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Abstract

This paper deds with the robust Hy-control of discrete-time
Markovian jump linear systems. It is assumed that both the state
and jump variables are available to the controller. Uncertainties
satisfying some norm bounded conditions are considered on the
parameters of the system. An upperbound for the Hs-control
problem is derived in terms of an LMI optimization problem. For
the case in which there are no uncertainties, we show that the
convex formulation is equivalent to the existence of the mean
square stabilizing solution for the set of coupled agebraic Riccati
equations arisng on the quadratic optima control problem of
discrete-time Markovian jump linear systems. Therefore, for the
case with no uncertainties, the convex formulation considered in this
paper imposes no extra conditions than those in the usua dynamic
programming approach. Finadly some numerica examples are
presented to illustrate the technique.
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1. Introduction

Severad examples can be found in the literature nowadays showing the
importance of the class of linear systems subject to abrupt changes in their
structures. This is the case, for instance, of systems subject to random failures,
repairs or sudden environmental disturbances, abrupt variation of the operating
point on a nonlinear plant, etc. Markovian jump linear systems (MJLS), which
comprise an important family of models subject to abrupt variations, are very
often used to model the above class of systems. In this case the changes in the
structure of the system are assumed to be modeled by a Markov chain, which
takes the system into distinct linear forms in a state variable representation.
Practical motivations as well as some theoretical results for MJLS can be found,
for instance, in [1],[3]-[14],[16]-[26],[28],[29].

The quadratic optimal control problem for discrete-time MJLS has been
analyzed in several papers using different approaches of analysis. In [1],[3],[5]-
[7],[10]-[12],[18]-[22],[25] a dynamic programming approach has been adopted,
leading to a set of coupled agebraic Riccati equations (CARE). These equations
generalize the usua discrete-time agebraic Riccati equations (see [2],[15]), and
results for the existence of maximal and mean square stabilizing solutions for
CARE have been derived in, for instance, [6],[7],[10],[12]. Another approach
that has been used isto apply convex programming. In [26] the authors obtain the
maximal solution of the CARE via the solution of a LMI optimization problem. In
[9] the authors use a convex approach to solve the Hy-control of aMJLS.

One question that may be asked is that if the convex approach in [9] is
stronger or weaker than the dynamic programming formulation, in the sense that
the existence of the solution to one problem implies or is implied by the existence
of the solution to the other. As far as the authors are aware of, there are no
theoretical results connecting the following problems: i) existence of the mean
square stabilizing solution for the discrete-time CARE, and ii) the existence of the
solution for the convex programming approach presented in [9]. Notice that the
results in [26] are related to the maximal solution of the CARE, and not to the
mean square stabilizing solution of the CARE. As noticed in [26], the maximal
solution is not necessarily a mean square stabilizing solution, so that an extra
condition would have to be imposed to guarantee that the maximal solution is aso
mean square stabilizing in general (the case with no jumps trivialy shows this).
For the continous-time case the equivalence between the mean square stabilizing
solution of the CARE and the convex programming approach was considered in
[13]. In this paper we start by addressing this point and show that these two
problems, i) and ii) posed above, are in fact equivalent. Therefore, for the case
with no uncertainties, the convex formulation imposes no extra conditions than

those considered in the usual dynamic programming approach.



The advantages of the convex approach in analyzing H-control
problems of MJLS over the dynamic programming approach had aready been
stressed in [9]. In that paper it was considered the Hy-control of MJLS with
uncertainties on the trangition probability distribution of the Markovian chain and
the case in which the state of the Markov chain and/or the state of the system
are not directly accessible to the controller. Convex programming problems were
derived to handle these situations. In that paper the parameters of the matrices of
the system were considered to be exactly known.

In this paper we consider the situation in which the controller has access
to the state of the Markov chain and the state of the system, but there are
uncertainties on the transition probability of the Markov chain as well as on the
matrices of the system. The uncertainties on the matrices are considered to be of
the norm bounded form. We shdl call this problem with uncertainties as robust
Hs-control of MJLS. The LMI optimization problem presented for the case with
no uncertainties will be reformulated in order to provide a controller that stabilizes
the closed loop MJLS in the mean square sense, and gives an upper bound for the
robust Hs-control problem.

