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Abstract

The paper is concerned with recursive methods for obtaining the stabilizing solution of
coupled algebraic Riccati equations arising in the linear quadratic control for Markovian
jump linear systems, by solving at each iteration uncoupled algebraic Riccati equations. Itis
shown that the new updates carried out at each iteration represent approximations of the
original control problem by control problems with receding horizon, for which some
sequences of stopping times define the terminal time. Under this approach it follows that,
unlike previous results, no initialization conditions are required to guarantee the
convergence of the algorithms. The methods can be ordered in terms of number of
iterations to reach convergence, and comparisons with existing methods in the current
literature are also presented. Moreover, we also extend and generalize current results in the
literature for the existence of the mean square stabilizing solution of the coupled algebraic
Riccati equations.
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1. Introduction

In this paper we consider the linear quadratic (LQ) control problem for Markov Jump Linear Systems
(MJLS) with linear system state and Markov chain state observations. In this formulation, the mode of the
linear system changes according to an underlying Markov chain, and the control has complete access to
the state variables. The MJLS comprise an important class of stochastic time-variant systems that have
gained much evidence due to, among other things, the ability of modeling random abrupt changes
occurring in a linear plant structure. Several results can be found nowadays in the current literature
concerning stability and control, e.g. [1]-{4],[6],[8]-{11],[13]. The concept of mean-square stability is the
appropriate one for MJLS, and it has provided the analytical grounds for the study of control of these
systems. Using this concept, it has been shown that the solution of the LQ-optimal control problem for
MJLS can be given in terms of the solution of an interconnected set of algebraic Riccati equations
(ISARE), cf. [1],[2],[9],[11].

The main result of this paper concerns the problem of obtaining the solution for the ISARE
numerically. Methods for solving the ISARE that employ recursions on some set of uncoupled standard
algebraic Riccati equations, or uncoupled standard Lyapunov equations can be found in the literature, see
[1] and [9]. Also, in adifferent approach, aLMI formulation [2] is encountered. We present in this paper a
new approach for solving the ISARE using recursions of uncoupled standard algebraic Riccati equations,
which generalizes and unifies previous results proved in [1]. In particular the approach adopted here
shows that no initialization condition is required to guarantee convergence of the algorithms.

The novelty of our approach is based on using dynamic programming arguments applied to a
sequence of finite horizon problems with receding horizon. We present two algorithms based on iterations
of uncoupled algebraic Riccati equations and show how each of these algorithms are associated with
truncated quadratic optimal control problems with different sequences of stopping times for defining the
terminal time. As a byproduct, the analysis eliminates any requirement on the initialization of the Riccati
iteration methods for convergence. Previous results state restrictions on the initial set of matrices, and
new updates are only considered after the end of a cycle, see [1]. We also set up a link between the
convergence of these methods and the mean square stabilizability of aMJLS, see Theorem 3.3.

We compare the methods analytically and show how they can be ordered in terms of the rate of
convergence, see Theorem 3.2. Under some initialization conditions we can also show the Riccati methods
will converge faster than the Lyapunov method. This apparent advantage of the former method needs
confirmation, sinceit isimportant to acknowledge that the computational effort to solve a standard Riccati
equation is larger than that to solve a comparable Lyapunov equation. Thus, it is not clear beforehand
which method will attain the best performance in terms of the overall time for convergence. An outcome
favorable to the Riccati method is verified in some examplesin section 4.

In section 4, we also compare numerically these solutions with the convex method applied to the
solution of the problem for MJLS. For the control problem with complete state observation and perfectly
known parameters, as set here or in [2], we confirm that a more efficient technique is provided by the
recursive methods proposed here.

We also extend and generalize some current conditions for the existence of the mean sguare
stabilizing solution for the coupled algebraic Riccati equations. By using the results established in [7], we
can replace the observability condition derived in [11] (see Proposition 2.2) by the concept of mean square
detectability (see Definition 2.1 and Theorem 2.1) or by the observability of each mode of the system with
real part greater than a certain value (see Theorem 2.2).

