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Abstract

This paper deals with the robust -control of discrete-timeL#
Markovian jump linear systems. It is assumed that both the state
and jump variables are available to the controller. Uncertainties
satisfying some norm bounded conditions are considered on the
parameters of the system. An upperbound for the -controlL#
problem is derived in terms of an  LMI optimization problem. For
the case in which there are no uncertainties, we show that the
convex formulation is equivalent to the existence of the mean
square stabilizing solution for the set of coupled algebraic Riccati
equations arising on the quadratic optimal control problem of
discrete-time Markovian jump linear systems. Therefore, for the
case with no uncertainties, the convex formulation considered in this
paper imposes no extra conditions than those in the usual dynamic
programming approach. Finally some numerical examples are
presented to illustrate the technique.
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1. Introduction

Several examples can be found in the literature nowadays showing the
importance of the class of linear systems subject to abrupt changes in their
structures. This is the case, for instance, of systems subject to random failures,
repairs or sudden environmental disturbances, abrupt variation of the operating
point on a nonlinear plant, etc. Markovian jump linear systems (MJLS), which
comprise an important family of models subject to abrupt variations, are very
often used to model the above class of systems. In this case the changes in the
structure of the system are assumed to be modeled by a Markov chain, which
takes the system into distinct linear forms in a state variable representation.
Practical motivations as well as some theoretical results for MJLS can be found,
for instance, in [1],[3]-[14],[16]-[26],[28],[29].

The quadratic optimal control problem for discrete-time MJLS has been
analyzed in several papers using different approaches of analysis. In [1],[3],[5]-
[7],[10]-[12],[18]-[22],[25] a dynamic programming approach has been adopted,
leading to a set of coupled algebraic Riccati equations (CARE). These equations
generalize the usual discrete-time algebraic Riccati equations (see [2],[15]), and
results for the existence of maximal and mean square stabilizing solutions for
CARE have been derived in, for instance, [6],[7],[10],[12]. Another approach
that has been used is to apply convex programming. In [26] the authors obtain the
maximal solution of the CARE via the solution of a LMI optimization problem. In
[9] the authors use a convex approach to solve the -control of a MJLS.L#

One question that may be asked is that if the convex approach in [9] is
stronger or weaker than the dynamic programming formulation, in the sense that
the existence of the solution to one problem implies or is implied by the existence
of the solution to the other. As far as the authors are aware of, there are no
theoretical results connecting the following problems: i) existence of the mean
square stabilizing solution for the discrete-time CARE, and ii) the existence of the
solution for the convex programming approach presented in [9]. Notice that the
results in [26] are related to the maximal solution of the CARE, and not to the
mean square stabilizing solution of the CARE. As noticed in [26], the maximal
solution is not necessarily a mean square stabilizing solution, so that an extra
condition would have to be imposed to guarantee that the maximal solution is also
mean square stabilizing in general (the case with no jumps trivially shows this).
For the continous-time case the equivalence between the mean square stabilizing
solution of the CARE and the convex programming approach was considered in
[13]. In this paper we start by addressing this point and show that these two
problems, i) and ii) posed above, are in fact equivalent. Therefore, for the case
with no uncertainties, the convex formulation imposes no extra conditions than
those considered in the usual dynamic programming approach.
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The advantages of the convex approach in analyzing -controlL#
problems of MJLS over the dynamic programming approach had already been
stressed in [9]. In that paper it was considered the -control of MJLS withL#
uncertainties on the transition probability distribution of the Markovian chain and
the case in which the state of the Markov chain and/or the state of the system
are not directly accessible to the controller. Convex programming problems were
derived to handle these situations. In that paper the parameters of the matrices of
the system were considered to be exactly known.

In this paper we consider the situation in which the controller has access
to the state of the Markov chain and the state of the system, but there are
uncertainties on the transition probability of the Markov chain as well as on the
matrices of the system. The uncertainties on the matrices are considered to be of
the norm bounded form. We shall call this problem with uncertainties as robust
L#-control of MJLS. The LMI optimization problem presented for the case with
no uncertainties will be reformulated in order to provide a controller that stabilizes
the closed loop MJLS in the mean square sense, and gives an upper bound for the
robust -control problem.L#

The paper is organized in the following way. Section 2 presents the
notation that will be used throughout the work. Section 3 deals with previous
results derived for mean square stability, CARE and -control of MJLS, as wellL#
as some other auxiliary results. Section 4 presents the main theorem related to
the equivalence between the dynamic programming and convex programming
approaches. It shows that the existence of the mean square stabilizing solution for
the CARE is equivalent to the existence of the solution of the -control ofL#
MJLS, which in turns is also equivalent to the existence of the solution of a
convex programming problem. Section 5 considers the robust -control ofL#
MJLS, so that there are norm bound uncertainties on the parameters of the
MJLS, as well as uncertainties on the transition probability matrix of the
associated Markov chain. The LMI optimization problem of section 4 is
reformulated so that its solution provides an upper bound mean square stabilizing
solution for the robust -control of the MJLS problem. Section 6 presents aL#
numerical example and section 7 concludes the paper with some final remarks.
Some tests for mean square stability and detectability are presented in the
appendix.

2. Notation and Preliminary Results

For  and  complex Banach spaces we set  the Banach space of all— ˜ � — ˜Ð ß Ñ
bounded linear operators of  into , with the uniform induced norm represented— ˜
by . . For simplicity we shall set , . The spectral radius of anl l � — � — —Ð Ñ ³ Ð Ñ
operator  will be denoted by . If  is a Hilbert space then theg � — g —− Ð Ñ < Ð Ñ5
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inner product will be denoted by , and for ,  will denote the  ¡Þ à Þ − Ð Ñg � — g ‡

adjoint operator of . As usual,  (  respectively) will denote that theg g g  ! � !
operator  will be positive semi-definite (positive definite). In particularg � —− Ð Ñ
we shall denote by  the  dimensional complex Euclidean spaces and by‚8 8
� ‚ ‚Ð ß Ñ 7 ‚ 88 7  the normed bounded linear space of all  complex matrices,
with .� ‚ � ‚ ‚Ð Ñ ³ Ð ß Ñ8 8 8

Set  the linear space made up of all -sequences of complex matrices‡8ß7 R
Z œ ÐZ ßÞÞÞßZ Ñ Z − Ð ß Ñ 3 œ " ß á ß R" R 3

8 7 with ,  and, for simplicity, set� ‚ ‚
‡ ‡ ‡8 8ß8 8ß7

" R³ Z œ ÐZ ßÞÞÞßZ Ñ −. For , we consider the following norm in

‡ ‡8ß7 ‡ 8ß7
# #

3œ"

R

3 3; . It is easy to verify that . ,  is al l Š ‹ l l! ˆ ˆ ‰Z ³ >< Z Z Ñ
"
#

Hilbert space with the inner product given for  andß Z œ ÐZ ßÞÞÞßZ Ñ" R

W œ ÐW ß ÞÞÞßW Ñ ØZ à W Ù ³ >< Z W Ñ" R 3
8ß7 ‡

3œ"