The paper is organized in the following way. Section 2 presents the
notation that will be used throughout the work. Section 3 deals with previous
results derived for mean square stability, CARE and H,-control of MJLS, as well
as some other auxiliary results. Section 4 presents the main theorem related to
the equivalence between the dynamic programming and convex programming
approaches. It shows that the existence of the mean sguare stabilizing solution for
the CARE is equivalent to the existence of the solution of the Hy-control of
MJLS, which in turns is aso equivaent to the existence of the solution of a
convex programming problem. Section 5 considers the robust H,-control of
MJLS, so that there are norm bound uncertainties on the parameters of the
MJLS, as wdl as uncertainties on the trangtion probability matrix of the
associated Markov chain. The LMI optimization problem of section 4 is
reformulated so that its solution provides an upper bound mean square stabilizing
solution for the robust Hs-control of the MJLS problem. Section 6 presents a
numerical example and section 7 concludes the paper with some fina remarks.
Some tests for mean sguare stability and detectability are presented in the

gppendix.

2. Notation and Preliminary Results

For X and Y complex Banach spaces we set B(X,Y) the Banach space of all
bounded linear operators of X into Y, with the uniform induced norm represented
by ||.||. For smplicity we shal set B(X) := B(X X). The spectral radius of an
operator 7 € B(X) will be denoted by r, (7). If X is a Hilbert space then the



inner product will be denoted by (.;.), and for 7 € B(X), 7* will denote the
adjoint operator of 7. Asusud, 7 > 0 (7 > 0 respectively) will denote that the
operator 7 € B(X) will be postive semi-definite (positive definite). In particular
we shall denote by C™ the n dimensional complex Euclidean spaces and by
B(C"™,C™) the normed bounded linear space of all m x n complex matrices,
with B(C") := B(C",C").

Set H"™'™ the linear space made up of al N-sequences of complex matrices
V= (V,...,Vy) with V; e B(C",C™), i=1,..., N and, for smplicity, set

H" := H"™", For V = (V1,...,Vy) € H"™" we consder the following norm in
1

N 1
H™ [V ]|y = <i§1tr(VZ.*V;))2. It is easy to verify that (|||, JH"™) is a
Hilbert space with the inner product given for V = (V4,....Vy) and
N
S = (S, ...,Sy) iInH™™ by: (V; S) = Zw(v; S;)-
i=1

We shdl say that V = (V7,...,V) € H" is hermitian if V; = V> fori =
1,...,N,and shdl write H™ :={V = (V1,...,Vy) € H"; V; =V* i=
1,...,N}.Weset H"* :={V = (V4,...,Vy) €eH";V;>0,i=1,...,N}
and shal write, for V = (14,...,Vy) e H® and S = (54, ...,Sy) € H", that
V>SS if V—-S=WV-5,..,Vy—Sy) eH", and that V> S if
Vi—S;>0fori=1,...,N.

Forzlz(;ll, ...,ZN) € H" and matrix P = (p;;), i,j=1,..., N, with
pi; >0 for dl i,j=1,...,N, we define the following operators
() = (&1().-, En() € B, L() = (£1(.),..., Lx()) € B(H") and
7)) =(Ti(.),..., Iy(.)) € B(H"); for V= (V1,...,Vy) € H" and i,j=
1,...,N,

N
V) =) piV; 1)
j=1
Li(V) = A; &(V)A )
N -~ ~k
(V) =D _pijA Vi, ®
=1

and it is easy to verify that with the inner product given above we have from (1),
(2) and (3) that 7 = L* (in particular, r4(7) = r,(L)). It is also easy to check
that the operators £, £, and 7 map H"" into H"" and H't into H*+,



For a matrix @ € B(C"™,C™)the generaized inverse of @) (or Moore-
Penrose inverse of Q) is defined as the unique matrix QT € B(C™, C") such
that (see [27], page 13)

8 QR'Q = Q,

b) QTQQ" = Q'

0) (QQ"N)" = QQT and

d (QTQ)* = Q'Q.

We conclude this section with the following well known result used in LMI's,
which will be useful in the sequel (see [27], page 13).

S

;;2* R] > 0if and only if either Q > 0,5 = QQTS and
R—5*QTS >00r R>0,S = SRRT and Q — S B'S* > 0. Paticularly, if
R>0,thenW > 0ifandonlyif Q > S R~15*.

Remark L W = [

3. Auxiliary Results

The goal of this section is to present some preliminary results regarding the mean
square stability of MJLS, the CARE, and the Hy-control problem. This is
achieved through subsections 3.1, 3.2 and 3.3 respectively.