The next section presents the control problem and some preliminary results concerning new
conditions for the existence of the mean sgquare stabilizing solution of the coupled algebraic Riccati
equations, and some properties of the stochastic system and the associated algebraic Riccati and
Lyapunov equations employed by the iterative methods. The main results appear in section 3 in the form



of two companion theorems, Theorems 3.1 and 3.2. Numerical examples are presented in section 4 to
expose the results and the points discussed above, and further conclusions are collected in section 5.

2. Basic Definitions and Preliminary Results
2.1. Basic Definitions
We consider here the following interconnected set of algebraic Riccati equations (ISARE) in X,
i=1,..N,
A;Xﬁ- Xi A+ &(X) -I-C;C’Z‘ — (X;Bi+ C;Di)(D;DZ')*l(B;Xﬁ— D ;CQ) =0, i=1,.,N (21

where we set
N
Ei(X)= Z)\inj
7=1

and we assume that D;Di > 0, for each i =1,..,N. These equations arise when one considers the
problem of minimizing the functional

J(x0,00) = mnE {/ | Coreyw(t) + Dyggyult) || %} dt (22
0

where, in a probabilistic space (2,3,{S¢},P), the minimization is over {u(t); ¢ > 0} and each u(t)is S¢-
measurable. The jump and state variables{(8(¢),x(t));t>0} should satisfy

z(t)= Aguyr(t)+Byput), z(0)=ax, 0(0)=0 (23)

and 6(t) is a continuous time Markov chain taking values in {1,..,N} with transition rate matrix
A =[Nj],i,j7=1,..,N. This process belongs to the class of strong Markov processes, c.f. [5]. We use
the notation A =(A4,..,Ay), B =(Bq,.,By), C =(Cy,..,Cy), and we introduce also A; =
A; — By( Dl.Di)*lD;Ch Ci=(I-Di(DD;) 1D’Z.)C¢, which form the correspondent collections A =
(Aq,...,Ay)and C =(Cq,...,C y). Weneed the following definitions and results.

Definition 2.1: We say that (A4,8) is mean sguare stabilizable if we can find K = (K73, ..., K) such that
E(||z(t)] %) — 0ast — oo, where &(t) = (Ag(t) + Bar) Kg(r))z(t) for any initial conditions z(0) and
6(0). In this case we say that K stabilizes (.A,B). Similarly we say that (C , A ) is mean square detectable if
we can find H=(Hy..,Hy) such that E(||z(t)]|?)—0 as t— oo where

(t) = (A gy + Hop) Cgr))a(t) for any initial conditions z(0) and 6(0).

Definition 2.2: We say that P = ( B, ..., Py) isapositive definite (semi-definite respectively) solution of
(21) if P> 0 (P;> 0) and satisfies (2.1) for i = 1,..., N. We say that P is the mean square stabilizing
solution of (2.1) if it satisfies (2.1) and K = ( Ky, ..., Kpy) with

Ki= — (DD) Y(B/p+ DCy) 24)

stabilizes (A, B) in the mean square sense.

Thefollowing result can befoundin [8], [11] and [13].



Proposition 2.1: The following assertions are equival ent:
a) (A,B) ismean square stabilizable;
b) For some K = (K}, ..., Ky), there exists M = (M, ..., My), M; >0fori=1,..., N, such
that
(Aj + BiK;YM; +M{ A; + BiK;) + &(M) <0, i=1,..,N;

c) For someK = (K3, ..., Ky),wehavethat E( ||z (¢)| %) <a e for somea > 0,b <0, where z(t)
isgiven by (2.3) withu(t) = K= (t).

Remark 2.1: From the above proposition, we have that if = (K3, ..., K) stabilizes (A,5) in the mean
sguare sense, then for some M =( My, ..., My), M; > Ofori =1,..., N, we havethat

(Ai + BiK)y M; + M{ A; + BiK;) <0

where A; .= A;+ 3X;-1,i=1,...,N,andtherefore, (A;, B;) isstabilizableand K; stabilizes (4; B},
i=1,..N.

2.2. Conditionsfor Mean Square Stabilizing Solution

We shall now derive some new conditions for the existence of the mean square stabilizing solution of the
ISARE. The next result is immediate from [11 theo 5], after noticing that (A, B) is mean square stabilizable
if and only if (A, B) ismean square stabilizable, and that (2.1) can be rewritten in the equivalent form:

AiXi+ XA +&(X)+CiCi— XiB{ D) 'BIX; =0

Proposition 2.2 Suppose that (A,B) is mean square stabilizable and (C';, A ;) is observable for each
i=1,..., N. Then there exists a unique positive semi-definite solution P = ( A, ..., Py) to the ISARE
(2.1). Moreover P isthe positive definite mean square stabilizing solution of (2.1).

