditional

problem of portfolio optimization, which provides the `besta allocation based
on given expected returns and covariance matrix (robust in our case).

3. LMI formulation

We shall show in this section that problems MVGRU and MRGVU can be
formulated in terms of LMI optimization problems. To do this we shall use the
Shur complement, presented in Proposition 3 of Appendix A. We start with the
following Proposition:

Proposition 1. (a) Portfolio u is robust with respect to the vector of maximum
volatility t, where t3Rn is as in (2.11) if and only if (b) (t,u),t3Rn, u3C
satisxes the following LMI:

C
t
i

(u!u
B
)@X

i
X

i
(u!u

B
) X

i
D50, i"1,2, n. (3.1)

Proof. (a)N(b): If portfolio u is robust with respect to the vector of maximum
volatility t then u3C and, by De"nition 1 (see (2.6) and (2.14)), for every X3X,

04(u!u
B
)@X(u!u

B
)40 (t,X)

and in particular we have from (2.12) that

t
i
!(u!u

B
)@X

i
(u!u

B
)50, i"1,2, n.

The last inequality can be written as (see (A.1))

t
i
!(u!u

B
)@X

i
Xs

i
X

i
(u!u

B
)50, i"1,2, n, (3.2)

and from (A.1) again, for i"1,2, n,

(u!u
B
)@X

i
(I!Xs

i
X

i
)"(u!u

B
)@X

i
!(u!u

B
)@X

i
Xs

i
X

i

"(u!u
B
)@X

i
!(u!u

B
)@X

i
"0. (3.3)
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From (3.2), (3.3) and Proposition 3 (see (A.2), (A.3)) we can conclude that (3.1)
must be satis"ed.

(b)N(a): If (3.1) is satis"ed then from Proposition 3 again, and (A.1), (A.2),
(A.3) we must have that

t
i
5(u!u

B
)@X

i
Xs

i
X

i
(u!u

B
)

"(u!u
B
)@X

i
(u!u

B
), i"1,2, n. (3.4)

For any j
i
50, i"1,2, n,+n

i/1
j
i
"1, and writing X"+n

i/1
j
i
X

i
, we have

from (2.12) and (3.4) that

0 (t,X)"
n
+
i/1

j
i
t
i
5(u!u

B
)@A

n
+
i/1

j
i
X

iB (u!u
B
)"(u!u

B
)@X(u!u

B
)

and since it holds for every X3X, we get (a). h

Proposition 2. (a) Portfolio u is robust with respect to the vector of target-expected
performance l, for l3Rn as in (2.9) if and only if (b) u3C satisxes the following
linear inequalities:

(u!u
B
)@(k

i
!r

i
1)5l

i
, i"1,2, n. (3.5)

Proof. (a)N(b): If portfolio u is robust with respect to the minimum return
l then from De"nition 1 (see (2.5) and (2.13))

or(u)"(u!u
B
)@k!(u!u

B
)@1r5q(l,u),

for every u3Y. In particular, from (2.10), we have that

(u!u
B
)@k

i
!(u!u

B
)@1r

i
5l

i
, i"1,2, n,

which is (3.5).
(b)N(a): If (3.5) is satis"ed, then for any j

i
50, i"1,2, n, +m

j/1
j
j
"1 and

writing u"+n
i/1

j
i
u

i
, we have

n
+
i/1

j
i
((u!u

B
)@k

i
!(u!u

B
)@1r

i
)"(u!u

B
)@k!(u!u

B
)@r

5

n
+
i/1

j
i
l
i
"q(l, u)

and since it holds for every u3Y, we have (a). h
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We now de"ne the following LMI optimization problems.

Dexnition 4. LMI 1: For l3Rn as in (2.9) "xed, "nd (a( , u( ) solution to the
following LMI optimization

min a

s.t. C
a (u!u

B
)@X

i
X

i
(u!u

B
) X

i
D50

(u!u
B
)@(k

i
!r

i
1)5l

i
, i"1,2, n

u3C.

Dexnition 5. LMI 2: For t3Rn is as in (2.11) "xed, "nd (bK , u( ) solution to the
following LMI optimization

max b

s.t. C
t
i

(u!u
B
)@X

i
X

i
(u!u

B
) X

i
D50,

(u!u
B
)@(k

i
!r

i
1)5b, i"1,2, n

u3C.