3.1. Preliminaries

Congder the following Markovian jump linear system

z(k+1)= Aggyz(k) (4.3)
2(0)= z0,0(0)= 6 (4.b)

where A = (;11,...,;1,\,) e H" and {6(k);k=0,1,...} is a discretetime
Markov chain with finite state space {1,...,N} and with trangtion probability
matrix P = (p;;). Weset @ (k)=(Q1(k),...,Qn(k))eH"™, as

Qj(k)=E(x(k)z(k)" 1 gr)=j) ()

where 1, stands for the Dirac measure.
The following result, shown in [8], provides a connection between (3) and (5):

Proposition 1: For every k =0,1,..., Q(k+1)=T(Q(k)).

We make the following definition:



Definition 1: Mode! (4) is mean square stable (MSS) if E( || z (k) || 2) — Oas
k — oo for any initid condition x and initid distribution for 6.

The next result has been proved in [8]:

Proposition 2 : The following assertions are equivalent:

a) Model (4) isMSS

b)rs(7) < 1.

o) rs(L) < 1L

d) There exists o €(0,1) and a €R, a >0, such that for each
k=0,1...,

E(| z(k)[|?) < adk.

e) (coupled Lyapunov equations) given any S = (Sy,...,Sy) >0 in

H"™ there exists P= (Py,...,Py) > 0 in H" satisfying P—7(P)=S

o0
with P = Y 7%(S).
k=0

f) (adjoint coupled Lyapunov  equations) given any
S=(Sy...,Sy) >0 in H" there exists P= (Py,...,Py) > 0in H"
o0

satisfying P — L( P)=S with P= Y £F(S).
k=0
Moreover if r5(7) <1 then for any S € H" there exists a unique
PeH" such that P—7(P)=S. 1f §S>T2>0 (> 0 respectively) and

L—T(L)=T, then P>L >0 (> 0). These results also hold replacing 7
by L.

3.2. Coupled Algebraic Riccati Equations

Let us consider now the following controlled discrete-time Markovian jump linear
system,

.I(k-i—l): Ag(k)x(k’)-i-Bg(k)u(k)
SE(O): .1’0,9(0): 90

where A=(Ay, ..., Ay) e H" and B=(B,, ..., By) € H™". It is desired
tofind {u(k);k > 0} which minimizes the following functiona

00 Q I .
R > G v )

We assume in this paper that (gﬁ RZ‘) >0, and R, > 0,fori=1,...,N.
i ()



For X = (Xy...,Xy) € H" such that B*&;(X)B; + R; >0, i = 1,...,N, set
R(X) = (R1(X),..., Ry(X)) as
Ri(X) = — Xj+ A7 E(X) A + Qi —
(A7&(X)B; + L) (B & (X)B; + R) 1 (B &;(X)A; + LY).

and introduce the following notation
M:={X=(X;..Xy)€H";
B &(X)Bi+ Ry >0,i=1,...,N,andR(X)>0}.

Associated to the above optimization problem we have the following discrete-time
coupled agebraic Riccati equations (CARE) (see[10]),

Ri(X)=0,i=1,...,N )
where X=(X;...,Xy) € H™ is sad to be an hermitian solution for the
CARE if BI&;(X)B; + R; is invertible and X' satisfies the equation above.
Before we present the main result for the CARE, we make the following
definitions.

Definition 2 : We say that (A,B) is mean square stabilizable if there exigts
In this case we say that F' stabilizes (A, B) in the mean square sense and set

K :={F e H"™; F sabilizes (A,B) in the mean sguare sense} .

We dso say that (C,A) is mean square detectable if there exists
H= (Hy, ..., Hy) € H%" such that modd (4) isMSSwith A, = A; + H;C;.

Tests for mean square stabilizability and detectability are presented in the
appendix.
Definition 3: For F = (Fy,..., Fy) e H™"and X = ( Xj, ..., Xy) € H™
such that B &;(X)B; + R; >0,i=1,...,N, S(F)=(81(F),..., SN(F)),

D(X)=(D1(X),....,Dy(X)) ad F(X)=(F(X),..., Fn(X)) ae
defined, fori = 1,...,N,as

s= (E 7 ) (5)
Di(X) = B} &(X)B; + i

Fi(X) = — (B{&(X)Bi + Ry) (B &(X)Ai + L),



Definition 4 : We say that X =( X..., Xy) € H" isamean square stabilizing
solution for the CARE if X >0, R(X) = 0 and F(X) € K.

The proof of the following proposition is straightforward but otherwise long,
and therefore will be omitted.