We shall now apply the results of [7] to derive new conditions for the existence of the mean square
stabilizing solution of (2.1).

Theorem 2.1: Suppose that (A, B) is mean square stabilizable and (C , A ) is mean square detectable. Then
there exists a unique positive semi-definite solution P = ( A, ..., Py) to the ISARE (2.1). Moreover Pis
the mean square stabilizing solution of (2.1).

Proof: Define
X1 0
B = {% =1 : . |, X;isasquare matrix
0 - Xy
withthesamedimensionasA;i=1,... ,N},



andsetBT ={x =| @ . € Bsuchthat X; >0,i=1,...,N}. Defineaso
0 - Xy
1711+%)\11-I 0 B1 0
0 ZN"’%)‘NN‘I 0 By
6’1 0 Dq 0
¢ = : Lo L= L
0 .. Ty 0 - Dy

and the linear operator II fromB intoB as,

N
Ay X e 0
7=1
J#1
(%) = : : for X € B.
N
0 2L ANGXG
=1
J#EN

It is easy to verify that II is actually a positive semi-definite operator, that is, II maps BT into BT.
Moreover, equation (2.1) can be rewritten as the following linearly perturbed algebraic Riccati equation
(LPARE),

WX+ XA+T(X) +¢'¢ — X6(D'D)"16/x =0

where X € B. Also it is easy to check that the concepts of (A, ) mean square stabilizable and (C , A)
mean square detectable are equivalent to the concepts of (2, ®) MS-stabilizable and (€,2) MS
detectable respectively in the sense defined in [7]. Therefore the above framework fits the setup
considered for general LPARE defined in [7]. We can thus use Theorem 4.1 of [7] to get the desired resulE]

We can weaken the condition of observability of each pair (C;, A;),i=1,..., N required in
Proposition 2.2 by requiring only observability of each mode with real part greater than — %An (which are
positive) of thepair (C';, A;),i=1,...,N.

Theorem 2.2: Suppose that (A, B) is mean square stabilizable and for eachi=1,..., N, (C;, A ;) hasno
unobservable mode with real part greater than — %)\u Then there exists the mean square stabilizing
positive definite solution P = ( A, ..., Py) tothe ISARE (2.1).

Proof: Note that the hypothesis that for eachi=1,..., N, (C;, A ;) has no unobservable mode with real
part greater than — %)\n is equivalent to (€, %2) not having unobservable mode in the closed left half

plane. Applying Theorem 4.40f [ 7] we get the desired result. O

Therefore Theorem 2.2 weakens Proposition 2.2 for the existence of the mean square stabilizing
solution of (2.1) in the sense that only observability of the modes of (C';, A ;) with real part greater than or
equal to — %)\ii are required, for each ¢=1,..., N. Note however that, unlike Proposition 2.2,
uniqueness among the positive semi-definite solutions of (2.1) cannot be established in general under the
conditions of Theorem 2.2. Since we will need this unigqueness throughout this paper, we shall be working



with either one of the following hypothesis:

H1) (C ,.A) mean square detectable, or
H2)foreachi=1,...,N,(C;, A;) isobservable.

Clearly H1) does not imply H2) as can be immediately seen for the pure deterministic case. Conversely
it can be shown that H2) does not imply H1) either, so that we cannot say in general that H1) (or H2)) is
stronger or weaker than H2) (or H1)).

2.3. Prdiminary Resultsfor the Uncoupled Algebraic Riccati Equations

For solving the ISARE in (2.1) via uncoupled algebraic Riccati equation (ARE), we need to consider
the following type of equationsin X:

~ ~
AX+XA+(CC+Y)—(XB+CD)(DD) Y (BX+D'C)=0 (25)

where A = A + vl,v<0,Y >0and D'D > 0. For solving the ISARE in (2.1) via uncoupled Lyapunov
eguation, the following type of equationsin X is considered:

(A+BKJX+X(A+BK)+Y+(C+DKJ(C+DK)=0 (26)

where A=A +ul,v<0, Y>0, and D'D > 0. Laer we set in (25) and (26): v = \ii/2,
A:Al-:Aﬁr%f,B:Bi,O:Oi,D:Diforeach‘.