Remark 2. Notice that the restrictions of problem LMI 1 may be unfeasible, but
problem LMI 2 has always the feasible solution u"u

B
, b"0, provided that

u
B
3C.

From Propositions 1 and 2, the following results, linking problems LMI 1 and
LMI 2 to problems MVGRU and MRGVU, respectively, are obtained.

Theorem 1. (a) Problem LMI 1 has a solution (a( ,u( ) if and only if (b) the MVGRU
problem has a solution ul . Moreover, if (a) holds then ul"u( is a solution to the
MVGRU problem and similarly if (b) holds then (a( ,u( ) is a solution to LMI 1 where
u("ul and

a("maxM(ul!u
B
)@X

i
(ul!u

B
); i"1,2, nN.

Proof. (a)N(b): If (a( , u( ) is an optimal solution to problem LMI 1 then from
Proposition 1 with t"(a(2a( ) and (2.14),

p2X(u( )4a( ,

O.L.V. Costa, A.C. Paiva / Journal of Economic Dynamics & Control 000 (2001) 000}000 11
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for every X3X. From the optimality of (a( ,u( ) we must have

a("maxM(u(!u
B
)@X

i
(u(!u

B
); i"1,2, nN"max

X|X
p2X(u( ). (3.6)

From Proposition 2 the portfolio u( is robust with respect to the vector of
target-expected performance l. Consider another portfolio u robust with re-
spect to the vector of target expected performance l. Take

a"maxM(u!u
B
)@X

i
(u!u

B
); i"1,2, nN"max

X|X
p2X (u). (3.7)

From (3.7), portfolio u is robust with respect to the vector of maximum
volatility (a,2, a). From Propositions 1 and 2, (a, u) is a feasible solution to
problem LMI 1 and from the optimality of (a( ,u( ), we should have a(4a. From
(3.6) and (3.7) we conclude that (2.15) holds with ul"u( .

(b)N(a): Following the same steps as above we have that if portfolio ul is
a solution to the MVGRU problem then (a( , ul) is a feasible solution to problem
LMI 1, where

a("maxM(ul!u
B
)@X

i
(ul!u

B
); i"1,2, nN.

For any other feasible solution (a,u) to problem LMI 1 we must have, as seen
above, that the portfolio u is robust with respect to the vector of target-expected
performance l and

max
X|X

p2X(u)"maxM(u!u
B
)@X

i
(u!u

B
); i"1,2, nN.

From (2.10) we have a(4a, and thus (a( , ul ) is optimal for LMI 1. h

Theorem 2. (a) Problem LMI 2 has a solution (bK ,u( ) if and only if (b) the problem has
a solution ut . Moreover, if (a) holds then ut"u( is a solution to the MRGVU
problem and similarly if (b) holds then (bK ,u( ) is a solution to LMI 2 where u( "ut
and

bK "minM(ut!u
B
)@(k

i
!r

i
1); i"1,2, nN.

Proof. This proof follows the same steps as the previous theorem. (a)N(b) If
(bK ,u( ) is an optimal solution to problem LMI 2 then from Proposition 1 the
portfolio u( is robust with respect to the vector of maximum volatility t. From
the optimality of (bK ,u( ) we must have

bK "minM(u(!u
B
)@(k

i
!r

i
1); i"1,2, nN

"min
r|Y

or(u( ). (3.8)
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DYNCON 1393



UNCORRECTED P
ROOF

Consider another portfolio u robust with respect to the vector of maximum
volatility t. From Proposition 1 we know that u satis"es (3.1). Take

b"minM(u!u
B
)@(k

i
!r

i
1); i"1,2, nN

"min
r|Y

or(u), (3.9)

so that (3.5) is satis"ed. Therefore (b,u) is feasible to problem LMI 2, and from
the optimality of (bK , u( ), we must have bK 5b. From (3.8) and (3.9) we conclude
that

min
r|Y

or(u( )5min
r|Y

or(u)

and from (2.16) we see that u( is a solution to the MRGVU problem.
(b)N(a): If portfolio ut is a solution to the MRGVU problem then from

Proposition 1, (bK , ut ) is a feasible solution to problem LMI 2, where
bK "minM(ut!u

B
)@(k

i
!r

i
1); i"1,2, nN. For any other feasible solution

(b,u) to problem LMI 2 we must have, as seen above, that the portfolio u is
robust with respect to the vector of maximum volatility t and

b4minM(u!u
B
)@(k

i
!r

i
1); i"1,2, nN

"min
r|Y

or(u).

