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Abstract

The paper is concerned with recursive methods for obtaining the stabilizing solution of
coupled algebraic Riccati equations arising in the linear quadratic control for Markovian
jump linear systems, by solving at each iteration uncoupled algebraic Riccati equations. It is
shown that the new updates carried out at each iteration represent approximations of the
original control problem by control problems with receding horizon, for which some
sequences of stopping times define the terminal time. Under this approach it follows that,
unlike previous results, no initialization conditions are required to guarantee the
convergence of the algorithms. The methods can be ordered in terms of number of
iterations to reach convergence, and comparisons with existing methods in the current
literature are also presented. Moreover, we also extend and generalize current results in the
literature for the existence of the mean square stabilizing solution of the coupled algebraic
Riccati equations.
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1. Introduction

In this paper we consider the linear quadratic (LQ) control problem for Markov Jump Linear Systems
(MJLS) with linear system state and Markov chain state observations. In this formulation, the mode of the
linear system changes according to an underlying Markov chain, and the control has complete access to
the state variables. The MJLS comprise an important class of stochastic time-variant systems that have
gained much evidence due to, among other things, the ability of modeling random abrupt changes
occurring in a linear plant structure. Several results can be found nowadays in the current literature
concerning stability and control, e.g. [1]–[4],[6],[8]–[11],[13]. The concept of mean-square stability is the
appropriate one for MJLS, and it has provided the analytical grounds for the study of control of these
systems. Using this concept, it has been shown that the solution of the LQ-optimal control problem for
MJLS can be given in terms of the solution of an interconnected set of algebraic Riccati equations
(ISARE), c.f. [1],[2],[9],[11].

The main result of this paper concerns the problem of obtaining the solution for the ISARE
numerically. Methods for solving the ISARE that employ recursions on some set of uncoupled standard
algebraic Riccati equations, or uncoupled standard Lyapunov equations can be found in the literature, see
[1] and [9]. Also, in a different approach, a LMI formulation [2] is encountered. We present in this paper a
new approach for solving the ISARE using recursions of uncoupled standard algebraic Riccati equations,
which generalizes and unifies previous results proved in [1]. In particular the approach adopted here
shows that no initialization condition is required to guarantee convergence of the algorithms.

The novelty of our approach is based on using dynamic programming arguments applied to a
sequence of finite horizon problems with receding horizon. We present two algorithms based on iterations
of uncoupled algebraic Riccati equations and show how each of these algorithms are associated with
truncated quadratic optimal control problems with different sequences of stopping times for defining the
terminal time. As a byproduct, the analysis eliminates any requirement on the initialization of the Riccati
iteration methods for convergence. Previous results state restrictions on the initial set of matrices, and
new updates are only considered after the end of a cycle, see [1]. We also set up a link between the
convergence of these methods and the mean square stabilizability of a MJLS, see Theorem 3.3.

We compare the methods analytically and show how they can be ordered in terms of the rate of
convergence, see Theorem 3.2. Under some initialization conditions we can also show the Riccati methods
will converge faster than the Lyapunov method. This apparent advantage of the former method needs
confirmation, since it is important to acknowledge that the computational effort to solve a standard Riccati
equation is larger than that to solve a comparable Lyapunov equation. Thus, it is not clear beforehand
which method will attain the best performance in terms of  the overall time for convergence. An outcome
favorable to the Riccati method is verified in some examples in section 4.

 In section 4, we also compare numerically these solutions with the convex method applied to the
solution of the problem for MJLS. For the control problem with complete state observation and perfectly
known parameters, as set here or in [2], we confirm that a more efficient technique is provided by the
recursive methods proposed here.

We also extend and generalize some current conditions for the existence of the mean square
stabilizing solution for the coupled algebraic Riccati equations. By using the results established in [7], we
can replace the observability condition derived in [11] (see Proposition 2.2) by the concept of mean square
detectability (see Definition 2.1 and Theorem 2.1) or by the observability of each mode of the system with
real part greater than a certain value (see Theorem 2.2).

The next section presents the control problem and some preliminary results concerning new
conditions for the existence of the mean square stabilizing solution of the coupled algebraic Riccati
equations, and some properties of the stochastic system and the associated algebraic Riccati and
Lyapunov equations employed by the iterative methods. The main results appear in section 3 in the form



3

of two companion theorems, Theorems 3.1 and 3.2. Numerical examples are presented in section 4 to
expose the results and the points discussed above, and further conclusions are collected in section 5.

2. Basic Definitions and Preliminary Results

2.1. Basic Definitions

We consider here the following interconnected set of algebraic Riccati equations (ISARE) in \ ß3
3 œ " ß ßRß...

E \ � \ E � Ð\Ñ�GG � Ð\ F � G H Ñ H H Ñ ÐF \ � H G Ñ œ ! ß 3 œ " ß ß R3 3 3 3 3 3
w w w w �" w w

3 3 3 3 3 3 3 3 3 3 3X  ( ... (2.1)

where we set

X -3 34 4
4œ"

R

Ð\Ñ³ \ "
and we assume that 0, for each ...  These equations arise when one considers theH H � 3 œ " ß ßRÞ3

w
3

problem of minimizing the functional

NÐB ß œ I ² G B > H ? > ² .>! !

_

Ð>Ñ >) )   ( ) + ( ) (2.2)min ˜ ™(
0

( )
2

) )

where, in a probabilistic space ( , ,{ }, ), the minimization is over {   0} and each is -H �e e ?Ð>Ñà >   ?Ð>Ñ e> >

measurable. The jump and state variables {( 0} should satisfy)Ð>ÑßBÐ>ÑÑà> 

BÐ>Ñœ E BÐ>Ñ�F ?Ð>Ñ B Ð ! ÑœB ß Ð ! Ñœ†  ,  (2.3)) )( ) 0> Ð>Ñ ! ) )

and  is a continuous time Markov chain taking values in ...  with transition rate matrix)Ð>Ñ Ö"ß ßR×
A -œ Ò Ó ß 3 ß 4œ " ß ß R34 ... . This process belongs to the class of strong Markov processes, c.f. [5]. We use
the notation ...  ...  ... , and we introduce also T U VœÐE ß ß E Ñß œ ÐF ß ß F Ñß œ ÐG ß ß G Ñ E œ

�
1 1 1R R R 3

E � F Ð H H Ñ H G ß G œ Ð M �H Ð HH Ñ H ÑG œ
� �

3 3 3 3 3 3 3 33 3 3 3
w � w w � w1 1 , which form the correspondent collections T

ÐE ßá ßE Ñ œÐG ßá ß G Ñ
� � � � �

1 1R R and  .  We need the following definitions and results.V

Definition 2.1: We say that ( , ) is mean square stabilizable if we can find  =  such thatTU ^ ÐO ß á ß O Ñ" R

IÐ²BÐ > Ñ ² Ñ Ä > Ä _ß BÐ>Ñ œ Ð E � F O ÑBÐ>Ñ BÐ Ñ
Þ2 0 as  where  for any initial conditions 0  and) ) )Ð>Ñ Ð>Ñ Ð>Ñ

) ^ TU V TÐ Ñ Ð Ñ Ð ß Ñ
� �

0 . In this case we say that  stabilizes , . Similarly we say that  is mean square detectable if
we can find  such that 0 as  where[ œÐL ß á ß L Ñ IÐ²BÐ > Ñ ² Ñ Ä > Ä _" R

2

BÐ>Ñ œ Ð E �L G ÑBÐ>Ñ BÐ Ñ Ð Ñ
Þ � �

) ) )Ð>Ñ Ð>Ñ Ð>Ñ  for any initial conditions 0  and 0 .)