Remark 2.2: Note that (.4, 8) mean square stabilizable implies, from Proposition 2.1 and Remark 2.1, that
(ﬁi, B;) is stabilizable and if condition H1) holds then, by similar arguments, we have that
((I-D(OD) D) G, A; — Bi( DD,y *D,C;) isdetectablefor eachi =1, ..., N. For H2), if (C's, A ;)
is observable for each i=1,.., N then it is clear that (C';, A; + %I):((I—Q(QDZ-)— p)a
A; — By( DL D;)~ 1DC;) is also observable. In conclusion, we have that if (A, B) mean square stabilizable
and condition H1) or H2) in section 2.2 is satisfied then for eachi =1, ..., N, (AZ, B;) is stabilizable and
((I-D(DBD)"1D) G, A; — B DDy *D.C;) is detectable. Fmally, we mention that if (A;, B;) is
stabilizable, (4; — Bi( D, D;) 1 D,C;, B;) dsois.

We need the results in the sequel, see the Appendix for the proof.

Propostion 2.3:

(i) Suppose that (A,B) isstabilizableand ((I— D(D'D)~'D')C,A— B(D'D)~1D/C) isdetectable.
Then there exists a unique positive semi-definite solution to (2.5) and this solution is the stabilizing
solution. Let X and X be the correspondent positive definite solutions of (2.5), when Y = Y adY =Y,
respectively. IfY <Y,thenX < X.

(i) If (A+BK) is stable, there exists a unique positive semi-definite solution to (2.6). Suppose that
(A+BK) is stable and let X > 0 be the solution of (2.6) when Y = YoIf ((I- D(D’D) Iphe,
A—B(D'D)"LD/C) is detectable, then A+ BK is stable, where K = — (D'D)"Y(B'X+DC).
Moreover, the solution X of (2.6)when K = KandY = Y < Y issuchthat X < X.

3. The Main Result
Our purposeisto attain the solution of (2.1) by iterations on a set of decoupled Riccati equations. We will
present two algorithms which will be related to truncated quadratic optimal control problems, each one



associated with a different sequence of stopping times as terminal time. We shall call these methods
Method | and Method 11, the later based on existing results, see[1]. We start with Method |:

Rl.Sethz(X(l),...,XON) arbitrary, with X >0,i=1,...,N;

R2.Fork=1,2,...andi=1,..., N, caculaterecursively,

~ —~ ~
AiXE+ X i+ CLG+ &(X) — (X Bt €Dy (D\Dy)~ (BXE + DiCy) = 0 3.1)

~k k ~k . .
where X; =(X;1,...,X;y) isdefined as
Xf forj=1,...,i—1;
~F o
Xij=10, for j = i; (32
X?‘l, forj=i+1,...,N.

A variant of Method | regarding the form (3.2) of carrying new updates, would be the following. For
each j set in the algorithm:

~k 0, for j = 1;
(33

Xij = Xf‘l, otherwise.
For future reference, we shall call this Method I1. We also denote by

s’f(xﬂ):(sk(zco),...,s’];(xo)) and RMA0) = (R(A0),. Rk x%),

1

the sequences generated by Methods | and Il when S%(x?) = A9 and RO (A0) = AV respectively.

There are other classes of methods for solving (2.1) in the literature that we wish to consider. A class
of methods based on recursions on a set of decoupled Lyapunov equations, cf. [9], [10] isasfollows.

L1[initiaization] Find 70 = (F7, ..., F ) such that

isstablefor eachi=1,...,N. Set A" :(X?,...,X(])V) arbitrary, with X >0,i=1,..., N.

L2.Fork=1,2,..., caculaterecursively,
(Ai + BFFXE 4 XA+ B + €K + (Cit DiFF1(Cit DiFFY) =0 (34)
with FF1 = — (D'D)(Bix¥ 1 + DlC)  k=2,3, ...

where )~( = ()~(L1, ~?N) is defined by (3.2) or (3.3). Regarding these update forms, we name these
variants Method 111 andIV respectively. For afixed 70 =(FY,..., FY ) satisfying L1, we shall denote by

F(A0),., 2R (A0),

1

QM%) = (GH(AY),..., Q4 (") and ZHA)=(Z

the sequences generated by Methods 111 and IV when Q9 (xY) = A9 and 20(A?) = A0 respectively.