R

3
 in , by: .‡ ! ˆ

We shall say that  is hermitian if  for Z œ ÐZ ßÞÞÞßZ Ñ − Z œ Z 3 œ" R 3
8 ‡

3
‡

" ß á ß R ß ³ Ö Z œ ÐZ ßÞÞÞßZ Ñ − à Z œ Z ß 3 œand shall write ‡ ‡8‡ 8 ‡
" R 3 3

" ß á ß R ³ Ö Z œ ÐZ ßÞÞÞßZ Ñ − à Z   ! ß 3 œ " ß á ß R™ ™. We set  ‡ ‡8 8
" R 3

+

and shall write, for  and  , thatZ œ ÐZ ßÞÞÞßZ Ñ − W œ ÐW ß ÞÞÞßW Ñ −" R " R
8 8‡ ‡

Z   W Z � W œ ÐZ � W ß ÞÞÞßZ � W Ñ − Z � W if , and that  if" " R R
8�‡

Z � W � ! 3 œ " ß á ß R3 3  for .

For  and matrix , with
~ ~ ~
E œ Ð E ß ÞÞÞßE Ñ − œ : ß 3 ß 4 œ " ß á ß R" R 34

8‡ � a b
:   ! 3 ß 4 œ " ß á ß R34  for all , we define the following operators
X X X � ‡ _ _ _ � ‡ÐÞÑ œ Ð ÐÞÑßáß ÐÞÑÑ − Ð Ñ ÐÞÑ œ Ð ÐÞÑßáß ÐÞÑÑ − Ð Ñ" R " R

8 8,  and
g g g � ‡ ‡ÐÞÑ œ Ð ÐÞÑßáß ÐÞÑÑ − Ð Ñà Z œ ÐZ ßÞÞÞßZ Ñ − 3 ß 4 œ" R " R

8 8for  and 
" ß á ß R,

X3 34 4
4œ"

R

ÐZ Ñ ³ : Z "" ( )

_ X3 3 3
‡
3ÐZ Ñ ³ E ÐZ ÑE #

~ ~
( )

g4 34 3 3
3œ"

R
‡
3ÐZ Ñ ³ : E Z E" ~ ~

(3)

and it is easy to verify that with the inner product given above we have from (1),
(2) and (3) that  (in particular, ( )g _ gœ < œ <‡

5 5( )). It is also easy to check_

that the operators , , and  map  into and  into .X _ g ‡ ‡ ‡ ‡8 8 8� 8�* *
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For a matrix U − � ‚ ‚Ð ß Ñ U8 7 the generalized inverse of  (or Moore-
Penrose inverse of ) is defined as the unique matrix  suchU U Ð ß Ñ† − � ‚ ‚7 8

that (see [27], page 13)
a) ,UU U œ U†

b) U UU œ U† † †

c) ( )  andUU œ UU† †‡

d) .ÐU UÑ œ U U† †‡

We conclude this section with the following well known result used in LMI's,
which will be useful in the sequel (see [27], page 13).

Remark 1: 0 if and only if either ,  and[ œ   U   ! W œ UU W
U W

W V” •‡
†

V � W U W   ! V   ! W œ WVV U � W V W   !‡ ‡† † † or ,  and Particularly, if. 
V � ! [   ! U   W V W, then   if and only if .�" ‡

3. Auxiliary Results
The goal of this section is to present some preliminary results regarding the mean
square stability of MJLS, the CARE, and the -control problem. This isL#
achieved through subsections 3.1, 3.2 and 3.3 respectively.

3.1. Preliminaries

Consider the following Markovian jump linear system

� B Ð 5 � " Ñ œ E BÐ5Ñ

BÐ!Ñœ B Ð ! Ñ œ

Ð Þ Ñ

Ð Þ Ñ

 
~

 ,  

4 a
4 b

)Ð5Ñ

! !) )

where  = ( ,..., )  and  is a discrete-time
~ ~ ~
E E E − Ö Ð5Ñà5 œ ! ß " ß á ×"

8
N ‡ )

Markov chain with finite state space  and with transition probabilityÖ"ßáßR×
matrix  . We set , as� œ UÐ5ÑœÐU Ð5Ñ ßáßU Ð 5 Ñ Ñ −a b:34

8‡
" R ‡

U Ð 5 Ñ ³ ÐBÐ5ÑBÐ5Ñ " Ñ4
‡

Ö Ð5Ñœ4×E  ) (5)

where  stands for the Dirac measure."ÖÞ×

 The following result, shown in [8], provides a connection between (3) and (5):

Proposition 1 : For every ,  .5 œ ! " ß á ß UÐ5 � " Ñ œ ÐUÐ5ÑÑg

We make the following definition:
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Definition 1 : Model (4) is mean square stable (MSS) if  0 asEÐ BÐ5Ñ² ² Ñ Ä#

5 Ä _ B for any initial condition  and initial distribution for .0 0)

The next result has been proved in [8]:

Proposition 2 : The following assertions are equivalent:
a) Model (4) is MSS
b) r ( ) 1.5 g �
c) r ( ) 1.5 _ �
d) There exists (0,1) and , 0, such that for each! ‘− + − + �

5 œ ! ß " á ß

E( )   .² BÐ5Ñ² Ÿ +# 5!
e) (coupled Lyapunov equations) given any S ) 0 inW œ ÐW ß á ß �" N

‡ ‡ g8 8
" R

+ + there exists ) 0 in  satisfying T œ ÐT ß á ß T � T � Ð T Ñ œ W

with  T œ ÐWÑÞ!
5œ!

_
5g

f) (adjoint coupled Lyapunov equations) given any
W œ ÐW ß á ß W Ñ � T œ ÐT ß á ß T �" R " R

8 80 in  there exists ) 0 in ‡ ‡+ +

satisfying   with  .T � Ð T Ñ œ W T œ ÐWÑ_ _!
5œ!

_
5

Moreover if 1 then for any  there exists a unique< Ð Ñ � W −5 g ‡8

T − T � Ð T Ñ œ W W   X   �‡ g8 such that . If 0 ( 0 respectively) and
P � ÐPÑ œ X    g g, then P L 0 (> 0). These results also hold replacing 
by ._

3.2. Coupled Algebraic Riccati Equations

Let us consider now the following controlled discrete-time Markovian jump linear
system,

� B Ð 5 � " Ñ œ E BÐ5Ñ�F ?Ð5Ñ

BÐ!Ñœ B Ð ! Ñ œ

 

 ,  
) )Ð5Ñ Ð5Ñ

! !) )

where  and ) . It is desiredE œ Ð E ß á ß E Ñ − F œ Ð F ß á ß F −" R " R
8 7ß8‡ ‡

to find  which minimizes the following functionalÖ?Ð5Ñà5   !×

NÐBÐ!Ñß Ð!Ñ ß?Ñœ
"

#
BÐ5Ñ ?Ð5Ñ

U P

P V
BÐ5Ñ

?Ð5Ñ
) " œ �a b� �Œ �

5œ!