From (2.16) we have bK 5b, and thus (bK ,ut) is optimal for LMI 2. h

Remark 3. From (3.6), (3.7) and the proof of Theorem 1 we have that problem
LMI 1 is equivalent to the following robust min}max portfolio problem as
posed by Rustem et al. (2000):

a("min
u

max
i

M(u!u
B
)@X

i
(u!u

B
); u3K(l)N

where

K(l)"Mu3C; (u!u
B
)@(k

i
!r

i
1)5l

i
, i"1,2, nN.

Similarly, from (3.8), (3.9) and the proof of Theorem 2, we have that problem
LMI 2 is equivalent to the following robust min}max portfolio problem as
posed by Rustem et al. (2000):

bK "!min
u

max
i

M!(u!u
B
)@(k

i
!r

i
1); u3W(t)N,

where

W(t)"Gu3C; C
t
i

(u!u
B
)@X

i
X

i
(u!u

B
) X

i
D50, i"1,2, nH.
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Fig. 1. Compounded daily return of benchmark portfolio (solid thin line) and 1-day risk-free interest
rate (circle line) from November 3, 1998 to June 17, 1999.

Remark 4. Problems LMI 1 and LMI 2 with n"1 are equivalent to the
portfolio obtained from the e$cient frontier.

4. Numerical example

In this section we provide a simple and illustrative example of the results
obtained in the previous section. We assume that an investor wants to optimize
his/her portfolio composed by 11 liquid stocks traded in the Sa8 o Paulo stock
exchange (BOVESPA), and the 1-day risk-free interest rate. The optimized
portfolio is based on the previous daily observed returns of the 11 assets, as well
as the present 1-day risk-free interest rate, from January 2, 1997 to June 17, 1999.
This period is divided into two parts. The period from January 2, 1997 to
November 2, 1998 is used for the volatility matrices calculations, while the
period from November 3, 1998 to June 17, 1999 is used for the optimization and
analysis of the methods. We take the benchmark portfolio to be
u

B
"( 1

11
,2, 1

11
)@, that is, the benchmark return is just the mean of the daily

returns of the 11 assets. In Fig. 1 we present the compounded daily returns of the
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Fig. 2. Daily volatility of benchmark portfolio with decaying factor 0.94 (circle line) and 0.9 (solid
line) from November 3, 1998 to June 17, 1999.

benchmark portfolio and the compounded risk-free 1-day interest rate from
November 3, 1998 to June 17, 1999.

In Fig. 2 we present the volatility of the benchmark return over the same
period, using two di!erent ways of calculating the covariance matrices. The
circle line corresponds to the covariance matrix using a decaying factor of 0.94,
and the solid line corresponds to a decaying factor of 0.9, both using the EWMA
methodology for computing covariance matrices, and the previous 100 daily
historical returns for the calculations. Notice that the peak of volatility is related
to the change in the exchange-rate policy which occurred in Brazil in January
1999, which led to a great Brazilian currency devaluation. With this devaluation,
the prices of the Brazilian assets in dollar became cheaper, which caused an
increase of their returns in the Brazilian currency.

Let us denote by A(i) the random vector with the 11 returns of the assets
observed at day i and r(i) the risk-free return at day i. For the optimization
problems we imposed short-selling constraints of the form u50, 04u@141.
We considered the minimization problem as in problem LMI 1 and compared
the portfolio returns obtained in two di!erent ways at day i.
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Portfolio 1: With n"1, that is, 1 volatility matrix Var
1
(i), 1 expected return

vector k
1
(i) and 1 risk-free return r(i) were considered. As noticed in Remark 4,

this problem is equivalent to the portfolio obtained by the e$cient frontier with
short-selling constraints. Var

1
(i) was calculated from the 100 previous returns

and with a decaying factor of 0.94. The expected return k
1
(i) was obtained from

the 3 previous daily assets returns with weights 0.7, 0.2 and 0.1, respectively.
That is,

k
1
(i)"0.7A(i!1)#0.2A(i!2)#0.1A(i!3).

l
1
(i) was calculated as follows:

u@
B
k
1
(i)#l

1
(i)"u@

B
A(i!1)#r(i). (4.1)