Finally, athird class of methods for solving (2.1) we consider is based on LMI's as it appearsin [2].
Here we nameit Method V, and it appliesto the present problem with the following formulation:

maximizetrace{ X1 + --- + X}
subject to

~/ —~ ~
(Aixi+ X; A+ &(X7) + CiCi - XiBi+ C'D;

' , , >0, X;=X}i=1,...,N.
B X+ DZ-GL' D,D;

We shall make comparisons between the methods described from an analytical point of view (see
Theorems 3.1 and 3.2), although comparisons between method V and the previous ones are restricted to
numerical performance comparisons, see section 4.

The form of taking the updates into account in Methods | and 111 is new for continuous time MJLS;
for the counterpart of Method | for discrete-time problems, see [6].

Remark 3.1. Method Il was previously studied in [1], but the convergence is assured with some
restrictions on theinitial value X°, namely,

CL XY =0,o0r

Cc2. A0 > P and A’ > xl.
Conditions (C1) or (C2) are not necessary for convergence of Methods | and 1, as shown here. Regarding
Methods | and 1, if (C1) or (C2) is satisfied, the sequence produced is monotone, see respectively, Lemma
3.1lorLemma3.2.

Remark 3.2: The class of Lyapunov iteration methods is derived from the method of Kleinman for ARE's
[12] and the set of interconnected Lyapunov equations introduced by Wonham [15],[16]. An initial
controller that stabilizes al modes (21-, B;) ismandatory, asin the step (L1) above. Method IV appearsin
[9] (assuming that CﬁDl =0, Vi), and the results relies on a hard to check condition introduced by
Wonham, to make sure that there exists the mean square stabilizing positive semi-definite solution to (2.1).
Here this condition is replaced by mean square stabilizability of (A4, ) and condition H1) or H2) in section
2.2. Condition (C2) isrequired in Method IV to guarantee that the sequence produced is monotone, see[9]
or [10].

The main results read as follows.

Theorem 3.1: Suppose that (A, B) is mean square stabilizable and condition H1) or H2) in section 2.2 is
satisfied. Then the sequences {Xf} defined by Methods | and Il are such that Xf' — Pjask — oo, for
i=1,...,N,whereP = (A, ..., Py) istheunique positive semi-definite solution of (2.1).

Theorem 3.2 [rate of convergence]: Suppose that the methods are initialized with the same value A?:
(i) Method | has alarger rate of convergence than that of Method I1;
(i) Suppose that for some 7 = (FY, ..., F?V) satisfying (L1) we have XY > 21(x?). Then

(@ QF(a0) > oFt1(a0) > sF+l(x0) > 0
(b) 2F(A0) > ZM1(A0) > REHL(A0) > sH+L(a0) > o
(© RF(AD) > REHL(AD) > 0, SF(A0) > sF+1(a0) >0

foral k=0,1,...,withQ®%) | P, zF(a0) | P, RF(A) | Pand S¥(xY) | Pask —oo.



Theorem 3.3: Suppose that condition H1) or H2) in section 2.2 is satisfied. Then the sequences {Xf}
defined by Method | or Il convergesif and only if (A, B) is mean square stabilizable.

The proof of the Theorems relies on the next Lemmas.

Lemma 3.1: Suppose that (A, B) is mean square stabilizable and condition H1) or H2) in section 2.2 is
satisfied. With X0 = 0, we havefor k = 0,1,2,...., that

(i) R¥(A0) < sF(a)

(i) S0 < MLy <P

(i) R¥(x0) < RML(a0) <P
and SF(A0) 1 P, RF(A0) 1 P, as k — oo, for i=1,...,N, where P= (A, ..., Py) is the unique
positive semi-definite solution of (2.1).