_
‡ ‡ Ð5Ñ Ð5Ñ

Ð5Ñ
‡

Ð5Ñ
E

) )

) )
.

We assume in this paper that  and , for .Œ �U P

P V   ! ß V � ! 3 œ " ß Þ Þ Þ ß R
3 3

3
‡

3
3
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For  such that  , set\ œ Ð \ ÞÞÞß\ Ñ − F Ð\ÑF � V � ! ß 3 œ "ßÞÞÞßR"ß R 3 3 3
8 ‡

3
‡ X

e e eÐ\Ñ œ Ð Ð\ÑßÞÞÞß Ð\ÑÑ" R  as

e X

X X X

3 3 3 3 33
‡

3 3 3 3
‡ ‡ �" ‡ ‡

3 3 3 3 3 3 3 3

Ð\Ñ ³ � \ � E Ð\ÑE � U �

ÐE Ð\ÑF � P Ñ Ð F Ð\ÑF � V Ñ ÐF Ð\ÑE � P ).

and introduce the following notation

Œ ‡

X e

³ Ö \ œ Ð \ ÞÞÞß\ Ñ − à

F Ð\ÑF � V � ! ß 3 œ " ß á ß R ß Ð\Ñ   ! ×

"ß R
8‡

3
‡

3 3 3 and .

Associated to the above optimization problem we have the following discrete-time
coupled algebraic Riccati equations (CARE) (see [10]),

e3Ð\Ñ œ ! ß 3 œ " ß á ß R (6)

where  is said to be an hermitian solution for the\ œ Ð \ ß Þ Þ Þ ß \ Ñ −" R
8‡‡

CARE if  is invertible and  satisfies the equation above.F Ð\ÑF � V \
3
‡

3 3 3X

Before we present the main result for the CARE, we make the following
definitions.

Definition 2 : We say that  is mean square stabilizable if there existsÐEßFÑ

J œ ÐJ ß á ß J − E œ E � F J" R 3 3 3 3
8ß7)  such that model (4) is MSS with  .

~
‡

In this case we say that  stabilizes  in the mean square sense and setJ ÐEßFÑ

Š [³ J − J ÐEßFÑ{ ;  stabilizes  in the mean square sense}. 8Þ7

We also say that  is mean square detectable if there existsÐGßEÑ

L œ ÐL ß á ß L − E œ E � L G" R 3 3 3 3
=ß8) such that model (4) is MSS with  .

~
‡

Tests for mean square stabilizability and detectability are presented in the
appendix.

Definition 3 : For  and J œ ÐJ ß á ß J Ñ − \ œ Ð \ ß á ß \ Ñ −" R " R
7ß8 8‡‡ ‡

such that   ,F Ð\ÑF � V � ! ß 3 œ " ß á ß R ß Ð J Ñ œ Ð ÐJÑßáß ÐJÑÑ
3
‡

3 3 3 " RX f f f

W W W Y Y YÐ\Ñ œ Ð Ð\Ñßáß Ð\ÑÑ Ð\Ñ œ Ð Ð\Ñßáß Ð\ÑÑ" R " R and   are
defined, for  , as3 œ " ß á ß R

f

W X

Y X X

3 3
‡ 3 3

3
‡

3 3

3 3 3 33
‡

3 3 3 3 3 33 3 3
‡ �" ‡ ‡

Ð J Ñ ³ M J
U P

P V
M

J

Ð\Ñ ³ F Ð\ÑF � V

Ð\Ñ ³ � ÐF Ð\ÑF � V Ñ ÐF Ð\ÑE � P Ñ

ˆ ‰Œ �Œ �
.
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Definition 4 : We say that \ œ Ð \ ß Þ Þ Þ ß \ Ñ −" R
8‡  is a mean square stabilizing

solution for the CARE if  and .\   ! ß Ð\Ñ œ ! Ð\Ñ −e Y Š

The proof of the following proposition is straightforward but otherwise long,
and therefore will be omitted.

Proposition 3 : Suppose that X  and for some− Œ

J œ ÐJ ß á ß J Ñ − \ œ Ð \ ß á ß \ Ñ −s s s s s s
" R " R

8ß7 8�‡ ‡, satisfies for
3 œ " ß á ß R

\ �ÐE � F J Ñ Ð\ÑÐE � F J Ñ œ JÑs s s s s
3 3 3 3 3 3 3 3 3

‡ X f ( .

Then, for ,3 œ " ß á ß R

Ð\ � \ Ñ � Ð E � F J Ñ Ð\�\ÑÐE � F J Ñ œ Ð\Ñ�s s s s

ÐJ � Ð\ÑÑ H Ð\ÑÐJ � Ð\ÑÑs s

3 3 3 3 3 3 3 3 3 3
‡

3 3 3 3 3
‡

X e

Y Y . (7)

We can now state the following Theorem, regarding the existence of a
maximal solution of (6) in , proved in [12].Œ

Theorem 1: Suppose that  is mean square stabilizable. Then forÐEßFÑ

6 œ ! ß " ß # ß á \ œ Ð\ ß á ß \ Ñ, there exists   which satisfies the6 6 6
" R

following properties:

a) (8.a)\   \   â   \   !! " 6

b) where and for ,< Ð Ñ � " ß ÐÞÑ œ Ð ÐÞÑßáß ÐÞÑÑ 3 œ " ß á ß R5 _ _ _ _6 6 6 6
" R

_ X

Y

6 6‡ 6
3 3 33

3 3
6 6

3 3

6 6�"
3 3

ÐÞÑ ³ E ÐÞÑE ß

E ³ E � F J ß

J ³ Ð\ Ñ 6 œ " ß # ß áfor . (8.b)

c) (  . (8.c)\ � E Ð\ ÑE œ J Ñß 3 œ " ß á ß R6 6‡ 6 6 6
3 3 33 3X f

Moreover there exists  such that\ œ Ð\ ß á ß \ Ñ −+ + +
" R Œ

e ŒÐ\ Ñ œ ! ß \   \ − \ Ä \ 6 Ä _� 6+ + for any X  and as . Furthermore
< Ð Ñ Ÿ " ÐÞÑ œ Ð ÐÞÑßáß ÐÞÑÑ ÐÞÑ œ5 _ _ _ _ _+ + + + +, where  is defined as 

" R 3

E ÐÞÑE 3 œ " ß á ß R E œ E � F Ð\ Ñ+ + +
3 3 3

‡
3 3 3 3

�X Y, for , and .