Definition 2.2: We say that  is a positive definite (semi-definite respectively) solution ofc œ Ð T ßá ß T Ñ" R
(2.1) if  ( ) and satisfies (2.1) for 1 . We say that  is the mean square stabilizingT � ! T   ! 3 œ ßá ßR3 3 c
solution of (2.1) if it satisfies (2.1) and  with^ œÐO ß á ß O Ñ" R

O œ � Ð HH Ñ ÐF T � H G Ñ3 3 3 33 3 3
w � w w1 (2.4)

stabilizes  in the mean square sense.Ð ß ÑT U

The following result can be found in [8], [11] and [13].
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Proposition 2.1: The following assertions are equivalent:
a) ( , ) is mean square stabilizableTU à
b) For some , there exists , 0 for , such^ `œÐO ß á ß O Ñ œÐQ ßá ßQ Ñ Q � 3œ " ßá ßR" " 3R R

that

( )  ( ) 0 ...E � F O Q �QÐE � F O Ñ � Q � ß 3 œ " ß ßRà3 3 3 3 3 3 3 3 3
w X

c) For some , we have that  for some a 0,  < , where ^ œÐO ß á ß O Ñ IÐ²BÐ > Ñ ² Ñ Ÿ + /   , ! BÐ>Ñ" R
,>2

is given by (2.3) with ?Ð>Ñ œ O BÐ>ÑÞ)Ð>Ñ

Remark 2.1: From the above proposition, we have that if  stabilizes ,  in the mean^ TUœÐO ß á ß O Ñ Ð Ñ" R
square sense, then for some , 0 for 1 , we have that` œÐQ ßá ßQ Ñ Q � 3 œ ßá ßR" 3R

ÐE � F O Q �QÐE � F O Ñ � !s s
3 3 3 3 3 3 3 3

w)  

where  , and therefore,  is stabilizable and  stabilizes E ³ E � †M ß 3 œ " ßáßR ÐE ß F Ñ O ÐE ßF Ñ ßs s s
3 3 33 3 3 3 3 3

"
#-

3 œ " ß ß R... .

2.2. Conditions for Mean Square Stabilizing Solution

We shall now derive some new conditions for the existence of the mean square stabilizing solution of the
ISARE. The next result is immediate from [11 theo 5], after noticing that  is mean square stabilizableÐ ß ÑT U
if and only if  is mean square stabilizable, and that (2.1) can be rewritten in the equivalent form:Ð ß Ñ

�
T U

E \ � \ E � Ð\Ñ�G G � \ F Ð H H Ñ F \ œ !
� � � �

3 3
w w

3 3 3 3 3 3 3 3 33 3
w �" wX

Proposition 2.2: Suppose that  is mean square stabilizable and  is observable for eachÐ ß Ñ ÐG ß E Ñ
� �

T U 3 3

3 œ " ßá ßR œ Ð T ßá ß T Ñ. Then there exists a unique positive semi-definite solution  to the ISAREc " R
(2.1). Moreover  is the positive definite mean square stabilizing solution of (2.1).c

We shall now apply the results of [7] to derive new conditions for the existence of the mean square
stabilizing solution of (2.1).

Theorem 2.1: Suppose that  is mean square stabilizable and  is mean square detectable. ThenÐ ß Ñ Ð ß Ñ
� �

T U V T
there exists a unique positive semi-definite solution  to the ISARE (2.1). Moreover  isc cœ Ð T ßá ß T Ñ" R
the mean square stabilizing solution of (2.1).
Proof: Define

� Ëœ œ \

\ â !

ã ä ã

! â \

E ß 3 œ " ß á ß R ß

š Î ÑÐ ÓÏ Ò
�

 ,  is a square matrix

with the same dimension as 

"

R

3

3
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and set   such that  Define also� Ë ��
"

R

3œ Ö œ − \  ! ß 3œ" ßá ßR× Þ

\ â !

ã ä ã

! â \

Î ÑÐ ÓÏ Ò

´ º

¶ ·

œ ß œ

� â !

ã ä ã ã ä ã

! â �

F â !

! â F

œ ß œ

G â ! H â !

ã ä ã ã ä ã

! â G ! â H

Î Ñ Î ÑÐ Ó Ð ÓÏ Ò Ï Ò
Î Ñ Î ÑÐ Ó Ð ÓÏ Ò Ï Ò

E † M
�

E † M
�

�

�

"

R

"

R

" "

R R

"
# ""

"
# RR

-

-

and the linear operator  from  into  as,C � �

C Ë Ë �Ð Ñ œ −

\ â !

ã ä ã

! â \

Î ÑÐ ÓÐ ÓÐ ÓÐ ÓÐ ÓÐ ÓÐ ÓÐ ÓÐ ÓÏ Ò

!

!

4œ"
4Á"

R

4

4œ"
4ÁR

R

4

-

-

"4

R4

 for .

It is easy to verify that  is actually a positive semi-definite operator, that is,  maps  into .C C � �� �

Moreover, equation (2.1) can be rewritten as the following linearly perturbed algebraic Riccati equation
(LPARE),

´ Ë Ë´ C Ë ¶ ¶ Ëº · · º Ëw w w w� � Ð Ñ � � Ð Ñ œ !�"

where  mean square stabilizable and Ë �− . Also it is easy to check that the concepts of Ð ß Ñ Ð ß Ñ
� �

T U V T
mean square detectable are equivalent to the concepts of Ð Ð´ º ¶ ´ß Ñ ß Ñ MS-stabilizable and  MS-
detectable respectively in the sense defined in [7]. Therefore the above framework fits the setup
considered for general LPARE defined in [7]. We can thus use Theorem 4.1 of [7] to get the desired result.̈

We can weaken the condition of observability of each pair  required inÐG ß E Ñß 3 œ " ßá ß R
� �

3 3

Proposition 2.2 by requiring only observability of each mode with real part greater than  (which are� "
# 33-

positive) of the pair  , .ÐG ß E Ñ 3 œ " ßá ßR
� �

3 3

Theorem 2.2: Suppose that  is mean square stabilizable and for each ,  has noÐ ß Ñ 3 œ " ßá ßR ÐG ß E Ñ
� �

T U 3 3

unobservable mode with real part greater than . Then there exists the mean square stabilizing� "
# 33-

positive definite solution  to the ISARE (2.1).c œ Ð T ßá ß T Ñ" R

Proof: Note that the hypothesis that for each ,  has no unobservable mode with real3 œ " ßá ßR ÐG ß E Ñ
� �

3 3

part greater than  is equivalent to � Ð"
# 33- ¶ ´ß Ñ not having unobservable mode in the closed left half

plane. Applying Theorem 4.4of [7] we get the desired result. ¨

Therefore Theorem 2.2 weakens Proposition 2.2 for the existence of the mean square stabilizing
solution of (2.1) in the sense that only observability of the modes of  with real part greater than orÐG ß E Ñ

� �
3 3

equal to  are required, for each . Note however that, unlike Proposition 2.2,� 3œ " ßá ßR"
# 33-

uniqueness among the positive semi-definite solutions of (2.1) cannot be established in general under the
conditions of Theorem 2.2. Since we will need this uniqueness throughout this paper, we shall be working
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with either one of the following hypothesis:

H1)   mean square detectable, or

H2) for each ,  is observable.

Ð ß Ñ
� �

3 œ " ßá ßR ÐG ß E Ñ
� �

V T

3 3

Clearly H1) does not imply H2) as can be immediately seen for the pure deterministic case. Conversely
it can be shown that H2) does not imply H1) either, so that we cannot say in general that H1) (or H2)) is
stronger or weaker than H2) (or H1)).

2.3. Preliminary Results for the Uncoupled Algebraic Riccati Equations

For solving the ISARE in (2.1) via uncoupled algebraic Riccati equation (ARE), we need to consider
the following type of equations in :\

E\�\E�ÐGG�] Ñ� Ð\F�GHÑ ÐHHÑ ÐF \ � H G Ñ œ !s sw w w w �" w w (2.5)

where  0 and  > 0. For solving the ISARE in (2.1) via uncoupled LyapunovE œ E � Mß Ÿ ! ß ]   H Hs / / w

equation, the following type of equations in  is considered:\

ÐE�FOÑ\�\ÐE�FOÑ�]�ÐG�HOÑ ÐG�HOÑœ!s sw w (2.6)

where  0  and  > 0. Later we set in (2.5) and (2.6): E œ E � Mß Ÿ ! ß ]   ß H H œ Î#ßs / / / -w
33

E œ E œ E � Mß F œ F ß G œ G ß H œ H 3s s
3 3 3 3 3#

-33    for each .