Proof: First of all, notice that from the hypothesis and the results in section 2, there exists a unique

positive semi definite solution P=( A, ..., Py) to the ISARE (2.1), and thus satisfies (recall that
Az = ” D
" N N
AP+ B A+ C.G+Y " \ijPj— (BBi+ C,D;)(D,Di)~Y(BjP+ DICy) = 0 (35)
J=15#

Moreover, as mentioned in section 2.3, we have that (,&-, B;) is stabilizable and
((I-D(BD) D) q, A; — By( DDy 1D.C;) is detectable, i=1, ..., N so that from Proposition
2.3 (i) and Remark 2.2 the Riccati equation (3.1) has a unique positive semi-definite solution and this
solution isthe stabilizing one. Set

k _ k k _( pk k
SHA0) = (..., 8%), R A% = (RY,...,RE).
Let us show by induction that forall {=0,1,2,...
VA
OgngSfHgﬂ,wherek:mt(ﬁ),z:é—(kxN)—i—l (36)
where int( %) istheinteger part of the division of ¢ by N. At any iteration we have that

ST 4+ A+ G- (STB; + O Di)(DLD) MBS + D)
- Z)\ S+ Z AijSh =0 37)
J=i+1

and

AST+ S A+ cfQ— (S:B+ C'D)(D\Di) " {(BIST + DGy

+ Z)\ZJS”" + Z XijST 1= (39
J=i+1

For £ =0 (that is, k=0,i=1), (3.6) clearly holds from Proposition 2.3 (i) and equations (3.5) and (3.7),



smceZ)\leJ > OandSO =0PF>0j=1,...,N.Supposethatforal{=1,..., v, wehavethat (3.6)
=2

holds, and write k = int(%), ¢ =v—(kx N)+1. Suppose first that . < N, so that z‘nt(%l)

Then from theinduction hypoth&ci S,

ZALHJS +Z A1t < Z)\ 1155 +Z Au41j5% < Z Ao+1;Pj
7=1 J=t+2 J=t+2 =17t

k.

and from Proposition 2.3 (i), equations (3.5), (3.7) and (3.8) withi = ¢« + 1, = k, we havethat

k k-1
S =S shn

showing that (3.6) holds for v+ 1=¢+(kxN). If t = N then v+1=(k+1) x N, and from the
induction hypothesis,

N k X k+1 X
ZAUS]. < ZAlij < ZAlej
=2 7=2 7=2

and from Proposition 2.3 (i), equations (3.5), (3.7) and (3.8) with: = 1,r = k + 1, we have that
S <2 <Py

showing that (3.6) holdsfor v+ 1= ( k+ 1) x N. By the same arguments we have that (iii) holds. Let us
show (i) by induction, that is, forall £=0,1,2,..., wehavethat

(
0<RF< &, wherek = int(:),i=1~ (kxN)+1.

For ¢ = 0 the result clearly hods since 0 = R) = <. Suppose that for all/=1,...., v, we have that the
result holds, and write k = int(NVL i =v—(kxN)+1, and suppose that . < N. Then from (3.6) and
the induction hypothesis,

Z)\L-‘rljR +Z)\L +1]R < Z)\L +1]S +Z)‘L +1]Sk < Z)\H—ljs +Z )\L-‘rlj
! J=t+2 J=1+2 j=t+2

and since

~ ~
AR + R Ai+ C,CL,_ (REBs+ C'Dy)(DLDy) " (BLRF + DiCy)

+ ZAZJRT L+ Z iR, = (39)
J Jj=i+1

we have from Proposition 2.3 (i), equation (3.8) and the equation above with i =i+ 1, r =k, that

L+1 SkH, showing the result for v+ 1 = ¢+ (kx N). The case . = N parallels the previous one,

and we can conclude in asimilarWaythatRllngl < S]fH forv+1=(k+1)xN. O

Lemma 32: Suppose that (A, B) is mean square stabilizable and condition H1) or H2) in section 2.2 is
satisfied. Consider 70 = (F),..., F})) satisfying (L1) and A* such that A% > Z*(&). Then

10



(@ QM) > oM (af) > s (af%) > 0

(b) 2F(A0) > ZM1(a0) > REHL(A0) > sH+L(a) > o

© RF(AD) > RFL(AD) > 0, SK(aY) > S1(A0) > 0 (3.10)
for al k=0,1,..., with QF(x%) | P, Z¥0) | B, R¥(AD) | P and SF(x0) | Pas k — oo, P the
unique positive semi-definite solution of (2.1).