Remark 2 : It has been shown in [12] that there exists at most one mean square
stabilizing solution for the CARE (6), which will coincide with the maximal
solution \+  of Theorem 1.
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3.3. The -NormL#

Consider now the controlled discrete-time Markovian jump linear system  withZ
B œ ! AÐ5Ñ DÐ5Ñ! , input , and output , given by

Z ) )

V

œ

B Ð 5 � " Ñ œ E BÐ5Ñ�F ?Ð5Ñ N AÐ5Ñ

BÐ!Ñœ!ß Ð!Ñœ Ð Þ Ñ

DÐ5Ñœ BÐ5Ñ�H ?Ð5Ñ Ð Þ Ñ

Ð Þ ÑÚÝÛÝÜ
) ) )

) )

Ð5Ñ Ð5Ñ Ð5Ñ

!

Ð5Ñ Ð5Ñ

 + 

 9 b
  9 c

9 a

where , , and V V Vœ Ð ß á ß Ñ œ ÐH ß á ß H Ñ œ ÐN ß" R " R "− H − N‡ ‡8 : 7ß:,

á ß N Ñ H HR 33
‡− � N N � ! 3 œ " ß á ß R‡< 8 ‡

3 3
, with 0and  for . . For

J œ ÐJ ß á ß J" R J ) , we define  as system (9) above with feedback− Š Z
control law . The? Ð 5 Ñ œ J BÐ5Ñ)Ð5Ñ  definition of the -norm of system ,L2 ZJ

presented in [9], is given by

² ² ³ ² D ²ZJ =ß4# #
# #

=œ" 4œ"

< R
       ! !

where  represents the output sequence  given by (9.c) when:D ÐDÐ!ÑßDÐ"ÑßáÑ=ß4

a) the input sequence is given by , ,AœÖAÐ!ÑßAÐ"Ñßá× A Ð ! Ñ œ /=

A Ð 5 Ñ œ ! 5 � ! Ö/ ß á ß / × Ð!Ñœ Ð"Ñœ4Þ, ,  forms a basis for  and, b) " <
<‚ ) )

For the deterministic case (  and ) the above definition reduces toR œ " : œ """

the usual -norm. For let ( , , )  andL J − Ð J Ñ œ ÐJÑá ÐJÑ −2 1 N
+Š, c c c ‡8

Y Ð J Ñ œ Ð Y ÐJÑ ßáßY ÐJÑ −" R
8)  be the unique solution of the discrete-time‡ +

coupled gramian of observability and controllability respectively (recall
Proposition 2 for existence and uniqueness)

c X c f3 3 3 3 3 3 3 3 3
‡

3 34 3 3 3 3 3 3 3 4
3œ"

R
‡ ‡

4

Ð J Ñ œ Ð E � F J Ñ Ð ÐJÑÑÐE � F J Ñ � ÐJÑ

Y Ð J Ñ œ : ÐE � F J ÑY ÐJÑÐE � F J Ñ � N N" .

(10)

(11)

Since  and 0, we get that 0 and 0 (seef c3 4 34
‡Ð J Ñ   ! N N � Ð J Ñ   Y Ð J Ñ �

Proposition 2). Define The next result isU œ3 V V V
3 3 3
‡ ‡ ‡

3 3 3 3 3ß P œ H ß V œ H H . 
an adaptation of the result proved in [9], and represents a characterization of the
L ß J −#-norm for  in terms of the solution of the observability andŠ,
controllability gramians.
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Proposition 4 :

² ² œ ><ÐN ÐJÑN Ñ

œ ><

Z cJ 4 4# 4
4œ"

R
‡

3œ"

R

2  "
" ŒŒ �� ��U P

P V

Y ÐJÑ Y ÐJÑJ

J Y ÐJÑ J Y ÐJÑJ
3 3

3
‡

3

3 3 3
‡

3 3 3 3 3
‡ .

4. Equivalence Results

The goal of this section is to present the equivalence among the mean square
stabilizing solution of the CARE, the -control problem, and an LMIL#
optimization problem. From now on we shall consider all matrices real. Define the
convex set

G œ Ö [ œ Ð [ ß á ß [ Ñà 4 œ " ß á ß R ß [ œ   ! ß [ � ! ß
[ [

[ [

:

" 4 4"R
4" 4#

4#
‡

4$

3œ"

R

34

for � �
" ÐE [ E � F [ E � E [ F � F [ F Ñ � [ � N N Ÿ ! ×3 3" 3 3 3# 3 3$ 4" 43 3# 3 3 3 4

‡ ‡ ‡ ‡ ‡ ‡

and the set G G^ ©

G G
^

for  andœ Ö [ œ Ð [ ß á ß [ Ñ © à 4 œ " ß á ß R ß [ œ [ [ [

:

" 4$ 4#R 4# 4"
‡ �"

3œ"

R

34" ÐE [ E � F [ E � E [ F � F [ F Ñ � [ � N N œ ! ×3 3" 3 3 3# 3 3$ 4" 43 3# 3 3 3 4
‡ ‡ ‡ ‡ ‡ ‡ .

Define also the cost function

.Ð [ Ñ œ
U P [ [

P V [ [
" Œ
4œ"

R

>< Œ �Œ ��3 3 3" 3#

3 3#
‡ ‡

3 3$
.

For any , let  be asJ œ ÐJ ß á ß J Ñ Y Ð J Ñ œ Ð Y ÐJÑ ßáßY Ð J Ñ Ñ � !" R " R− Š
in (11). Define

hÐ J Ñ œ ß á ß Þ
Y ÐJÑ Y ÐJÑJ Y ÐJÑ Y ÐJÑJ

J Y ÐJÑ J Y ÐJÑJ J Y ÐJÑ J Y ÐJÑJ�� � � ��" " R R" R
‡ ‡

" " " " R R R R" R
‡ ‡

 From Remark 1 and equation (11) it is immediate that . For any^h GÐ J Ñ −

[ œ Ð[ ß á ß [ Ñ © Ð [ Ñ œ Ð [ [ ß á ß [ [ Ñ , let . Since" R "# "" R# R"
‡ �" ‡ �"G i

[   [ [ [3$ 3#3# 3"
‡ �"  (see Remark 1), we get that
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"
"
3œ"

R

34

3œ"

R

34

:

:

ÐE � F [ [ Ñ[ ÐE � F [ [ Ñ � [ � N N Ÿ

ÐE [ E � F [ E � E [ F � F [ F Ñ � [ � N N Ÿ !

3 3 3" 3 3 4" 43# 3" 3# 3" 4
‡ �" ‡ �" ‡ ‡

3 3" 3 3 3# 3 3$ 4" 43 3# 3 3 3 4
‡ ‡ ‡ ‡ ‡ ‡

and thus from Proposition 2, . This defines mappings  and^i Š h Š GÐ[Ñ À Ä−
i G ŠÀ Ä . We have the following proposition.