Remark 2.2: Note that  mean square stabilizable implies, from Proposition 2.1 and Remark 2.1, thatÐ ß ÑT U

ÐE ß F Ñs
3 3  is stabilizable and if condition H1) holds then, by similar arguments, we have that

Ð Ð M �H ÐHH Ñ H Ñ G ß E � F Ð H H Ñ H G Ñ 3 œ " ß ß R ÐG ß E Ñs � �
3 3 3 3 3 3 3 3 33 3 3 3

w � w w � w1 1  is detectable for each ... . For H2), if 

is observable for each ...  then it is clear that 3 œ " ß ß R ÐG ß E � M Ñœ Ð Ð M �H ÐHH Ñ H ÑG ß
� �

3 3 3 3 3# 3 3
w � w-33 1

E � F Ð H H Ñ H G Ñ Ð ß Ñs
3 3 3 33 3

w � w1  is also observable. In conclusion, we have that if  mean square stabilizableT U

and condition H1) or H2) in section 2.2 is satisfied then for each ... ,  is stabilizable and3 œ " ß ß R ÐE ß F Ñs
3 3

Ð Ð M �H ÐHH Ñ H Ñ G ß E � F Ð H H Ñ H G Ñ Þ ÐE ß F Ñs s
3 3 3 3 3 3 3 3 33 3 3 3

w � w w � w1 1  is detectable  Finally, we mention that if  is

stabilizable,  also is.ÐE � F Ð H H Ñ H G ß F Ñs
3 3 3 3 33 3

w � w1

We need the results in the sequel, see the Appendix for the proof.

Proposition 2.3:
(i) Suppose that  is stabilizable and  is detectable.ÐEßFÑ ÐÐM�HÐHHÑ H ÑGßE�FÐHHÑ H GÑs sw �" w w � w1

Then there exists a unique positive semi-definite solution to (2.5) and this solution is the stabilizing
solution. Let  and  be the correspondent positive definite solutions of (2.5), when  and ,

~ ~
\ \ ] œ ] ] œ ]
� �

respectively. If , then .
~ ~

] Ÿ ] \ Ÿ \
� �

(ii) If  is stable, there exists a unique positive semi-definite solution to (2.6). Suppose thatÐE�FOÑs

ÐE�FOÑ \   ! ] œ ] ÐÐM�HÐHHÑ H ÑGßs  is stable and let  be the solution of (2.6) when . If 
~ ~ w �" w

E�FÐHHÑ H GÑ E�FO O œ � ÐHHÑ ÐF\�HG Ñs sw � w w �" w w1  is detectable, then  is stable, where .
~ ~ ~

Moreover, the solution of (2.6) when  and , is such that .
~ ~ ~

\ O œ O ] œ ] Ÿ ] \ Ÿ \
� � �

3. The Main Result
Our purpose is to attain the solution of (2.1) by iterations on a set of decoupled Riccati equations. We will
present two algorithms which will be related to truncated quadratic optimal control problems, each one
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associated with a different sequence of stopping times as terminal time. We shall call these methods
Method I and Method II, the later based on existing results, see [1]. We start with Method I:

R1. Set  arbitrary, with k! ! ! !
" 3R

œÐ\ ß á ß \ Ñ \  ! ß 3œ " ßá ßR à

R2. For and  calculate recursively,5œ " ß # ßá 3œ" ßá ßR ß

E \ � \ E � G G � Ð\ Ñ � Ð\ F � G H Ñ H H Ñ ÐF \ � H G Ñ œ !s s
3 3
w

3 3 3 3
5 5 w 5 w w �" w 5 w

3 3 3 3 3 3 33 3 3 3 3

5
X

~
( (3.1)

where  is defined as
~ ~ ~
\ œÐ\ ßá ß\ Ñ3 3" 3R
5 5 5

\ œ

\ ß 4 œ " ßá ß 3 � "

!ß 4 œ 3à

\ ß 4œ 3�" ßá ßR Þ

~
for ;

for 

for 

(3.2)34
5

4
5

4
5�"

ÚÝÝÛÝÝÜ
A variant of Method I regarding the form (3.2) of  carrying new updates, would be the following. For

each , set in the algorithm:3

\ œ
!ß 4 œ 3à

\ ß
~ for 

otherwise. (3.3)34
5

4
5�"�

For future reference, we shall call this Method II. We also denote by

f k k k e k k k5 ! 5 ! 5 ! 5 ! 5 ! 5 !
" "R R

Ð Ñ œ Ð W Ð Ñ ßáßW Ð ÑÑ Ð Ñ œ Ð V Ð Ñ ßáßV Ð ÑÑßand

the sequences generated by Methods I and II when  and  respectivelyW Ð Ñ œ Ð Ñ œ Þ0 0k k e k k! ! ! !

There are other classes of methods for solving (2.1) in the literature that we wish to consider. A class
of methods based on recursions on a set of decoupled Lyapunov equations, cf. [9], [10] is as follows.

L1. initialization  Find  such thatÒ Ó œ ÐJ ßá ß J ÑY ! ! !
" R

E � F Js
3 3 3

!

is stable for each  Set   arbitrary, with 3 œ " ßá ßR Þ œÐ\ ß á ß \ Ñ \  ! ß 3œ " ßá ßR Þk! ! ! !
" 3R

L2. For calculate recursively,5œ " ß # ßá ß

ÒE � F J Ó \ � \ ÒE � F J Ó � Ð\ Ñ � ÐG � H J Ñ ÐG � H J Ñ œ !s s

J œ � ÐHHÑ ÐF \ �HG Ñ ß 5 œ # ß $ ßá

3 3 3 3 3 3 3 3 33 3 3 3 3 3
5�" w 5 5 5�" 5�" w 5�"5

3

3 3
5�" w � w 5�" w

3 3 3

X
~

with  

(3.4)
1

where  is defined by (3.2) or (3.3). Regarding these update forms, we name these
~ ~ ~
\ œÐ\ ßá ß\ Ñ3 3" 3R
5 5 5

variants Method III and IV, respectively.  For a fixed  satisfying L1, we shall denote byY ! ! !
" R

œÐJ ßá ß J Ñ

d k k k m k k k5 ! 5 ! 5 ! 5 ! 5 ! 5 !
" "R R

Ð Ñ œ Ð U Ð Ñ ßáßU Ð ÑÑ Ð Ñ œ Ð ^ Ð Ñ ßáß^ Ð ÑÑßand

the sequences generated by Methods III and IV when  and  respectively.d k k m k k0 0Ð Ñ œ Ð Ñ œ! ! ! !
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Finally, a third class of methods for solving (2.1) we consider is based on LMI's as it appears in [2].
Here we name it Method V, and it  applies to the present problem with the following formulation:

maximize trace.Ö\ �â�\ ×" R

subject to

� �E \ � \ E � Ð\ Ñ � G G \ F � G Hs s

F \ � H G H H
 ! ß \ œ\ ß 3 œ " ßá ß R Þ3 w

w
3 3 3 3 3 3 3 3 3

w w
3 3

w w w
3 3 33 3 3

3 3
X

~

We shall make comparisons between the methods described from an analytical point of view (see
Theorems 3.1 and 3.2), although comparisons between method V and the previous ones are restricted to
numerical performance comparisons, see section 4.

The form of taking the updates into account in Methods I and III is new for continuous time MJLS;
for the counterpart of Method I for discrete-time problems, see [6].

Remark 3.1: Method II was previously studied in [1],  but the convergence is assured with some
restrictions on the initial value , namely,k!

C1.  , ork! œ !
C2.    and k c k k! ! "    Þ

Conditions (C1) or (C2) are not necessary for convergence of Methods I and II, as shown here. Regarding
Methods I and II, if (C1) or (C2) is satisfied, the sequence produced is monotone, see respectively, Lemma
3.1 or Lemma 3.2.

Remark 3.2: The class of Lyapunov iteration methods is derived from the method of Kleinman for ARE's
[12] and the set of interconnected Lyapunov equations introduced by Wonham [15],[16]. An initial
controller that stabilizes all modes  is mandatory, as in the step (L1) above. Method IV appears inÐE ß F Ñs

3 3

[9] (assuming that , , and the results relies on a hard to check condition introduced byG H œ ! a3Ñ3
w

3

Wonham, to make sure that there exists the mean square stabilizing positive semi-definite solution to (2.1).
Here this condition is replaced by mean square stabilizability of ( ) and condition H1) or H2) in sectionT Uß
2.2. Condition (C2) is required in Method IV to guarantee that the sequence produced is monotone, see [9]
or [10].

The main results read as follows.

Theorem 3.1: Suppose that ( ) is mean square stabilizable and condition H1) or H2) in section 2.2 isT Uß

satisfied. Then the sequences Methods I and II are such that Ö\ × \ Ä T 5 Ä _
3 3
5 5

3 defined by  as , for

3 œ ßá ßR œ Ð T ßá ß T Ñ1 , where  is the unique positive semi-definite solution of (2.1).c " R

Theorem 3.2 [rate of convergence]: Suppose that the methods are initialized with the same value :k!

(i) Method I has a larger rate of convergence than that of Method II;
(ii) Suppose that for some  satisfying (L1) we have Y m k! ! ! !