Proposition 3 : Suppose that XeM and for some
F=(Fy,...,Fy) € H"™, X=(X,...,Xy) € H"" satisfies for
i=1,...,N

X; = (A + BE) &E(X)(Ai + B ) = S;( F).
Then, fori=1,..., N,
(Xi = X) = (A + BF) E(X-X) (4 + B F) = Ri(X)+
(F; — Fi(X))* Dy(X)(F; — Fi(X)). (7

We can now state the following Theorem, regarding the existence of a
maxima solution of (6) in M, proved in [12].

Theorem 1: Suppose that (A,B) is mean sguare stabilizable. Then for
1=0,1,2,..., there exists Xl:(Xl1 ,...,XlN) which satisfies the
following properties:

aXxX'>xl>...> X >0 (8.a)
b) re(£') <1, where £/(.) = (£L(.),..., £ ())andfori=1,..., N,

L) = A& ()AL

Al:= A+ B F,
Fl=F (X fori=1,2,.... (8.b)
o) XL — A g (XAl =S (F), i=1,...,N. (8.c)

Moreover there exists X' = (X7,...,X})€M such that
R(XT)=0,X" > X for any X e M and X! — X* asl — oco. Furthermore
ro(L7) <1, where L£¥(.) = (L] (.),...,Ly(.)) is defined as L7 (.) =
AYTE (AT fori=1,...,N,and AT = 4;+ B;F;(X").

Remark 2 : It has been shown in [12] that there exists at most one mean square
dabilizing solution for the CARE (6), which will coincide with the maximal
solution X* of Theorem 1.



3.3. The Hy-Norm

Consder now the controlled discrete-time Markovian jump linear system G with
zo = 0, input w(k), and output z( k), given by

f:l?(k‘+1):Ae(k)$(k)+Bg(k)u(k) +J0(k)w(k) (ga)
G— { 2(0)=0,0(0)= 6, (9.b)
| 2(k)= Cyryz (k) + Dy u(k) (9c)

where C = (Cy,...,Cy) € H™P, D= (D, ..., Dy) € H™P, and J = (Jq,
.oy Jy) € H™™ with D*D; > Oand J;J* >0 for i=1,....,N. For
F=(Fy, ...,Fy) €K, we define Gr as system (9) above with feedback
control law u (k)= Fyyz(k). The definition of the Hy-norm of system Gp,
presented in [9], is given by

r
1Gr 5 =2
s=1

where z, ; represents the output sequence (2(0),z(1),...) given by (9.c) when:
a) the input sequence is given by w={w(0),w(1l),...}, w(0)=es,
w(k)=0,k > 0,{eq, ..., e} formsabassfor C" and, b) #(0)= 6(1)=j.

25115

J=1

For the deterministic case (N = 1 and p;; = 1) the above definition reduces to
the usua Hy-norm. For F € K, let P(F)= (P1(F),..., R(F)) € H"" and
U(F)=(U(F),...,Uy(F)) € H™ be the unique solution of the discrete-time
coupled gramian of observability and controllability respectively (recal
Proposition 2 for existence and uniqueness)

Pi(F)=(A; + B Fy)*&(P(F)(A; + B Fy) + S;(F) (10)

N
Uy(F)= pij(4; + B F)U;(F)(4; + B F)* + Sy J (11)

i=1
Since S;( F)>0 and JjJ]ik > 0, we get that P;(F)>0and U(F)>0 (see
Proposition 2). Define Q; = C;!‘CZ-, L= C;F D;, R = D; D;. The next result is
an adaptation of the result proved in [9], and represents a characterization of the

Hy-norm, for F € K, in terms of the solution of the observability and
controllability gramians.



Proposition 4
N

> (T Py(F)J))
=1

u Qi L Ui(F)  Ui(F)FY
;tr((%‘ Ri)(FiUi(F) FiUi(F)F;‘)>'

4. Equivalence Results

1G5 = D tr(J;P;

The goa of this section is to present the equivalence among the mean square
dabilizing solution of the CARE, the Hsy-control problem, and an LMI
optimization problem. From now on we shdl consider all matrices real. Define the
convex set

. Wi Wi
U={W=(W,..., Wy); forj=1,...,N,W; = W W >0,W; >0,
N
Zpij(AM/nA;“ + BiW, Af + AW Bf + BWisB?) — Wj + JjJJﬁk <0}
i=1

andtheset U C O

N
U={W=(W,..., Wy) C¥;forj=1,...,N,Wj3 = W;ij—llwﬂand

N
Zpij(AZ‘VVﬂA;k + BZ'W:QA: + AZ'VVZ'QB;‘ + BZ'WigB:) - Wi + JjJ;‘ =0}.
=1

Define also the cost function

u<W>=§t((§ ) (W %2))