Proposition 5 : The following assertions hold:

a)  on  and  for any .^ih \ hi \ G hi Gœ ß ,Ñ œ -Ñ Ð [ Ñ Ÿ [ [ −

Proof: It is immediate to check that , showing a). From thei hÐ Ð J Ñ Ñ œ J
uniqueness of the solution  of (11), stated in Proposition 2, we get that forYÐJÑ

any , , so that , showing^[ YÐ Ð [ Ñ Ñ œ Ð [ ß á ß [ Ñ Ð Ð [ Ñ Ñ œ [− G i h i"" R"
b). Let us now prove c). We have that

"
3œ"

R

34 4: Ð[ÑÑ � Y Ð Ð[ÑÑÐE � F [ [ ÑY Ð ÐE � F [ [ Ñ � N N œ !3 3 3 3 3 43# 3" 3# 3" 4
‡ �" ‡ �" ‡ ‡i i

and

"
"
3œ"

R

34

3œ"

R

34

:

:

ÐE � F [ [ Ñ[ ÐE � F [ [ Ñ � [ � N N Ÿ

ÐE [ E � F [ E � E [ F � F [ F Ñ � [ � N N Ÿ !

3 3 3" 3 3 4" 43# 3" 3# 3" 4
‡ �" ‡ �" ‡ ‡

3 3" 3 3 3# 3 3$ 4" 43 3# 3 3 3 4
‡ ‡ ‡ ‡ ‡ ‡

and thus, from Proposition 2, Y Ð Ð[ÑÑ4 i Ÿ [ 4 œ " ß á ß R4", . Let us show
now that

[ � Ð Ñ Ð [ Ñ œ

[ � Y Ð Ð[ÑÑ [ � Y Ð Ð[ÑÑ[ [

[ � [ [ Y Ð Ð[ÑÑ [ � [ [ Y Ð Ð[ÑÑ[ [
  !

3 3

3" 3 3# 3 3#3"
�"

3# 3# 3" 3# 3" 3"
‡ ‡ �" ‡ �" �"

3 3$ 3 3#

hi

i i

i i� � .

(12)
Indeed, , Y Ð Ð[ÑÑ3 i Ÿ [3"

( )( (

,

[ � Y Ð Ð[ÑÑ [ � Y Ð Ð[ÑÑÑ [ � Y Ð Ð[ÑÑÑ[ [ œ

[ � Y Ð Ð[ÑÑ[ [

3" 3 3" 3 3" 3 3#3"
�"

3# 3 3#3"
�"

i i i

i

†
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and

[ � [ [ Y Ð Ð[ÑÑ[ [ � [ [ Ð[ � Y Ð Ð[ÑÑÑ

[ � Y Ð Ð[ÑÑÑ [ � Y Ð Ð[ÑÑÑ[ [ œ

[ � [ [ [   !

3 3# 3" 3" 3# 3"
‡ �" �" ‡ �"

3 3# 3" 3

3" 3 3" 3 3#3"
�"

3 3# 3"
‡ �"

3#

3

3

i i

i i( (†

and from Remark 1 we obtain that (12) holds. ¨

We can establish now the main result of this section, showing the equivalence
between the existence of the mean square stabilizing solution for the CARE, the
L#-control problem, and the convex problem.

Theorem 2 : The following assertions are equivalent:
 a) There exists the mean square stabilizing solution

T œ ÐT ß á ß T Ñ   !" R for the CARE given by (6).
b) There exists  such thatJ œ ÐJ ß á ß J Ñ" R − Š

² ² œ 738Ö ² ² à O −Z ZJ O ##
2 Š×Þ

c) There exists  such that[ œ Ð[ ß á ß [ Ñ" R − G

. . GÐ[Ñ ÐZ Ñ ×Þœ 738Ö à Z −

Moreover,
1) if   satisfies a) then  satisfies b) and   satisfies c).T ÐTÑ Ð ÐTÑÑY h Y
2) if   satisfies b) then satisfies a) and  satisfies c).J ÐJÑ ÐJÑc h
3) if   satisfies c) then  satisfies a) and  satisfies b).[ Ð Ð[ÑÑ Ð [ Ñc i i

Proof : The second part of the proof will follow immediately from the first one.
Let us show first that b) is equivalent to c). Indeed, from Propositions 4 and 5 it is
immediate that

738Ö ² ² à O − 738Ö à Z −ZO # Š . G× œ ÐZ Ñ ×^ ,

and since , it is clear that  .^ ^G G . G . G© ÐZ Ñ ×   ÐZ Ñ ×738Ö à Z − 738Ö à Z −
On the other hand, for any , we have from Proposition 5 thatZ − G

hi hi G . . hiÐZ Ñ Ÿ Z ÐZ Ñ ÐZ Ñ   Ð ÐZ ÑÑ, with . Therefore, since , we get^−

that . This shows that^738Ö à Z − 738Ö à Z −. G . GÐZ Ñ × Ÿ ÐZ Ñ ×

738Ö ² ² à O − 738Ö à Z −ZO # Š . G× œ ÐZ Ñ ×,

completing the proof of the equivalence between b) and c).

Let us now prove the equivalence between a) and b). Suppose that  isT   !
the mean square stabilizing solution of the CARE. From (6) it is easy to show that
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T  satisfies

T �ÐE � F ÐTÑÑ ÐTÑÐE � F ÐTÑÑœ ÐTÑÑ3 3 3 3 3 3 3 3 3
‡Y X Y f Y(

and therefore from uniqueness (see Proposition 2), For anyß Ð Ð T Ñ Ñ œ T Þc Y
O − Š c and as in (10) we have, according to Proposition 3 (see (7)) that,ÐOÑ

Ð Ð O Ñ � T Ñ � Ð E � F O Ñ Ð ÐOÑ�TÑÐE � F O Ñ œ

ÐO � ÐTÑÑ ÐTÑÐO � ÐTÑÑ

c X c

Y W Y

3 3 3 3 3 3 3 3 3
‡

3 3 3 3 3
‡ , (13)

and from Proposition 2,  From Proposition 4,cÐ O Ñ   T Þ

² ² œ ><ÐN ÐOÑN Ñ   ><ÐN T N Ñ œ ² ²Z c ZO 4 4 4 4# 4 4 #
4œ" 4œ"

R R
‡ ‡ #2 ," " YÐTÑ

showing that ) satisfies b). On the other hand, suppose that there existsYÐT
J œ ÐJ ß á ß J Ñ ÐEßFÑ" R − Š satisfying b). Then clearly  is mean square
stabilizable and there exists the maximal solution 0 to the CARE (6).T  

Moreover, according to Theorem 1, we can find a sequence T −6 ‡8+  such that
J œ ÐT Ñ − ß 6 œ "ß# ßá T6 6�" 6Y Š , equations (8) are satisfied, and  converges
to . Start with , so that . From optimality of ,T J œ J T œ Ð J Ñ   T   T J! ! 6c
Proposition 4, and equations (8) we get that

² ² œ ><ÐN T N Ñ   ><ÐN ÐJÑN Ñ œ ² ²Z c ZJ # 4 4 4 #
# ‡ 6 ‡ #

4œ" 4œ"

R R

4 4 4 J6 " "
that is,

"
4œ"

R

4 4
‡ 6

4 4><ÐN Ð Ð J Ñ � T ÑN Ñ œ !c

and since , we can conclude that . From equation (13)N N � ! œ T4 4
‡ cÐ J Ñ œ T6

and recalling that , we get that ) , proving that  isW Y Š3Ð T Ñ � ! J œ ÐT − T   !
indeed the mean square stabilizing solution for the CARE (6). ¨
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5. Robust -ControlL#

In this section we consider the following MJLS with uncertainties,

Z

?