" R
œÐJ ßá ß J Ñ Ð Ñk!   1 . Then

(a) 

(b) 

(c) 

d k d k

m k m k

5 ! 5�" !

5 ! 5�" !

Ð Ñ   Ð Ñ     !

Ð Ñ   Ð Ñ       !

    !     !

f k

e k f k

e k e k f k f k

5�" !

5�" ! 5�" !

5 ! 5�" ! 5 ! 5�" !

Ð Ñ

Ð Ñ Ð Ñ

Ð Ñ Ð Ñ ß Ð Ñ Ð Ñ

for all , with 5œ ! ß " ßá Ð Ñ Æ ^ Ð Ñ Æ Æ Æ Ä_Þd k k5 ! 5 !c c c c, ,   and  as e k f k5 ! 5 !Ð Ñ Ð Ñ 5
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Theorem 3.3: Suppose that condition H1) or H2) in section 2.2 is satisfied. Then the sequences Ö\ ×
3
5

defined by Method I or II converges if and only if ( ) is mean square stabilizable.T Uß

The proof of the Theorems relies on the next Lemmas.

Lemma 3.1: Suppose that  is mean square stabilizable and condition H1) or H2) in section 2.2 isÐ ß ÑT U
satisfied. With , we have for 0,1,2,...., thatk! œ ! 5 œ

(i) 

(ii) 

(iii) 

e k f k

f k f k

e k e k

5 ! 5 !

5 ! 5 !

5 ! 5 !

Ð Ñ Ð Ñ

Ð Ñ Ð Ñ

Ð Ñ Ð Ñ

Ÿ

Ÿ Ÿ

Ÿ Ÿ

+1

+1

c

c

and f k e k5 ! 5 !Ð Ñ Ð ÑÅ T Å T 5 Ä _ 3 œ ßá ßR œ Ð T ßá ß T Ñ3 3 " R,  as , for 1 , where  is the uniquec
positive semi-definite solution of (2.1).

Proof: First of all, notice that from the hypothesis and the results in section 2  there exists a uniqueß
positive semi-definite solution  to the ISARE (2.1), and thus satisfies (recall thatc œ Ð T ßá ß T Ñ" R

E œ E � Ms
3 3 #

-33 )

E T � T E � G G � T �ÐTF � G H Ñ H H Ñ ÐF T � H G Ñ œ !s s
3
w

3 3 3 3 34 4 3 3 3 3 3 33 3 3 3 3
w w w �" w w

4œ"ß4Á3

R" - ( (3.5)

Moreover, as mentioned in section 2.3, we have that  is stabilizable andÐE ß F Ñs
3 3

Ð Ð M �H ÐHH Ñ H Ñ G ß E � F Ð H H Ñ H G Ñ 3 œ " ßá ßRs
3 3 3 3 3 3 33 3 3 3

w � w w � w1 1  is detectable,  so that from Proposition
2.3 (i) and Remark 2.2 the Riccati equation (3.1) has a unique positive semi-definite solution and this
solution is the stabilizing one. Set

f k e k5 ! 5 5 5 ! 5 5
" "R R

Ð Ñ œ Ð W ß á ß W Ñß Ð Ñ œ Ð V ßá ßV ÑÞ

Let us show by induction that for all jœ! ß " ß # ßá

0  where  (3.6)Ÿ W Ÿ W Ÿ T ß 5 œ 38>Ð Ñß 3 œ j � Ð 5‚RÑ�"
j

R3 3
5 5�"

3

where  is the integer part of the division of  by . At any iteration we have that38>Ð Ñ j Rj
R

E W � W E � G G � ÐW F � G H Ñ H H Ñ ÐF W � H G Ñs s

� W � W œ !

3
w

3 3 3 3
<� < w < w w �" w < w

3 3 3 3 3 33 3 3 3 3

4œ" 4œ3�"

3�" R

34 344 4
< <

1 +1 +1 +1

+1

(

(3.7)" "- -

and

E W � W E � G G � ÐW F � G H Ñ H H Ñ ÐF W � H G Ñs s

� W � W œ !

3
w

3 3 3 3
< < w < w w �" w < w

3 3 3 3 3 33 3 3 3 3

4œ" 4œ3�"

3�" R

34 344 4
< <�"

(

. (3.8)" "- -

For  =  (that is, ), (3.6) clearly holds from Proposition 2.3 (i) and equations (3.5) and (3.7),j ! 5 œ ! ß 3 œ "
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since  and , 0 . Suppose that for all , we have that (3.6)!
4œ

R

4 4 44
!

2
1- /T   ! W œ ! T   ß 4 œ " ßáßR jœ " ßá ß

holds, and write  . Suppose first that , so that 5 œ 38>Ð Ñß œ � Ð 5‚R Ñ�" � R 38>Ð Ñœ5 Þ/ /
R R

�"+ / +

Then from the induction hypothesis,

" " " " "
4œ" 4œ �# 4œ" 4œ �#

�"4 �"4 �"4 �"4 �"4 44 4 4 4
5 5�" 5 5

R R R

4œ"ß4Á

+ +

+ + + + +
+ + +

- - - - -W � W Ÿ W � W Ÿ T+1

and from Proposition 2.3 (i), equations (3.5), (3.7) and (3.8) with ,  we have that3 œ � " < œ 5ß+

W Ÿ W Ÿ T
+ + +�" �"
5 5�"

�"

showing that (3.6) holds for . If  then , and from the/ + + /� " œ �Ð5‚RÑ œ R � "œ Ð 5 � " Ñ ‚R
induction hypothesis,

" " "
4œ# 4œ# 4œ#

R R R

"4 "4 "4 44 4
5 5- - -W Ÿ W Ÿ T+1

and from Proposition 2.3 (i), equations (3.5), (3.7) and (3.8) with , , we have that3 œ " < œ 5 � "

W Ÿ W Ÿ T
" "
5�" 5�#

�"+

showing that (3.6) holds for . By the same arguments we have that (iii) holds. Let us/� "œ Ð 5 � " Ñ ‚R
show (i) by induction, that is, for all , we have thatjœ! ß " ß # ßá

0  where  Ÿ V Ÿ W ß 5 œ 38>Ð Ñß 3 œ 6 � Ð 5‚R Ñ� " Þ
j

R3 3
5 5

For  the result clearly hods since 0  Suppose that for all , we have that thej œ ! œ V œ W Þ j œ " ßá ß
" "
! ! /

result holds, and write  , and suppose that . Then from (3.6) and5 œ 38>Ð Ñß 3 œ � Ð 5‚R Ñ�" � R/
R

/ +

the induction hypothesis,

" " " " " "
4œ" 4œ �# 4œ" 4œ �# 4œ" 4œ �#

�"4 �"4 �"4 �"4 �"4 �"44 4 4 4 4 4
5 5 5 5 5 5

R R R+ + +

+ + + + + +
+ + +

- - - - - -V � V Ÿ W � W Ÿ W � W+1

and since

E V � V E � G G � ÐV F � G H Ñ H H Ñ ÐF V � H G Ñs s

� V � V œ !

3
w

3 3 3 3
< < w 5 w w �" w 5 w

3 3 3 3 3 33 3 3 3 3

4œ" 4œ3�"

3�" R

34 344 4
<�" <�"

(

(3.9)" "- -

we have from Proposition 2.3 (i), equation (3.8) and the equation above with , that3 œ 3 � " ß < œ 5

V Ÿ W � " œ �Ð5‚RÑ œ R
+ +�" �"
5 5 , showing the result for . The case  parallels the previous one,/ + +

and we can conclude in a similar way that  for .V Ÿ W � "œ Ð 5 � " Ñ ‚R
" "
5�" 5�" / ¨

Lemma 3.2: Suppose that  is mean square stabilizable and condition H1) or H2) in section 2.2 isÐ ß ÑT U

satisfied. Consider  satisfying (L1) and such that . Y m k! ! ! !
" R

œÐJ ßá ß J Ñ Ð Ñk k! ! Then  1
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(a) 

(b) 

(c) (3.10)

d k d k

m k m k

5 ! 5�" !

5 ! 5�" !

Ð Ñ   Ð Ñ     !

Ð Ñ   Ð Ñ       !

    !     !

f k

e k f k

e k e k f k f k

5�" !

5�" ! 5�" !

5 ! 5�" ! 5 ! 5�" !