12

Forany F'= (Fy,...,Fy) €K, l&¢ U(F)=(Uy(F),...,Un(F))>0be as
in (11). Define

U\(F)  U(P)F Un(F)  UN(E)Fy
UO=\\rui RUEF: )\ EUNE) PAUNE)FS | )

From Remark 1 and equation (11) it is immediate that /( F') e, For any
_ _ ~1 ~1\ g
W= (Wi,...,Wn) CU, l&t WW)=(W;W ..., Wi, Wl). Since

Wiz > WiW. Wi, (see Remark 1), we get that



N
> pii(Ai + BWSW YW (A + BW W) — Wy + S <

i=1
N
> pij(AWin AF + BWSAY + AW B! + BWisB?) — W + JiJ; <0
i=1

and thus from Proposition 2, V(W) € K. This defines mappings{ : K — ¥ and
V: ¥ — K. We have the following proposition.

Proposition 5 : The following assertions hold:
ayVU =1, b)L{V:Ion\/I\f and c) UV(W)<W forany W € W.

Proof: It is immediate to check that V(U( F') )= F, showing &@). From the
uniqueness of the solution U( F) of (11), stated in Proposition 2, we get that for

ay W el, UMW))=(Wiy,..., W), S0 that UV W) ) =W, showing
b). Let us now prove c). We have that

N
> _pij(Ai + BWLRW DU, (VW) (A + BWAW ) = Uj(UW)) + JpJ7 =0
i=1

and

N
> _pij(Ai + BW Wi )Wir (4; + BW W)™ = Wi + JiJ <
i=1

N
> _pij(AWn A] + BWS AL + AW B + BWigB]) = Wi + J;J 7 <0
=1

and thus, from Proposition 2, U; W(W)) < Wy, j=1,..., N. Let us show
now that

Wi = (UV)i(W) =
Wir = U;(V(W)) Wig = Ui (VW))W ' Wig
Wi

_ _ _ > 0.

(12)
Indeed, U;( V(W)) < Wy,

Wiy — G;(WW)) Wiy — U;(WW)) T (Wi = G (VW))W Wi =
Wiz = U;(UW)) Wy ' Wia,

10



and
Wig = W W UiV W)W Wan = Wi Wi (Wi = Ui(WW)))
(Wi = Ui (VW) Wiy = T (W))W W i =
Wiz — Wz‘ZWiflwﬂ =0
and from Remark 1 we obtain that (12) holds. O
We can establish now the main result of this section, showing the equivalence

between the existence of the mean square stabilizing solution for the CARE, the
H,-control problem, and the convex problem.

Theorem 2 : The following assertions are equivalent:
a) There exists the mean square stabiliziing solution
P=(Py,..., Py) > 0for the CARE given by (6).
b) There exists F' = (F1, ..., Fy) € K such that

1Gr |5 =min{ || G || 2; K € K}.
c) ThereexistsWW = (W, ..., Wy) € ¥ such that
p(W) = min{u(V);V € ¥}

Moreover,

1) if P satisfiesa) then F(P) satisfiesb) and U(F(P)) satisfies c).
2) if F satisfiesb) then P(F) satisfies a) and U/( F) satisfies c).

3) if W satisfies c) then P(V(W)) satisfies a) and V(W) satisfies b).

Proof : The second part of the proof will follow immediately from the first one.
Let us show first that b) is equivaent to ¢). Indeed, from Propositions4 and 5it is
immediate that

min{ || G || o3 K € K} = min{u(V);V € U},

and since ¥ C U, itisclear that min{u(V);V € \/I\J} > min{u(V);V € ¥}.
On the other hand, for any V € ¥, we have from Proposition 5 that

UV(V) <V, with (V) € B, Therefore, since (V) > u(UV(V)), we get
N
that min{u(V);V € ¥} < min{u(V);V € ¥}. Thisshows that

mind{ | Gk || 2; K € K} = min{u(V);V € U},
completing the proof of the equivalence between b) and c).