Therefore the constraint on the expected return of Portfolio 1 was to obtain the
previous day benchmark portfolio return plus the current 1-day risk-free interest
rate return (Eq. (4.1)). In our simulation, these optimization problems were
performed from November 3, 1998 through June 17, 1999. The optimized
portfolios u(i) were updated everyday and the real return was obtained from the
assets returns A(i) (known at the end of the day i). That is, the real return of
portfolio 1 at day i is

u(i)@A(i)#r(i)(1!u(i)@1). (4.2)

Portfolio 2: With n"4 corresponding to 2 covariance matrices Var
1
(i) and

Var
2
(i) and 2 return vectors k

1
(i) and k

2
(i). The values of Var

1
(i), k

1
(i) and l

1
(i)

were as in Portfolio 1. For Var
2
(i) we considered the 100 previous returns and

decaying factor of 0.9. For k
2
(i) we considered the 2 previous daily assets returns

with weights 0.5 and 0.5. That is, at day i

k
2
(i)"0.5A(i!1)#0.5A(i!2).

l
2
(i) was calculated as follows:

u@
B
k
2
(i)#l

2
(i)"u@

B
A(i!2)#r(i). (4.3)

Therefore the second constraint on the return of Portfolio 2 was to obtain the
benchmark return of two days ago plus the current risk-free 1-day interest rate
return (Eq. (4.3)). In our simulation, these optimization problems were per-
formed from November 3, 1998 through June 17, 1999. The optimized portfolios
u(i) were updated every 2 days and the real return obtained from the assets
returns A(i) (known at the end of the day i), that is, the real return of portfolio
2 at day i is as in Eq. (4.2). In our simulations, the problem LMI 1 was found to
be unfeasible 4 times (out of 76 optimizations). In this situations the portfolio
was kept unchanged.
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Fig. 3. Compounded daily returns of Portfolio 1 (m"n"k"1, updated every day) } solid line,
Portfolio 2 (m"n"2, k"1, updated every 2 days) } star line, and target portfolio as in (4.4) } circle
line.

Fig. 3 presents the compounded daily returns of the portfolios obtained by
Portfolios 1 and 2 as in Eq. (4.2), and the compounded daily returns of the target
portfolio, obtained from the (single net) return at day i as

u@
B
A(i)#r(i). (4.4)

The star line represents Portfolio 2, the solid line Portfolio 1, and the circle line
the target portfolio.

Fig. 4 presents the di!erence between the compounded daily returns of the
portfolios obtained by Portfolio 1 (solid line) and Portfolio 2 (star line) with
respect to the compounded daily returns of the target portfolio. As mentioned
before, the calculations were performed from November 3, 1998 through June
17, 1999.

From Figs. 3 and 4 we see that although Portfolio 2 was updated only every
2 days, its compounded return at the end of the period was 27.95% over the
compounded return of the target portfolio, while the compounded return of
Portfolio 1, updated every day, was about 14.13% below the compounded
return of the target portfolio at the end of the period.
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Fig. 4. Di!erence between compounded daily returns of Portfolio 1 } solid line, and Portfolio
2 } star line, with respect to the target portfolio.

An arti"cial and oversimpli"ed example where one could intuitively grasp the
reason for these results would be as follows. Consider a horizon time of two
days, a "nancial market with one risky asset (N"1) and returns A(1) and A(2) at
days 1 and 2, respectively, and volatility 1 for the 2 days, one risk-free asset with
return r" 1

20
for the 2 days, u

B
"0, and the target-expected performance l" 1

40
for the 2 days. Therefore, the investor's expected returns would be r#l" 3

40
at

days 1 and 2. As in the numerical example above, consider Portfolio 1, updated
at days 1 and 2 and obtained by the e$cient frontier, and Portfolio 2, updated
only at day 1 and obtained from problem LMI 1. For Portfolio 1, we consider
expected returns for the risky asset to be k

1
(1)" 1

10
and k

1
(2)" 2

10
at days 1 and

2, respectively. Solving these 2 problems we obtain that the returns of Portfolio
1 will be at days 1 and 2 as follows:

Day 1: 1
2
A(1)#1

2
r"1

2
A(1)#1

2
] 1

20

Day 2: 1
6
A(2)#5

6
r"1

6
A(2)#5

6
] 1

20
.
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For Portfolio 2, we consider the 2 possible scenarios for the return of the risky
asset at day 1 ( 1

10
and 2

10
), and since we want to make sure that the target expected

performance will be achieved, the return of the Portfolio 2 must be for i"1, 2

1
2
A(i)#1

2
r"1

2
A(i)#1

2
] 1

20
.