Ð Ñ

Ð Ñ Ð Ñ

Ð Ñ Ð Ñ ß Ð Ñ Ð Ñ

for all with ,5œ ! ß " ß Ð Ñ Æ ^ Ð Ñ Æ Æ Æ Ä _á 5, , ,   and  as  d k k5 ! 5 !c c c c ce k f k5 ! 5 !Ð Ñ Ð Ñ  the
unique positive semi-definite solution of (2.1)Þ

Proof: First of all notice from Proposition 2.3 (ii) and Remark 2.2 that for each 5œ! ß " ß # ß á ß E � F Js
3 3 3

5 is

stable, and thus the sequence in (L2) is well defined. Set

d k m k5 ! 5 5 5 ! 5 5
" "R R

Ð Ñ œ Ð U ß U Ñß Ð Ñ œ Ð ^ ß Ñá ß á ß^

f k e k5 ! 5 5 5 ! 5 5
" "R R

Ð Ñ œ Ð W ß á ß W Ñß Ð Ñ œ Ð V ßá ßV ÑÞ

At any iteration we have that

ÒE � F J Ó U � U Ò E � F J Ó� ÐG � H J Ñ ÐG � H J Ñs s

� U � U œ

E U � U E � G G � ÐU F � G H Ñs s

3 3 3 3 3 3 3 33 3 3 3 3 3
<�" w < < <�" <�" w <�"

4œ" 4œ3�"

3�" R

34 344 4
<�" <�"

3
w

3 3 3
< < w < w

3 3 3 33 3

" "- -

(H H Ñ ÐF U � H G Ñ

� U � U �ÐJ � J Ñ ÐHHÑ ÐJ � J Ñ œ !

3 3 3
w �" w < w

3 33

4œ" 4œ3�"

3�" R

34 34 34 4 3 3 3 3
<�" <�" < <�" w w < <�"

3
" "- - (3.11)

where

J œ �ÐHHÑ ÐF U � H G Ñ ß j " Þ
3 3
j w � w j w

3 3 3
1

Similarly,

ÒE � F K Ó ^ � ^ ÒE � F K Ó� ÐG � H K Ñ ÐG � H K Ñs s

� ^ � ^ œ

E ^ � ^ E � G G � Ð^ F � G H Ñs s

3 3 3 3 3 3 3 33 3 3 3 3 3
<�" w < < <�" <�" w <�"

4œ" 4œ3�"

3�" R

34 344 4
<�" <�"

3
w

3 3 3
< < w < w

3 3 3 33 3

" "- -

(H H Ñ ÐF ^ � H G Ñ

� ^ � ^ �ÐK �K Ñ ÐHHÑ ÐK �K Ñ œ !

3 3 3
w �" w < w

3 33

4œ" 4œ3�"

3�" R

34 34 34 4 3 3 3 3
<�" <�" < <�" w w < <�"

3
" "- - (3.12)

where

K K
3 3 3 3
j w � w j w ! !

3 3 3œ � ÐHHÑ ÐF ^ �HG Ñ ß j   " ß œ J Þ1

From the hypothesis made, we have that  and , since ^ Ÿ ^ œ \ œ U U œ ^ œ J
3 3 3 3 " " " "
" ! ! ! " " ! !K Þ Moreover

we have from Proposition 2.3 (ii) and equations (3.11), (3.12) that  (since ),U Ÿ ^ Ÿ ^ œ U œ J
# # # # # #
" " ! ! ! !K

and similarly,  (since ), for U Ÿ ^ Ÿ ^ œ U œ J 3œ" ß
3 3 3 3 3 3
" " ! ! ! !K áßRÞ  From equation (3.11), Proposition

2.3 (ii), and induction arguments similar to those presented in the proof of Lemma 3.1 we can show that
U
3
5�" Ÿ U

3
5. From equations (3.8), (3.11), Proposition 2.3 (i), and induction arguments similar to those in

the proof of Lemma 3.1 we get that  W Ÿ U W œ \ œ U5 5 ! ! !
3 3 3 3 3

 (recall that ). In a similar way, using equations
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(3.8), (3.9) and (3.12), Proposition 2.3, and the arguments of the proof of Lemma 3.1 we can show that

^ ßV ß W
3 3

5�" 5�" 5�" 5�"5 55
3 3 3 3 3 3
5�"  ^   V   W   V   W

completing the proof of (3.10).Taking the limit as , we get that  for some 5 Ä _ U Æ U U   !ß5
3 3 3

3 œ " ßá ßR Þ œ Ð U ßá ß U Ñ But taking the limit in equation (3.11) we get that  will be a positive semi-d " R
definite solution of (2.1), and from the uniqueness established in Section 2 it follows that . Similard œ c

arguments hold for the sequences , ,  ^ V W Þ
3 3
5 5 5

3
¨

Remark 3.3:  It is immediate to check from Lemma 2.1 or 2.2 that the results also holds if, instead of solving
the ARE's for  going from 1 to , we follow an arbitrary sequence  (it is just a matter of re-3 R Ö3 ß á ß 3 ×" R
label the states). In fact we could consider any infinite sequence of states , 1,2 ; M œ Ö 3 œ ßá 3 œ 3( ((

infinitely often for each 1 .3 − Ö ßá ß R × ×

In Lemma 3.1 we require the condition (C1),  namely, 0, and in Lemma 3.2 the condition (C2) isk! œ
employed. However, we can generalize the result regarding the convergence of Methods I and II for any
initial condition , and as a byproduct, Lemma 3.3 also provides a form to compare the rate ofk!

convergence of methods with updates (3.2) and (3.3).

We can show that Methods I and II are based on approximations via dynamic programming, involving
a.s. finite horizon quadratic control problems, with some increasing sequence of stopping times as terminal
time. Let us show this for Method II; for the others the arguments are similar. Define the following
sequence of -stopping times 0,1 :Öe × Ö Ð5ÑÀ5œ ßá ×t 7

7 7 7 ) )(0) 0, ,³ Ð5Ñ³ Ö >� Ð5�" Ñ À Ð>ÑÁ Ð> Ñ×min �

Ð Ð> Ñ ³ Ð=ÑÑß) )�

=Å>
lim  and set,

N ÐB ß Ñ ³ I ² G BÐ>Ñ�H ?Ð>Ñ ² .> � ² Ð\ Ñ BÐ Ð5ÑÑ²5 # ! "Î# #

!

Ð5Ñ

Ð>Ñ > Ð Ð5ÑÑ0 0 ( )) 7 min š ›(
7

) ) ) 7

where the minimization is over  .Ö?Ð>Ñà ! Ÿ > Ÿ Ð5Ñ×7

Lemma 3.3: For each  and system (2.3) with a real vector  and ,5œ ! ß " ßá ß B œ 30 0)

B V Ð ÑB œ N ÐB ß3Ñ!
w 5 ! 5

3 !k 0 (3.13)

Proof: Let us apply induction on . For , the result is true by definition. Suppose it holds for . Since5 5 œ ! 5
Ö Ð>ÑßBÐ>Ñ À >   !×)  is a strong Markov process, we apply standard results on dynamic programming to
obtain the following Bellman equation:

N ÐB ß Ñ œ I ² G BÐ>Ñ�H ?Ð>Ñ ² .> � ² ÐV Ð ÑÑ BÐ Ð Ñ Ñ ² Þ5� # 5 ! #
! B ß Ð>Ñ >

!

Ð"Ñ

Ð Ð ÑÑ
1 1/2

0 ( ) 1
) k 7min

0 ) ) )

7

) 7!
š ›( 1

Let  indicates , and denote by  the trajectories defined by = • > Ö=ß>× > Ä B Ð>Ñ B Ð > Ñ œEB Ð > Ñ �
Þ

min 3 3 3 3

F ?Ð>Ñ B Ð ! Ñ œ B − 3œ" ßá ßR Þ3 3 !
8  with , for each   We can write‘
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I ² G BÐ=Ñ�H ?Ð=Ñ ² .= œ

œ / ²GB Ð < Ñ�H? Ð < Ñ ² .< . =�/ ²GB Ð < Ñ�H? Ð < Ñ ² .< "

œ �

B ß Ð=Ñ =

!

Ð"Ñ•>

#

! ! !

> = >

4Á3

34 3 3 3 3 3 3
= # > #

Ö œ3×

!

>

0 ) ) )

7

- -
)

!

33 33
!

š ›(
Œ �( ( (" Š ‹ Š ‹
Œ(

( )

-

-33 3 3 3 3 3 3
= # > #

! !

= >

Ö œ3×

! !