Let us now prove the equivalence between a) and b). Suppose that P > 0 is
the mean square stabilizing solution of the CARE. From (6) it is easy to show that

11



P stisfies
Py — (A; + BiF;(P))" &(P)(A; + BiF;(P))= Si(F(P))

and therefore, from uniqueness (see Proposition 2), P(F(P))=P.For any
K € K and P(K) as in (10) we have, according to Proposition 3 (see (7)) that,

(Pi(K)—R)—(A;+ B K;)"&(P(K)—-P)(A; + B K;) =
(K; — F;(P))"D;i(P)(K; — F;(P)), (13)

and from Proposition 2, P( K') > P. From Proposition 4,

N N
16k 115 = Z;tru;Pj(K)Jj) > Z;trwpﬂj) = 11 Gr(p) I3,
J= J=

showing that F(P) satisfies b). On the other hand, suppose that there exists
F=(Fy,...,Fy) e K stisfying b). Then clearly (A,B) is mean square
sabilizable and there exists the maximal solution P > 0 to the CARE (6).
Moreover, according to Theorem 1, we can find a sequence Pl € H"* such that
Fl = F(P-YeK,1=1,2,..., equations (8) are satisfied, and P’ converges
to P. Start with ¥ = F, so that PO =P( F) > P! > P. From optimality of F,
Proposition 4, and equations (8) we get that

N N
1 Gri Il 5= ]Z;tr(J;‘P Ty = jthru;Pj(F)Jj) = 16rll3

that is,

and since Jj,]]ik > 0, we can conclude that P( F') = P = P. From equation (13)

and recdlling that D;( P) > 0, we get that F' = F(P) € K, provingthat P > 0 is
indeed the mean square stabilizing solution for the CARE (6). O

12



5. Robust Ho-Control

In this section we consider the following MJLS with uncertainties,
(x(k+1)=(App) + AAgr))z(k)
G- + (By(r) + ABy(r) )ulk) + Jogyw(k)
- | z(0)=0,6(0)= 0y
 2(k)= Coyz (k) + Dygryu(k)

where AA;, AB;,i=1,...,N ae the uncertainties satisfying the following
norm bounded condition,

AA; = B;,AM;, AB; = LiAN;, AAF <1
fori=1,..., N. The trangtion probability of the Markov chain IP is assumed to

T T

belong to a convex st D = {P;P = Y oPt, ol >0, of =1}, where
t=1 t=1

Pt = (p;?j) are known trangtion probability matrices. We shall redefine the

convex set U in the following way:
,
v =)o
t=1

where Ut ¢t =1, ..., r, are defined as

Wit Wi

U= {W=(W,..., Wy); fori=1,...,N,W; = >0, Wi >0,
{ (M N) ? i (VV;; VVig)_ il

H; (W) >0}

13



with, fori,j=1,...,N
Wi M M;WioNF
D;(W)= ' ! !
' <NZWT2M:‘ NiW;3Ni
X;fj( W)= ( A /pﬁj(AiWﬂ + BiW;,) M} 1/P§j<AiI/ViQ + Bz‘V[/z‘s)Nf)

N
t
ZUW) = 0 (AiWa A7 + BWHAT + AWaB; + BWsB,

+ BB + LiL;f) + Jj
Wﬂ_ZE‘(W) Xt (w) ... MNJ(W)

1)
*&X””* 0 . I-Dy(W)

Proposition 6 : Suppose that there exists W € . Then

N
Wit > pij(Ai + BiF; + AA; + AB F,)Wi (A; + BiF; + AA; + AB; F;)*
i=1
+ TG =1,.,N

where  for 1=1,...,N, A4 ZEZAZM“ ABz:LzAszAz satisfies
AZ-AZ.* < I, PeD,and,

_ -1
by = WZEWu :

Proof: We have that if W € ¥ then W € ¥! foreacht=1,...,r, and from
Remark 1, H?(W) > 0 if and only if

I—-Di(W) ... 0
: : >0,
0 ... I-Dy(W)
Wﬂ_g;(w)_(xfj(vv) vaj(W))
I-Dy(W) ... 0 T wy
; z : >0 (14)
0 . I=Dyn(W) thvj(W)*

14



and

t it it t
(XU(W) XN],(W)> - (le(W) XNJ,(W)>
[—Di(W) 0 T =Dy 0
: - : : - : (15)
0 .. I—Dn(W) 0 ... I—Dyn(W)
Equations (14) and (15) canbe rewritten as
N
0<Wj — JjJ;‘ - Epgj(AiVVilA: + BW3L AT + AiWp B! + BiWisB]
1=
+EiEf + Ll + yi(W)) :
Vi(W) = ((AiWi + BIW,)M?  (AiWi + BiWi3)N;)
(1 _(MiWaM; MiWisN )T(MxAiWﬂ + BW,)" ) (16)
NWLM NiWisN; Ni( AWi2 + BiWi3)*

and

((AiWi + BWL)M?  (AiWip + BiWi3)NT) =
((AiWi + BWL)M:  (AiWi2 + BiWi3)N)

(I (Mz‘WﬂM;-“ Mz'VVz'2N;‘)>T<I <J\4iWi11\4;K Mz‘VViQN;>> an
NN NN, NN NN
Write now
Ty(W) = ((AiWi + BIWL)M?  (AiWi2 + BiWi3)N)

1
MW M! MiWipNF\\ T 2
(1= (et vy ))

7

MiWaM*  M;WipN*\\
(B Li)Ai(f_ G )
NiW5ME NiWlN?