?

) )

V

œ

B Ð 5 � " Ñ œ Ð E � E ÑBÐ5Ñ

�ÐF � F Ñ?Ð5Ñ N AÐ5Ñ

BÐ!Ñœ!ß Ð ! Ñ œ

DÐ5Ñœ BÐ5Ñ�H ?Ð5Ñ

ÚÝÝÝÛÝÝÝÜ

) )

) ) )

) )

Ð5Ñ Ð5Ñ

Ð5Ñ Ð5Ñ Ð5Ñ

!

Ð5Ñ Ð5Ñ

 + 

 
  

where ,  are the uncertainties satisfying the following? ?E F ß 3 œ " ß á ß R3 3
norm bounded condition,

? ? ? ? ? ?E œ I Q F œ P R Ÿ M3 3 3 3 3 3 3 3 3 3
‡,    ,      

for . The transition probability of the Markov chain  is assumed to3 œ " ß á ß R �

belong to a convex set  }, whereƒ � � ! � ! !œ Ö à œ ß   ! ß œ "! !
>œ" >œ"

< <
> > > >

�> >
34

œ Ð: Ñ are known transition probability matrices. We shall redefine the

convex set  in the following way:G

G Gœ ,
>œ"

<
>

where ,  are defined asG> > œ " ß á ß <,

G

[

>
" 3 ‡ 3"R

3" 3#

3# 3$

3
>

œ Ö [ œ Ð [ ß á ß [ Ñà 3 œ " ß á ß R ß [ œ   ! ß [ � ! ß
[ [

[ [

Ð [ Ñ   !

for Œ �
×
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with, for 3 ß 4 œ " ß á ß R

 W

k

m

3

34
>

4
>

Ð [ Ñ œ

Ð [ Ñ œ

Ð [ Ñ œ

� �
Œ �

" Š

Q [ Q Q [ R

R [ Q R [ R

: ÐE [ � F [ ÑQ : ÐE [ � F [ ÑR

:

3 3" 3 3#3 3
‡ ‡

3 33# 3 3
‡ ‡ ‡

3$

34 3# 3 34 3
> ‡ ‡ > ‡

3 3" 3 3 3# 3 3$

3œ"

R

34
>

É É
E [ E � F [ E3 3" 33 3#

‡ ‡
3 3 3
‡ ‡ ‡

3 3# 3 3$

3 3 43 3 4
‡ ‡ ‡

� E [ F � F [ F

� I I � P P N N‹ �

Ð [ Ñ Ð[Ñ Ð [ Ñ

Ð [ Ñ

Ð [ Ñ

Ð [ Ñ

Ð [ Ñ

[
4
>

4"

Ð [ Ñ œ

[ � á

ã ã ä ã

M � á !

! á M �

Î ÑÐ ÓÐ ÓÐ ÓÐ ÓÐ ÓÐ ÓÏ Ò

m k k

k

k

W

W

4
>

"4 R4
> >

"4
> ‡

R4
> ‡

"

R

.

Proposition 6 : Suppose that there exists . Then[ − G

[   : ÐE � F J � E � F J Ñ[ ÐE � F J � E � F J Ñ

� N N ß 4 œ " ß á ß R

4" 34 3 3 3 3 3 3 3" 3 3 3 3 3 3
3œ"

R
‡

4 4
‡

" ? ? ? ?

A2/</ 3 œ " ß I Q ß P R ß for  satisfiesá ß R E œ F œ, ? ?3 33 3 3 3 3 3 3? ? ?
? ? � ƒ3 3

‡ Ÿ M −,  , and,

J œ [ [3 3# 3"
‡ �".

Proof: We have that if  then  for each , and from[ − [ − > œ " ß á ß <G G>

Remark 1,  if and only if[
4
> Ð [ Ñ   !

Î ÑÐ ÓÏ Ò
Š ‹

Î ÑÐ ÓÏ Ò
Î ÑÐ ÓÐ ÓÏ Ò

M � Ð[Ñ á !

ã ä ã

! á M � Ð[Ñ
  ! ß

[ � Ð [ Ñ � Ð[Ñ á Ð[Ñ

M � Ð[Ñ á !

ã ä ã ã

! á M � Ð[Ñ

Ð[Ñ

Ð[Ñ

  !

W

W

m k k

W

W

k

k

"

R

4" 4
>

"4
> >

R4

" "4

R

> ‡

R4
> ‡

†

(14)
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and

Š ‹ Š ‹
Î Ñ Î ÑÐ ÓÐ ÓÏ Ò Ï Ò

k k k k

W W

W W

"4 "4
> > > >

R4 R4

" "

R R

Ð[Ñ á Ð[Ñ Ð[Ñ á Ð[Ñœ

M � Ð[Ñ á ! M � Ð[Ñ á !

ã ä ã ã ä ã

! á M � Ð[Ñ ! á M � Ð[Ñ
Þ

†

(15)

Equations (14) and (15) canbe rewritten as

! Ÿ [ � :

�

ÐE [ � F [ ÑQ ÐE [ � F [ ÑR

Q [

4"
3œ"

R

34
>

3 3" 3 3 3# 3 3$3# 3 3
‡ ‡ ‡

3 3

N N � E [ E � F [ E � E [ F � F [ F

I I � P P � Ð[Ñ

Ð [ Ñ œ

M �

4 3 3" 3 3 3# 3 3$4 3 3# 3 3 3
‡ ‡ ‡ ‡ ‡ ‡

3 3 33 3
‡ ‡

3

" Š
�

� �

l

l

,

ˆ ‰
Œ " 3 3#3 3

‡ ‡

3 33# 3 3
‡ ‡ w ‡

3$

3 3 3" 3 3#
‡ ‡

3 3 3# 3 3$
‡

Q Q [ R

R [ Q R [ R

Q ÐE [ � F [ Ñ

R Ð E [ � F [ Ñ
� Œ �†

. (16)

and

ˆ ‰
ˆ ‰
Œ Œ

ÐE [ � F [ ÑQ ÐE [ � F [ ÑR

ÐE [ � F [ ÑQ ÐE [ � F [ ÑR

Q [ Q Q [ R Q [ Q Q [

R [ Q R [ R

3 3" 3 3 3# 3 3$3# 3 3
‡ ‡ ‡

3 3" 3 3 3# 3 3$3# 3 3
‡ ‡ ‡

3 3" 3 3# 3 3" 33 3 3
‡ ‡ ‡

3 33# 3 3
‡ ‡ w ‡

3$

œ

M � M �� � � ��† 3# 3
‡

3 33# 3 3
‡ ‡ w ‡

3$

R

R [ Q R [ R �. (17)

Write now

X Ð [ Ñ œ ÐE [ � F [ ÑQ ÐE [ � F [ ÑR

Q [ Q Q [ R

R [ Q R [ R

�
Q [ Q Q [ R

R [ Q R [

3 3 3" 3 3 3# 3 3$3# 3 3
‡ ‡ ‡

3 3" 3 3#3 3
‡ ‡

3 33# 3 3
‡ ‡ w ‡

3$

3 3" 3 3#3 3
‡ ‡

3 33# 3
‡ ‡

ˆ ‰

�Œ

ˆ ‰ Œ

M �

I P M �

� � ��

� �

†
"
#

3 3 3?
3$
w ‡

3
R �

"
#

.