> >
< > # >

3 3 3 3 3

/ ²GB Ð < Ñ�H? Ð < Ñ ² .< . =�/ ²GB Ð < Ñ�H? Ð < Ñ ² .< "

œ Ð/ � / Ñ ²GB Ð < Ñ�H? Ð < Ñ ² .< � / ² G B Ð < Ñ �H

- -
)

- - -

33 33
!

33 33 33

Š ‹ Š ‹( ( �
( (Š 3

#
Ö œ3×

!

>
= #

3 3 3 Ö œ3×

?Ð<Ñ ² .< "

œ / ²GB Ð = Ñ�H? Ð = Ñ ² . = † " Þ

‹�
(

)

-
)

!

33
!

(3.14)

Define  and   for . We have thatZ œ V Ð Ñ Z œ V Ð Ñ 4 Á 33 43 4
5� ! 5 !1 k k

I ÖBÐ Ð Ñ • > Ñ Z BÐ Ð Ñ • > Ñ�B Z B ×B ß •>
w w

0 ) ) 7 )! !
7 71 1( (1) ) 00

œ I ÖBÐ Ð Ñ Ñ Z BÐ Ð ÑÑ" �BÐ>ÑZ BÐ>Ñ" � B Z B ×B ß Ö Ð"ÑŸ>× > Ö Ð"Ñ�>×
w w w

0 ) ) 7 7 ) 7 )! !
7 71 1( (1)) ( ) 00

œ I ÖB Ð Ð Ñ Ñ Z B Ð Ð ÑÑ" � B Ð>ÑZ B Ð>Ñ" � B Z B ×B ß Ö Ð"ÑŸ>× Ö Ð"Ñ�>×
w w w

0 ) ) ) 7 ) 7 ) ) ) 7 )! ! ! ! ! ! !
7 71 1( (1)) 00

œ / B Ð = Ñ ZB Ð = Ñ .=�BÐ > ÑZB Ð > Ñ / � B Z B † "

œ / B Ð = Ñ Z B Ð = Ñ � ÐE Bs

Œ �( Š ‹"
Œ( Š"

!

>
= w w > w

4Á3

34 3 4 3 3 3 3 3 Ö œ3×

!

>
= w

4Á3

34 3 4 3 3 3

- -
)

-

33 33
!

33

-

-

0 0

3 3 3
wÐ = Ñ�F?Ð=Ñ ÑZBÐ= Ñ�

BÐ= ÑZ Ð=Ñ�F?Ð=ÑÑ3 3 3
w

3 3 Ö œ3×ÐE B .= † "s ‹ � )!

Therefore, with (3.14) we get that

I ² G BÐ=Ñ�H ?Ð=Ñ ² .=�BÐ Ð Ñ • > Ñ Z BÐ Ð Ñ • > Ñ�B Z B

œ / ²GB Ð = Ñ�H? Ð = Ñ ² � B Ð = Ñ Z B Ð = Ñ�

B ß Ð=Ñ = •>

!

Ð"Ñ•>

# w w

!

>
= # w

3 3 3 34 3 4 3

4Á3

0 ) ) ) ) 7 )

7

-

! !

33

š ›(
( Œ "

( ) ( (1) ) 007 7

-

1 1

ÐE B ÐE B .= † "s s

œ / Ð=Ñ Ð H H Ñ Ð= Ñ.= †"

3 3 33 Ö œ3×

!

>
= w w �"

3 3 33 Ö œ3×

3 3 3 3 3 3
w wÐ = Ñ�F?Ð=Ñ ÑZBÐ= Ñ�BÐ= ÑZ Ð=Ñ�F?Ð=ÑÑ‹ �

(
)

-
)

!

33
!

: :

where, . Since , and taking the limit ,: k3 3 3 3 33 3 3
w w w !5�"Ð=Ñ œ H H ?Ð=Ñ�ÐFZ �HGÑB Ð = Ñ Z œ V Ð Ñ > Ä _) )! !

Z Ä Z œ V Ð Ñ Ð Ð " Ñ ÑÁ 3) 7 ) 7 ) 7( (1) ) ( (1)) ( (1))•>
5 !k ) 7 (by definition, ), we get that
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I ² BÐ=Ñ�H ?Ð=Ñ ² .= � ² ÐV Ð ÑÑ BÐ Ð Ñ Ñ ²

œ / Ð=Ñ Ð H H Ñ Ð=Ñ.=�B V Ð ÑB † "

B ß Ð=Ñ Ð=Ñ

!

Ð Ñ

# 5 ! #
Ð Ð ÑÑ

!

_
= w w �" w !

3 3 3 !3 ! 3
5�"

Ö œ3×

0 ) ) )

7

) 7

-
)

!

33
!

š ›(
Š ‹(

1

1
1/2C 1k 7

: : k

and the minimum is achieved when  0, , for each 1 , showing (3.13):3Ð=Ñ œ !   = 3 œ ßá ßR Þ ¨

Similarly, define the following sequence of -stopping timesÖe ×>

0 0 0 ) )Ð ! Ñ³! Ð5Ñ³ Ö >� Ð5�"Ñ Ð>Ñ� Ð> Ñ×,  : min �

With this definition, we have a counterpart of Lemma 3.3 for Method I.

Corollary 3.1: For 0,1,2  and system (2.3) with a real vector  and ,5 œ ßá ß B œ 3! !)

B W Ð ÑB œ I ² G BÐ=Ñ�H ?Ð=Ñ ² .=� ² Ð\ Ñ BÐ Ð5ÑÑ²!
w 5 ! # ! "Î# #

3 !

!

Ð5Ñ

Ð=Ñ Ð=Ñ Ð Ð5ÑÑ
k 0min Š ‹(

0

) ) ) 0

is verified, where the minimization is over ( ) .Ö ? Ð > Ñ À ! Ÿ >Ÿ 5 ×0

Proof: Parallels the proof of Lemma 3.1. ¨

It is important to notice that the following holds:

7 ( 0 (( ) ( ). (3.15)Ÿ

In the sequel,  and  are as in Proposition 2.1 part c), and ; 1 . Denote+ , - œ Ö ² ² 3 œ ßáßR×max k!
3

by  the state and control variables generated by (2.3) when  andÐB Ð>Ñß? Ð>ÑÑ ? Ð > ÑœO B Ð>Ñ‡ ‡ ‡ ‡
Ð>Ñ)

c ^œ Ð T ßá ß T Ñ œÐO ß á ß O Ñ" "R R,  are as is Section 2 and (2.4). Note that

NÐB ß 3Ñ œ B T B œ I ² B Ð=Ñ�H ? Ð=Ñ ² .=� ² T B Ð Ñ ²

  I ² G B Ð=Ñ�H ? Ð=Ñ ² .=

! 3 !!
w ‡ ‡ # ‡

!

Ð=Ñ Ð=Ñ

!

Ð=Ñ Ð=Ñ
‡ ‡ #

Š ‹(

Š ‹(

'

) ) ) '

'

) )

C (3.16)
( )

1/2 2'

holds for any - stopping time .Öe ×> '

Lemma 3.4: For  and any real vector  and , , and,5œ! ß " ß # ß ßá ß B œ 3 B V Ð!ÑB Ÿ B W Ð!ÑB! ! ! !! !
w 5 w 5

3 3
)

B V Ð ÑB Ÿ B W Ð ÑB! !
w 5 ! w 5 !

3 3! !k k (3.17)

B V Ð!ÑB Ÿ B V Ð ÑB Ÿ B T B �+-IÐ Ñ! ! !
w 5 w 5 ! w 5

3 3! ! 3 !k e (3.18)b ( )7

B W Ð!ÑB Ÿ B W Ð ÑB Ÿ B T B �+-IÐ ÑÞ! ! !
w 5 w 5 ! w 5

3 3! ! 3 !k e (3.19)b ( )0

Moreover, we have that  and  as .V Ð Ñ Ä T W Ð Ñ Ä T 5 Ä _
3 3
5 ! 5 !

3 3k k
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Proof: Relation (3.17) is immediate from Lemma 3.1 (i). Let us show (3.18) only, the other inequalities follow
in a similar way. From Lemma 3.1, (3.16), and Proposition 2.1 c):Ð

B V Ð!ÑB œ I ² G BÐ>Ñ�H ?Ð>Ñ ² .>

Ÿ I ² G BÐ>Ñ�H ?Ð>Ñ ² .> � ² J BÐ Ð5ÑÑ²

œ B V Ð ÑB Ÿ B T

!
w 5 #

3 !

!