Therefore, from equation (17) and the properties of the generalized inverse seen
in section 2,
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0 < Ti(W)Ti(W)* = Yi( W)+

M;WiaM*  M;WpN* E*
E: L: . _ 7 ) * 7 _
(i ’)AZ<I (NZ-WZ.’;M;F N,-WZ%N;‘ )Ai L

E*
((AiVVﬂ + BZV[/';;)]M;l< (AW + Bzm3>N: )Aj (Li ) -

M,(AiWi + BiW: )*>
E; L;)A; v i2 18
( ) 7/< Ni( 4Wig + BiW;3)* (18)

and from A,LAZ.* < I, we get that

E*
(E; Li)AiAZ. (LT) < EiET + LiL; (19
so that, from (18) and (19),

i

WYt EE* + LL* > (Ei Li)A MW M MIVENTY ( (E]
Yi(W)+ E; ; T L 1‘—( t l) ¢ NZVVZZJWj NzW:3NZ* L;ﬂ i

E*
((AiWa + BWL) M7 (AiWiz + BiWis) N[ ) A (L’i ) +
13

[ MAW + B
(Ei L%)Al< Ni( AWiz + BiWiz)* ) ”

16



From (20) and (16), and recalling that W;3 > W W1 W,y we get,

N
Wi > JiJ* + Z;pij(AzWuA;‘ + BWHAT + AW B
1=

Since p;;

every t=1,...

+ BWgB; + B E, + LiL +%(W))
N

> it + Z;pgj(AiwﬂA;f + BW, A + AWpB! + BiWisB!
1=

MWy M ZV[iVVQN;) § (E;*)

E: L: i

*
)

E*
+ (AW + BWL )M, (AiWa + BiW;3)N; AT (Ll )

C(E LA, (M(A Wil + BIW35)* >)

Nz( AW + BZWZS)
= T+ Zp ( (Aj + AA)Wir (4 + AAy)*
+(B;+ ABZ)Wzg(BZ + AB;)*

+(Ai + AA))Wip(Bi + ABy)* + (Bi + ABy) Wi, (4 + AAZ-)*)
N

> JjJ; + Z;pﬁj(Ai + B E+ AA;
1=

+ ABF) Wi (A; + B K+ AA; + AB;Fy)*.

T

t=1

takingthesumovert =1, ..., r, the desred result.

(21)

-
= Zatp’éj, for some of >0,> of =1, and (21) is satisfied for
t=1

.,
, 7, (Snce W € ¥!) we have, after multiplying by o! and

(]

Remark 3 Notice that for the case in which there are no uncertainties on the

matrices A;, B;, and on the trangtion probability P (that is, £; =0, L;

M; =0,N; =0, D= {P}), the redtriction H}( W) > 0 reduces to

OSWﬂ—Z}(W):

Wi

N
- lez-j(AiWﬂA; + BWy AT + AW B + BW3sB}) — i J*
£

and thus the set ¥ coincides with the one in section 4.

17
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Theorem 3 : Suppose that thereexists W = (W1, ..., Wy) € ¥ such that
p(W) =min{p(V);V € ¥}

Then for F= (Fy,...,Fy) defined as F; = Wi;WiIl, i=1,...,N, we
have that system G is MSS and

I Gr |3 < u(W).