Therefore, from equation (17) and the properties of the generalized inverse seen
in section 2,
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! Ÿ X Ð[ÑX Ð[Ñ œ

Q [ Q Q [ R

R [ Q R [ R P

I
�

ÐE [ � F [ ÑQ ÐE [ � F [ ÑR
I

P
�

3 3
‡

3 3" 3 3#3 3
‡ ‡

3 33# 3 3 3
‡ ‡ w ‡ ‡

3$

3
‡

3 3" 3 3 3# 3 3$3# 3 3
‡ ‡ ‡ 3

‡

3
‡

l

? ?

?

3

3 3 3 3
‡

3
‡

Ð [ Ñ �

I P M �ˆ ‰ Œ

ˆ ‰

ˆ

� � � ��

� �

‰I P3 3 3? Œ �Q ÐE [ � F [ Ñ

R Ð E [ � F [ Ñ
3 3 3" 3 3#

‡ ‡

3 3 3# 3 3$
‡ (18)

and from , we get that? ?3 3
‡ Ÿ M

ˆ ‰I P3 3 3 3
‡? ? � �I

P
Ÿ I I � P P3 ‡

‡

3
‡ 3 33 3

‡ (19)

so that, from (18) and (19),

l ? ?

?

?

3 33 3 3
‡

3
‡

3 3

Ð [ Ñ � I P

I P

I I � P P   �
Q [ Q Q [ R

R [ Q R [ R P

I

ÐE [ � F [ ÑQ ÐE [ � F [ ÑR
I

P
�

3 33 3
‡ ‡ 33 3" 3 3#3 3

‡ ‡

3 33# 3 3 3
‡ ‡ w ‡ ‡

3$

‡

3 3" 3 3 3# 3 3$3# 3 3
‡ ‡ ‡ 3

‡

3
‡

ˆ ‰

ˆ ‰

ˆ ‰

� � � �

� �

3Œ �Q ÐE [ � F [ Ñ

R Ð E [ � F [ Ñ
3 3 3" 3 3#

‡ ‡

3 3 3# 3 3$
‡ . (20)
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From (20) and (16), and recalling that  we get,[   [ [ [3$ 3## 3"
‡ ‡

[   :

�

  :

4"
3œ"

R

34
>

3œ"

R

34
>

N N � E [ E � F [ E � E [ F

� F [ F I I � P P � Ð[Ñ

N N � E [ E � F [ E � E [ F � F [ F

4 3 3" 3 3 3#4 3 3# 3 3
‡ ‡ ‡ ‡ ‡

3 3$ 3 3 33 3 3
‡ ‡ ‡

4 3 3" 3 3 3# 3 3$4 3 3# 3 3 3
‡ ‡ ‡ ‡ ‡ ‡

" Š

" Š
l ‹

�
Q [ Q Q [ R

R [ Q R [ R P

I

� ÐE [ � F [ ÑQ ÐE [ � F [ ÑR
I

P

�
Q ÐE [ � F [

ˆ ‰
ˆ ‰
ˆ ‰

I P

I P

3 3 3 3
‡

3
‡

3 3 3

? ?

?

?

� � � �
� �

Œ �

3 3" 3 3#3 3
‡ ‡

3 33# 3 3 3
‡ ‡ w ‡ ‡

3$

3
‡

3 3" 3 3 3# 3 3$3# 3 3
‡ ‡ ‡ 3

‡

3
‡

3 3 3" 3 3#
‡ ‡

3 3 3# 3 3$
‡

3œ"

R

34
>

Ñ

R Ð E [ � F [ Ñ

œ : Ð

 

‹
" ŠN N � E � E Ñ[ ÐE � E Ñ

�ÐF � F Ñ[ ÐF � F Ñ

�ÐE � E Ñ[ ÐF � F Ñ �ÐF � F Ñ[ ÐE � E Ñ

N N

4 3 3 3" 3 34
‡ ‡

3 3 3$ 3 3
‡

3 3 3# 3 3 3 3 3 3
‡ ‡ ‡

3#

4 4
‡

? ?

? ?

? ? ? ? ‹
� E � F J � E

� F J Ñ [ ÐE � F J � E � F J Ñ

"
3œ"

R

34
>: Ð 3 3 3 3

3 3 3" 3 3 3 3 3 3
‡

?

? ? ? . (21)

Since  for some , and (21) is satisfied for: œ : ß   ! ß œ "34
>œ" >œ"

< <
> > > >

34
! !! ! !

every , (since ) we have, after multiplying by  and> œ " ß á ß < [ − +
>œ"

<
> >G !

taking the sum over , the desired result.> œ " ß á ß < ¨

Remark 3: Notice that for the case in which there are no uncertainties on the
matrices  and on the transition probability  (that is, E ß F ß I œ ! ß P œ ! ß3 3 3 3�

Q œ ! ß R œ ! ß œ Ö ×Ñ Ð [ Ñ   !3 3 4
"ƒ � [, the restriction  reduces to

! Ÿ Ð [ Ñ œ[ �

� :

4"

3œ"

R

34

m4
"

[ ÐE [ E � F [ E � E [ F � F [ F Ñ � N N4" 3 3" 3 3 3# 3 3$ 43 3# 3 3 3 4
‡ ‡ ‡ ‡ ‡ ‡"

and thus the set  coincides with the one in section 4.G



18

Theorem 3 : Suppose that there exists  such that[ œ Ð[ ß á ß [ Ñ" R − G

. . GÐ[Ñ ÐZ Ñ ×Þœ 738Ö à Z −

Then for  defined as , weJ œ ÐJ ß á ß J Ñ J œ [ [ ß 3 œ " ß á ß R" R 3 3# 3"
‡ �"

have that system  is MSS andZJ

² ² ŸZJ #
# .Ð [ Ñ.