Ð5Ñ

Ð>Ñ Ð>Ñ

!

Ð5Ñ

Ð>Ñ Ð>Ñ
# #

Ð Ð5ÑÑ

"Î#

! !
w 5 ! w

3 ! 3

min

min

Š ‹(

Š ‹(

 

 

7

) )

7

) ) ) 7
7

k B � - I Ð ² B Ð Ð 5 Ñ Ñ ² Ÿ B T B �+-IÐ ÑÞ! 3
‡ w , 5

!7 2 ( )
0) e 7

From (3.15), it follows that e e  as  since e 0 -a.s. as .! Ÿ I Ð Ñ Ÿ I Ð Ñ Ä ! 5 Ä _ Ä 5 Ä _, 5 , 5 , 50 7 7( ) ( ) ( ) �

From Theorem 3.1,  and  as , and thus, (3.18) and (3.19) leads toV Ð!ÑÄ T W Ð ! ÑÄT 5 Ä _
3 3
5 5

3 3

V Ð Ñ Ä T W Ð Ñ Ä T 5 Ä _
3 3
5 ! 5 !

3 3k k and  as . ¨

Proof of Theorem 3.1: It follows from Lemma 3.4.

Proof of Theorem 3.2:
(i) In view of (3.15), (3.17), (3.18), (3.19) and Lemma 3.4, Method II should have a slower rate of

convergence than Method I.
(ii) It follows from Lemma 3.2. ¨

Proof of Theorem 3.3: For Method II one can conclude from Lemma 3.3 that for arbitrary  and ,B! !)

N ÐB ß Ñ œ B V Ð ÑB

Ÿ I ² G BÐ>Ñ�H ?Ð>Ñ ² .> � ² J BÐ Ð5ÑÑ²

5 w 5 !
! !!

B ß Ð>Ñ >

!

Ð5Ñ

# #
Ð Ð5ÑÑ

"Î#

0

( )

) k

7

)

) ) )

7

) 7

!

!0
š ›(

(3.20)

for any  in particular for any Now, suppose that  diverges for some > Ä ?Ð>Ñà ?Ð>Ñ œ O BÐ>ÑÞ V Ð Ñ 3ß)Ð>Ñ 3
5 !k

as ; it implies that the right-hand side of (3.20) diverges with   real vector, and any5 Ä _ œ 3ß B)! !

> Ä ?Ð>Ñ V Ð Ñ Ä T, thus, the system can not be mean square stabilizable. Conversely, suppose that 
3
5 !

3k

as  for each . Then  satisfies (2.1) and we set  as in (2.4) to conclude for any  and  that5 Ä _ß 3 O Bc )3 ! !

I ² ÐG �H O ÑBÐ>Ñ ² .> œ B T B � _B ß Ð>Ñ > Ð>Ñ
!

_
# w

! !0 ) ) ) ) )! !
˜' ™( ) . Since condition H1) or H2) in section 2.2

is satisfied, it follows that , i.e. the system is mean square stable. The proof forI ² BÐ>Ñ ² Ä !B ß
#

0 )!

Method I follows along the same lines. ¨

4. Numerical Examples

4.1. Examples
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This section presents some numerical tests with the proposed methods, and it includes comparisons with
existing methods. Methods I, II, III and IV are easily implemented with cyclical updates using standard
Matlab routines for solving Riccati and Lyapunov equations .  The examples are the following.3

ç R œ $ Example 1 ( ) Borrow from [1].

E œ F œ Ö × G œ
Ö ß ß ×

!" " "
$‚$

Î ÑÐ ÓÏ Ò Œ �
-2.5 .3 .8
1 -3 .2
0 .5 -2

, diag .707, 1, 1 ,
diag 5 1 3.31

E œ F œ Ö × G œ
Ö ß ß ×

!# # #
$‚$

Î ÑÐ ÓÏ Ò Œ �
-2.5 1.2 .3
-.5 5 -1
.25 1.2 -2

, diag .707, 1, .707 ,
diag 6.08 8.36 5.83

E œ F œ Ö × G œ
Ö ß ß ×

!$ $ $
$‚$

Î ÑÐ ÓÏ Ò Œ �
2 1.5 -.4

2.2 3 .7
1.1 .9 -2

, diag .707, 1, 1 ,
diag 3.16 4 4.58

H œ ß 3œ" ß # ß $ à œ
!

M3
$‚$

$
Œ � Î ÑÐ ÓÏ ÒA

-3 .5 2.5
1 -2 1
.7 .3 -1

.

ç R œ ' Example 2 ( ) It was produced by augmentation of Example 1 with three more forms, generated
randomly. The extra forms and the transition matrix are as follows:

E œ F œ Ö × G œ
Ö ß ß ×

!% "
$‚$

Î ÑÐ ÓÏ Ò Œ �
2.7 .03 1.8
.54 3.0 .93
.39 .89 2.3

, diag .151, .854, .822 ,
diag .988 .334 .760

4

E œ F œ Ö × G œ
Ö ß ß ×

!5 5

Î ÑÐ ÓÏ Ò Œ �
-.69 -1.3 -1.4
-1.0 -.67 -.76
-.40 -.04 -.66

, diag .645, .289, .309 ,
diag .530 .783 .794

"
$‚$

.

E œ F œ Ö × G œ
Ö ß ß ×

!6 6

Î ÑÐ ÓÏ Ò Œ �
2.0 .91 2.0
2.1 1.1 .90
1.3 .58 2.1

, diag .838, .546, .795 ,
diag .059 .305 .971

"
$‚$

3We employed in the tests the Matlab 5.1 and routines lqr lyap and  of the Matlab Control Toolbox,
versions revised on 7-18-90.
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A=

-3 .5 .5 0 1 1
1 -2 0 1 0 0
.1 .2 -1 .5 .1 .1
0 1 1 -3 .5 .5
1 0 0 1 -2 0
.5 .1 .1 .1 .2 -1

Î ÑÐ ÓÐ ÓÐ ÓÐ ÓÐ ÓÐ ÓÐ ÓÏ Ò
and 1  as in example 1.H 3 œ ßá ß '3

4.2. Comparison between Methods I, II, III and IV

Since the Lyapunov methods (III and IV) require an initialization procedure, we tried three types of
comparisons:

ç œ !   for the Riccati methods, and account for time spent in the initialization step L1 for thek!

Lyapunov methods. The initialization matrices  were obtained by solving  uncoupled Riccatik Y! !ß R
equations in , with matrices  and , and . The results for the two\ J œ ÐH H Ñ ÐF \ H G Ñ

3 3 3
! ! w �" w ! w

3 3 33 3V W � �
examples are shown in Table 4.1.

Table 4.1 Overall Load. (relative precision 10 )¸ �8

Example 1 Example 2
Iterations Cpu Time  Iterations Cpu Time 

Method I 8 0.59  (1:1) 12 2.05 (1:1)
Method II 13 0.98  (1:1.66) 23 3.86 (1

† ‡

:1.88)
Method III 8 0.81  (1:1.37) 15 3.02 (1:1.47)
Method IV 14 1.24  (1:2.10) 21 4.02 (1:1.96)

Note: The fastest method was Method I in the two examples. It spent a cpu time between 1.66 and 2.10
times smaller in the two examples to attain the same precision, if compared with existent methods
(Methods II and IV).

ç œ Ð\ ß á \ Ñß œÐJ ßá\ Ñ All four methods are initialized with a set of matrices  thatk Y! ! ! ! ! !
" "R R

stabilizes each mode , obtained as described in the previous test. Notice that  does not satisfy a3 Y
coupled Lyapunov equation. The time spent with the initialization is not accounted in the Table 4.2.

Table 4.2 -  as in the step L1. (relative precision 10 )k! �¸ 8

Example 1 Example 2
Iterations Cpu Time Iterations Cpu Time

Method I 7 0.56 (1:1.05) 12 2.11 (1:1)
Method II 12 0.92 (1:1.73) 22 3.72 (1:1.76)
Method III 7 0.53 (1:1) 14 2.47 (1:1.17)
Method IV 13 0.95 (1: 1.79) 20 3.56 (1:1.69)

Note: Method III was slightly faster than Method I in Example 1 whereas method I was the fastest in
the Example 2. The time ratios does not vary much in the two examples.

†The initialization step for the Lyapunov methods is counted as one in the number of iterations.
‡ In seconds and the relative time ratios among the methods.
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ç  The methods are initialized with a set of matrices that satisfies a coupled Lyapunov equation. The
stabilizing control is obtained as described in the first test, and the corresponding coupled equation is
obtained using the method in [3]. The time spent in this initialization is not accounted for in Table 4.3.
Theorem 3.2 (iii) applies here, concerning the number of iterations.