Proof: For any A; satisfying A;A* < 1, let us denote A = (Aq,...,Ay) and
for V= (V,...,VN), & TA (V) = (Ta1(V),..., Tan(V)), where,

N
Tp;(V) = Zpij(Ai + B+ AAi + ABiF;)Vi(Ai + B F + AA; + AB )"
=1

Let us write P= (Pl,...,PN), P, =W;,ad JJ* = (J1J1*,7JNJX7)
i=1,...,N. From Propostion 6 we have that whatever A; satisfying
AZ-AZ.* <I,andP € D,

P>T\(P)+JJ*
and from Proposition 2 we get that G is MSS. From Proposition 5,
UVW)<W
and from Proposition 4,
1 GF 11 5 = pUV(W)) < u(W)

completing the proof of the Theorem. O

6. Numerical Example

Consider the following example, adapted from [9]. The MJLS has three operating
modes, described by:

18



1.5049 -1.0709
-1.0709 1.6160
0 0
0 1 10.2036 -10.3952
B — [ -10.3952 11.281
2 <-38.9103+6 2.5462+5)> Co 0(5)395 089 :

1.7355  -1.2255
-1.2255 1.6639

0 1
A1:<-2.2308+6 2.5462+6)’ Cr =

BN

0 1
A3 = (4.6384+6 -4.7455+5)’ Cs =

0 0
0 0 0
Dy = 0 . D2= 0 . D3= 0 ;
1.6125 1.0794 1.0540

0 1 0
Bl_B2_33_<1>, J1—J2—J3—<0 1).

Both state and jump variables are assumed available. Two cases are
considered:
i) 6 = 0 and P is exactly known, given by

0.67 0.17 0.16
P=1 030 0.47 0.23
0.26 0.10 0.64
For this case, the optimal solution is given by 11y = 4124and controllers
Fi = (2.2153 -15909) [ = (38.8637 -38.8864) Fj = (-4.6176 5.6267).

Note that this result is equivdent to obtaining the maxima solution of the
associated CARE (see[12],[26] or [1]) or using the convex approach of [9].

i) 6€[-0.1,0.1] and P €D, where D is the polytope defined by the
transition probability matrices

0.51 0.25 0.24 0.83 0.09 0.08
Pl =014 055 031 |, P?>=|046 0.39 0.15 |,

0.10 0.18 0.72 0.42 0.02 0.56

0.50 0.25 0.25 100
P3=1020 050 030 |, P*=[0 1 0

0.30 0.30 0.40 0 0 1

For the uncertainties defined by 6, we have that
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0

E1=FEy=E3= (03162>, My = My = M3 = (0.3162  0.3162),

0
L1=L2:L3:(O), N1 = Ng = N3 =0.

The optimal solution in this case is uy=6840 and F; = (2.2281 -2.4440),
F, = (38.8998 -39.7265), F, — (-4.6360 4.8930). As expected, due to
the uncertainties involved in the design, 9 > pq.

7. Final Remarks

In this paper we have considered the robust H,-control problem of Markovian
jump linear systems (MJLYS). It is assumed that both the state and jump variables
are available to the controller. Robustness here is in the sense that the system is
considered to have uncertainties on the transition probability of the Markov chain
as well as on the matrices of the system. The uncertainties on the matrices are of
the norm bounded form. An LMI optimization problem was proposed which
provides a mean square stabilizing controller for the closed loop MJLS, as well as
an upper bound for the Hy-norm of the system. For the case with no
uncertainties it was shown that the existence of a solution for the resulting LMI
optimization problem is equivaent to the existence of the mean square stabilizing
solution for the discrete-time coupled algebraic Riccati equations (CARE)
associated to the quadratic cost control problem for MJLS. Therefore, for the
case with no uncertainties, the convex approach imposes no extra conditions than
those usually required for the dynamic programming approach, which is
associated to the CARE. This result differs from the one recently published in the
literature ([26]), which connects the maxima solution for the CARE and a
convex problem. The convex problem with no uncertainties presented here (see
section 4) is related to the mean square stabilizing solution of the CARE and thus
is different from the onein [26].

Appendix
Stabilizability and Detectability Tests

Proposition 5 and Theorem 2 suggest the following mean square stabilizability and
detectability testsfor aMJLS, based on LMI’s.

Proposition A-1: Stabilizability test. The par (A,B)is mean square
gtabilizable if and only if the convex set ¥ defined in section 4 is not empty.
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Proof: If F e K # () then as seen in section 4, U(F)G\I/}C\IJ;A@. On the
other hand, if W € ¥ # () then again from section 4, V(W) € K # (. O

Proposition A-2: Detectability test. The par (C,A) is mean sguare
detectable if and only if thee ae R=(R,...,Ry)eH",
Z=(Zy ..., 2Zy) € H', S=(Sy...,Sy) € HS™, and
V= (04,...,Vy) e H* suchthat fori=1,..., N,

Zi S >0
St Vi) =

Z; > &i(R)
R; >0

Z; >0.

Proof: Analogous to the proof of Proposition A-1.
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