It is easy to see that for any value of A(2) between [ 1
10

, 2
10

] Portfolio 1 will have
return at day 2 below 3

40
while Portfolio 2 will have return at day 2 greater than

3
40

. Of course, the analysis is much more complicated in a more general case as
the numerical example presented above. But we believe that this kind of
argument, in which Portfolio 2 outperforms Portfolio 1 by taking into account
possible future scenarios for the parameters, could intuitively explain the results
obtained.

5. Conclusions

In this paper, we have considered the problem of optimal portfolio selection
for tracking error when the return mean of the risky and risk-free assets as well
as the covariance matrix of the risky assets belong to a convex polytope de"ned
by some known elements which form the vertices of this polytope. We showed
that the problems of "nding a portfolio of minimum worst case volatility of the
tracking error with guaranteed "xed minimum target-expected performance, or
maximum worst case target-expected performance with guaranteed "xed max-
imum volatility of the tracking error, are equivalent to solving LMI optimiza-
tion problems, so that the powerful numerical packages available for this class of
problems can be used.

A numerical example in the Sa8 o Paulo stock exchange (BOVESPA) was
presented. We compared two portfolios, one, Portfolio 1, calculated as in the
traditional e$cient frontier way for minimum risk and "xed return gain, and
updated every day. The other, Portfolio 2, as in problem LMI 1 of Section 3,
with 2 covariance matrices and 2 expected returns, and updated every 2 days.
The simulations were performed with real data collected from January 2, 1997 to
June 17, 1999 with 11 liquid stocks assets traded in the Sa8 o Paulo stock
exchange (BOVESPA). The comparison results (Figs. 3 and 4) suggests that the
use of LMI algorithms for more than one covariance matrix and expected
returns can be useful in the optimization of portfolios, especially if it is desired to
minimize or reduce re-balancing and associated transactions costs. At the
moment, more comprehensive numerical tests of our methodology in the con-
text of the Brazilian "nancial market are being performed.

As future works, we mention the possible extension of the LMI methodology
for Value at Risk computation (including benchmark-VaR) and in multi-
stage stochastic optimization problems. In this case, the main goal would be
the robust long-term asset allocations without frequent re-balancing of the
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portfolio, bearing in mind applications in pension funds allocation problems.
Another topic for future work is to consider norm bound uncertainties for the
expected returns and covariance matrices (as in the international control litera-
ture) instead of polytope uncertainties as adopted here.

Appendix

A (non-strict) linear matrix inequality (LMI) has the form

F(x)"F
0
#

m
+
i/1

x
i
F

i
50,

where x"(x
1
,2,x

m
), x

i
3R, i"1,2,m are the variables and the symmetric

matrices F
i
, i"0,2, m are given. The inequality 5 means that the symmetric

matrix F(x) must be positive semi-de"nite. A LMI optimization problem con-
sists of "nding a feasible x (that is, "nd x such that F(x)50) which minimizes (or
maximizes) a convex function c(x). The key feature of LMI optimization is that
these problems are tractable both from theoretical and numerical point of view
(e.g. Boyd et al. (1994) and Oliveira et al. (n.d.)).

A key result for converting non-linear convex inequalities into LMI formula-
tion is the Schur complement. For a real matrix Q, we set Q@ the transpose of Q.
The generalized inverse of Q (or Moore}Penrose inverse of Q) is de"ned as the
unique matrix Qs such that (Saberi et al., 1995, p. 13)

(a) QQsQ"Q

(b) QsQQs"Qs

(c) (QQs)@"QQs and

(d) (QsQ)@"QsQ. (A.1)

The Shur complement, presented next, establishes a link between LMI and
nonlinear convex inequalities (Saberi et al., 1995, p. 13).

Proposition 3. We have that

(a) C
Q S

SH RD50 (A.2)

if and only if

(b) R50, S(I!RsR)"0 and Q!SRsS@50. (A.3)

Notice that (a) in Proposition 3 is in the form of a LMI, and (b) is in the form
of non-linear convex inequalities.
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Finally we conclude this appendix introducing the following notation. Let
X be a space of real vectors or matrices. For a collection of points
v
i
3X, i"1,2, i, we shall de"ne the convex polytope ConMv

1
,2viN as

ConMv
1
,2, viN :"Gv3X; v"

i
+
i/1

j
i
v
i
,

i
+
i/1

j
i
"1, j

i
50H. (A.4)

The above formulation is used to characterize the robustness in the "nancial
model.
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