Proof: For any  satisfying , let us denote  and? ? ? ? ? ?3 3 " R3
‡ Ÿ M œ Ð ß á ß Ñ

for , let , whereZ œ ÐZ ß á ß Z Ñ ÐZ Ñ œ Ð ÐZ Ñ ß á ß ÐZ ÑÑ ß" R " Rg g g? ? ?

g?4
3œ"

R

34 3ÐZ Ñ ³ : Z" ÐE � F J � E � F J Ñ ÐE � F J � E � F J Ñ3 3 3 3 3 3 3 3 3 3 3 3
‡? ? ? ? .

Let us write , and T œ ÐT ß á ß T Ñ T œ [ ß NN œ ÐN N ß á ß N N Ñ" R 3 3" " R
‡ ‡ ‡

" R
3 œ " ß á ß R. From Proposition 6 we have that whatever  satisfying?3
? ? � ƒ3 3

‡ Ÿ M −, and ,

T   ÐTÑg? � N N ‡

and from Proposition 2 we get that  is MSS. From Proposition 5,ZJ

hiÐ [ Ñ Ÿ [

and from Proposition 4,

² ² œ ŸZJ #
# . hi .Ð Ð[ÑÑ Ð [ Ñ

completing the proof of the Theorem. ¨

6. Numerical Example

Consider the following example, adapted from [9]. The MJLS has three operating
modes, described by:
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E œ ß G œ ß
! "

#Þ#$!)� #Þ&%'#�

"Þ&!%* "Þ!(!*

"Þ!(!* "Þ'"'!

! !

E œ ß G œ ß
! "

$)Þ*"!$� #Þ&%'#�

"!Þ#!$' "!Þ$*&#

"!Þ$*&# ""Þ#)"*

! !

E

" "

# #

Œ � Î Ñ
Ï Ò

Œ � Î Ñ
Ï Ò

-

-
-

-

-
-

$ $

$ $

$ $œ ß G œ ß
! "

%Þ'$)%� %Þ(%&&�

"Þ($&& "Þ##&&

"Þ##&& "Þ''$*

! !
Œ � Î Ñ

Ï Ò$ $-

-
-

H œ ß H œ ß H œ ß

! ! !

! ! !

"Þ'"#& "Þ!(*% "Þ!&%!
" # $

Î Ñ Î Ñ Î ÑÐ Ó Ð Ó Ð ÓÏ Ò Ï Ò Ï Ò

F œ F œ F œ ß N œ N œ N œ
! " !

" ! "" # $ " # $Œ � Œ �.

Both state and jump variables are assumed available. Two cases are
considered:

i)  and  is exactly known, given by$ �œ !

� œ

!Þ'( !Þ"( !Þ"'

!Þ$! !Þ%( !Þ#$

!Þ#' !Þ"! !Þ'%

Î Ñ
Ï Ò.

For this case, the optimal solution is given by 4124and controllers." œ

J œ J œ J œ Þ#Þ# $)Þ) $) %Þ'"(' &Þ'#'(" # $ˆ ‰ ˆ ‰ ˆ ‰153 -1.5909 637 - .8864 -

Note that this result is equivalent to obtaining the maximal solution of the
associated CARE (see [12],[26] or [1]) or using the convex approach of [9].

ii) -  and , where  is the polytope defined by the$ � ƒ ƒ− !Þ"ß!Þ" −c d
transition probability matrices

� �

�

" #

$

œ ß œ ß

!Þ&" !Þ#& !Þ#% !Þ)$ !Þ!* !Þ!)

!Þ"% !Þ&& !Þ$" !Þ%' !Þ$* !Þ"&

!Þ"! !Þ") !Þ(# !Þ%# !Þ!# !Þ&'

œ

!Þ&! !Þ#& !Þ#&

!Þ#! !Þ&! !Þ$!

!Þ$! !Þ$! !

Î Ñ Î Ñ
Ï Ò Ï Ò
Î Ñ
Ï ÒÞ%! ! ! "

ß œ Þ

" ! !

! " !�%
Î Ñ
Ï Ò

For the uncertainties defined by , we have that$
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I œ I œ I œ ß Q œ Q œ Q œ ß
!

!Þ$"'#
!Þ$"'# !Þ$"'#" # $ " # $Œ � ˆ ‰

P œ P œ P œ ß R œ R œ R œ ! Þ
!

!" # $ " # $Œ �
The optimal solution in this case is =6840 and 281 -2.4440.# "J œ ß#Þ#a b
J œ ß J œ$)Þ) $ %Þ'# $a b a b998 - 9.7265 - 360 4.8930 . As expected, due to
the uncertainties involved in the design, .. .# "�

7. Final Remarks

In this paper we have considered the robust -control problem of MarkovianL#
jump linear systems (MJLS). It is assumed that both the state and jump variables
are available to the controller. Robustness here is in the sense that the system is
considered to have uncertainties on the transition probability of the Markov chain
as well as on the matrices of the system. The uncertainties on the matrices are of
the norm bounded form. An LMI optimization problem was proposed which
provides a mean square stabilizing controller for the closed loop MJLS, as well as
an upper bound for the -norm of the system. For the case with noL#
uncertainties it was shown that the existence of a solution for the resulting LMI
optimization problem is equivalent to the existence of the mean square stabilizing
solution for the discrete-time coupled algebraic Riccati equations (CARE)
associated to the quadratic cost control problem for MJLS. Therefore, for the
case with no uncertainties, the convex approach imposes no extra conditions than
those usually required for the dynamic programming approach, which is
associated to the CARE. This result differs from the one recently published in the
literature ([26]), which connects the maximal solution for the CARE and a
convex problem. The convex problem with no uncertainties presented here (see
section 4) is related to the mean square stabilizing solution of the CARE and thus
is different from the one in [26].

Appendix
Stabilizability and Detectability Tests

Proposition 5 and Theorem 2 suggest the following mean square stabilizability and
detectability tests for a MJLS, based on LMI´s.

Proposition A-1: Stabilizability test. The pair is mean squareÐEßFÑ
stabilizable if and only if the convex set  defined in section 4 is not empty.G
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Proof: If  then as seen in section 4, . On the^J − Á g Ð J Ñ − § Á gŠ h G G
other hand, if  then again from section 4, .   [ − Á g Ð [ Ñ − Á gG i Š ¨

Proposition A-2: Detectability test. The pair  is mean squareÐGßEÑ
detectable if and only if there are ,V œ Ð V ß á ß V Ñ −" R

8�‡
^ œ Ð^ ß á ß ^ Ñ − W œ ÐW ß á ß W Ñ −" R " R

8� ß8‡ ‡, , ands

Z œ ÐZ ß á ß Z Ñ − 3 œ " ß á ß R ß" R ‡s+ such that for 

E ^ E � G W E � E W G � G Z G � V � !3 3 3 3 3 3 3 3 3 3 3 3
‡ ‡ ‡ ‡ ‡

3

Œ �^ W

W Z
  !

3 3

3 3
‡

^   ÐVÑ3 3X

V � !3

^ � ! Þ3

Proof: Analogous to the proof of Proposition A-1.
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