Table 4.3 -  solution of coupled Lyapunov equation (relative precision 10 )k! �¸ 8

Example 1 Example 2
Iterations Cpu Time Iterations Cpu Time

Method I 6 0.48 (1:1.09) 12 2.06 (1:1)
Method II 11 0.86  (1:1.95) 23 3.85 (1:1.87)
Method III 6 0.44 (1:1) 15 2.62 (1:1.27)
Method IV 11 0.78  (1:1.77) 25 4.34 (1:2.11)

Note: Method III was slightly faster than Method I in Example 1 whereas method I was the fastest in
the Example 2. We observed that the sequence are monotone decreasing and the number of iterations for
the Riccati methods is smaller or equal the number of iterations for the corresponding Lyapunov method,
as expected.

The tests run in a Sun 5 Sparc Station, and the cpu time correspond to an average of 6 replications.
The residuals of the solutions was monitored by the relative precision criteria: max ./  :Ö ² \/<< \ ²3 3 _

3 œ ßáR × ² E ² œ Ö ± + ± × E1 , , where max  for a matrix , and ./ indicates the element by element_ 54

division (array division). The  value  is produced with the use of the Matlab routine \/<<3 ric.

4.3. Comparison between the LMI and Methods I and III.

The convex method was implemented with the package LMIsol [14], dedicated to numerical solution of
LMI's. We compare the cpu time with the Matlab routines in section 4.1, adjusted to attain a comparable
relative precision. The procedure for Methods I and III and the time accounted is the same as described in
the first test of section 4.1.

Table 4.4 - Comparison with LMI method
Example 1 (precision 10 ) Example 2 (precision 10 )

Iterations Cpu Time Iterations Cpu Time 
Method I 6 0.56 (1:1) 9 1.55 (1:1)

Metho

¸ ¸�' �&

d III 7 0.72 (1:1.29) 12  2.47 (1:1.59)
LMI 17 2.10 (1:3.75) 20  8.85 (1:5.71)

Note: Method I attains the best performance; the performance marks are wider apart when the
dimension of the problem increases.

5. Conclusions

Tables 4.1, 4.2 and 4.3 indicate a significant gain in the cpu time regarding the forms of carrying new
updates: Methods I attains a reduction between 1:1.66 to 1:1.88 when compared with Method II, and
Method III attains a reduction between 1:1.33 and 1:1.77 when compared with Method IV. In the best case,
the reduction in time is 1:2.10 and in the worse is 1:1.33, see Table 4.1.
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The number of iterations of the Lyapunov methods is always large or equal the number of iterations of
the Riccati methods and this is the prevailing factor in the examples. Even if the solution of a Riccati
equation is more costly than that of a comparable Lyapunov equation, the best performance is attained by
Method I, in most cases, and by Method III in some cases. Most importantly, it performs better in all cases
in Tables 4.1 and 4.4 where the overall time spent by the Methods I and III is expressed; the Lyapunov
method III spent between 29% to 59% more time than the Riccati method I in these two tables.

A second aspect in favor of the Riccati method is the initialization step (L1) required by the Lyapunov
method, not needed for the Riccati technique. Moreover the convergence of the Riccati methods is by
itself a verification of the mean square stabilizability of the MJLS, as established by Theorem 3.3.
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Appendix:  Proof of Proposition 2.3 

Consider the ARE in (2.5), and set G œ ÐM�HÐHHÑ H ÑG
� w �" w

P œ ß H ß E œE�F Ð HH HPœE�F Ð HH H Gß
G

]

H

!
s s

GœÐ M�HÐHHÑ H ÑP œ
G
�

]

~ ~ ~ ~ ~ ~ ~
 = ) )

~ ~ ~ ~ ~ ~

� � Œ �
� �

1/2
1 1

1
1/2

w w� w � w

w w�

Lemma A.1: Suppose that ) is detectable. Then  is also detectable.
~ ~ ~

ÐG ßE ÐGßEÑ
�

Proof:  Obvious. ¨

Lemma A.2: Suppose that  is stabilizable and  is detectable. Then there exists a unique
~

ÐEßFÑ ÐGßEÑs �

positive semi definite solution  for equation (2.5). Moreover,  is stable, where\ E�FOs

O œ � ÐHHÑ ÐF \ � H Gw � w w1 ) (A.1)

Proof: From Lemma A.1,  is detectable. Notice that equation (2.5) can be written as
~ ~

ÐGßEÑ

E\�\E�PP� Ð\F�PHÑ ÐHHÑ ÐF \ � H P Ñ œ !s sw w w w w�" w~ ~ ~ ~ ~ ~ ~ ~

and the Lemma follows from standard results on ARE's. ¨

Lemma A.3: Suppose that  is stabilizable and  is detectable, and  satisfies:
~

ÐEßFÑ ÐGßEÑ \   !s �

E\�\E�GG�Ð\F�GHÑ ÐHHÑ ÐF \ � H G Ñ Ÿ !s sw w w w �" w w

Then  is stable with  as in (A.1).E�FO Os

Proof: We can rewrite the above equation as in (2.5) for some appropriate  Therefore considering]   !Þ
this   fixed and solving the corresponding ARE we must have that the solution is  by uniqueness]   ! \
of the positive semi definite solution of (2.5). The result follows from Lemma A.2. ¨

Proof of Proposition 2.3:
First, we prove part (ii). From (2.6) we have

ÐE�FOÑ\�\ÐE�FOÑœ � Ð] � G G � WFÐHHÑ F W Ñ Ÿ !s s � �w w �" ww~ ~ ~

and thus,  since  is stable. In addition, after some algebraic manipulations, (2.6) can be
~
\   ! ÐE�FOÑs

written as

E\�\E�GG�Ð\F�GHÑ ÐHHÑ ÐF\�HG Ñs s

œ � ] � ÐO�OÑÐHHÑÐO�OÑŸ!

w w w w �" w w

w

~ ~ ~ ~

~ ~ ~
(A.2)

where . Since  is stabilizable and  is detectable we can apply
~ ~ ~
O œ � ÐHHÑ ÐF \�HG Ñ ÐEßFÑ ÐGßEÑ ßs �w �" w w

Lemma A.3 to (A.2) to conclude that  with ) is stable. To
~ ~ ~

ÐE�FOÑ O œ � ÐHHÑ ÐF \ � H Gs w � w w1

complete the proof of (ii), we notice that from (A.2)
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ÐE�FOÑ\�\ÐE�FOÑ�ÐG�HOÑÐG�HOÑs s

�]�ÐO�OÑ ÐHHÑ ÐO�OÑœ!

~ ~ ~ ~ ~ ~

~ ~ ~
w w

w

and

ÐE�FOÑ\�\ÐE�FOÑ�ÐG�HOÑ ÐG�HOÑ�]œ!s s� � �~ ~ ~ ~w w

Therefore

ÐE�FOÑ Ð\�\Ñ�Ð\�\Ñ ÐE�FOÑ�Ð]�] Ñ �s s�

ÐO�OÑÐHHÑÐO�OÑœ!Þ

~ ~ ~ ~ ~

~ ~
(A.3)w

w

� �

(A.3) and the stability of   yield that , which completes the proof of (ii).
~ ~

E�FO \ Ÿ \
�

Part (i): The first assertion in part (i) is proven in Lemma A.2. Let us consider   in (2.5). If
~

] œ ] Ÿ ]
�

ÐEßFÑ ÐGßEÑ ßs �
 is stabilizable and  is detectable Lemma A.2 states the existence of a unique positive

~

definite solution  to the equation (2.5), and it is such that  is stable, with as in (A.1), with\ ÐE�FOÑ O
� � �s

\ œ \ ] œ ]
�

. If we now set  we can conclude similarly the existence of a unique semi-positive solution
~

\ O \ œ \
~ ~ ~

 of (2.5) and a  given by (A.1) with . After algebraic manipulations similar to that employed in
(A.2), (A.3), we get that

ÐE�FOÑ Ð\�\Ñ� Ð\�\Ñ ÐE�FOÑ� Ð]�] Ñ�s s� �

ÐO�O ÑHH ÐO�O Ñœ ! Þ
� �

~ ~ ~ ~ ~~

~ ~
w

w w

It then follows from the stability of  that .
~ ~

E�FO \ Ÿ \
�

¨
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