Proof: First of al notice from Proposition 2.3 (ii) and Remark 2.2 that for eachk=0,1,2, ..., ;1¢+ BLFZC is
stable, and thus the sequencein (L2) iswell defined. Set
QM) = (&, ..., Qh), ZMa0) = (z},....z})
k _ k k _( pk k
SHAY) = (S, 8%), RN AY) = (Ry,...,RE).

At any iteration we have that

[Ai + BIFIY QN + QL A+ BiFr Y+ (Cit+ DiF~V(Ci+ DiFt )
+ZAUQT 1+Z Qi =
J=i+1

A-QT + @ Ait+ C/'Cz'_ (QBi+ CLD)(DLDy) "N (BIQT + DiCy)

+ZAUQT 1+Z i@ V(B — FY(DID) (FT = FT7 ) =0 (3.11)
J=i+1
where
Fl= —(D'D){(B,Q'+ DICy),£>1.
Similarly,
[Ai + BiGTY 27 + 2 [Ai + BiGTY + (Cit DiGIY(Cit DiGT Y
+Z>\’L]Zr 1+Z)"L]ZT 1_
J=i+1
Iy A ZTAZ + c’q (2] Bi+ C.D;)\(D\Di) " (B,Z] + DiC)
-1
+Z>\”Zr 1+Z Nj 2]~ Ly(@r-arhH(Dpy(Gr-a =0 (312
7= J=i+1
where

0 _ IY\—1/ o 7{ 1) 0 _
G/ =— (D'D) (BiZZ.—kDZCZ),EZl,Gi—F?.

From the hypothesis made, we havethat Z! < Z0 = X? = Q¥ and Q! = 7/, since G = F). Moreover
we have from Proposition 2.3 (ii) and equatlons (3 11), (3 12) that Q) < z1 < Z) = QO (since G = FY),
and similarly, Q) < 7z} < 7% = Q! (since GY = F)),fori=1,...,N. From equanon (3.12), Proposition
2.3 (ii), and induction arguments similar to those presented in the proof of Lemma 3.1 we can show that
Qfﬂ < Qf. From equations (3.8), (3.11), Proposition 2.3 (i), and induction arguments similar to those in
the proof of Lemma 3.1 we get that Sf < Qf (recall that $Y = X9 = Q"). In asimilar way, using eguations
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(3.8), (3.9) and (3.12), Proposition 2.3, and the arguments of the proof of Lemma 3.1 we can show that
zk > z# > pHL > ghtl pk > phtl gk > ghtl
i = 7 =% D A A A

completing the proof of (3.10).Taking the limit as k — oo, we get that Qf | Qi for some @; > 0,
i=1,...,N. Buttaking the limit in equation (3.11) we get that © = ( @y, ..., Q) will be apositive semi-
definite solution of (2.1), and from the uniqueness established in Section 2 it follows that @ = P. Smilar
arguments hold for the sequences Zf, PJL? . S’Z?. O

Remark 3.3 It isimmediate to check from Lemma2.1 or 2.2 that the results also holdsiif, instead of solving
the ARE's for i going from 1 to NV, we follow an arbitrary sequence {i1, ..., iy} (it isjust a matter of re-
label the states). In fact we could consider any infinite sequence of states I = { iy, n= 12,...; iy =1
infinitely oftenforeachie {1..,N}}.

In Lemma 3.1 we require the condition (C1), namely, X° = 0, and in Lemma 3.2 the condition (C2) is
employed. However, we can generalize the result regarding the convergence of Methods | and Il for any
initial condition A0, and as a byproduct, Lemma 3.3 also provides a form to compare the rate of
convergence of methods with updates (3.2) and (3.3).

We can show that Methods | and I are based on approximations via dynamic programming, involving
a.s. finite horizon quadratic control problems, with some increasing sequence of stopping times as terminal
time. Let us show this for Method I1; for the others the arguments are similar. Define the following
sequence of {St }-stopping times{7(k):k=01,... }:

7(0) =0, T(k)=min{t>7m(k—1): 0(¢t)#£ 0(t7)},
ot™) = Iﬁma(s)), and set,

st
7(k)
T¥(a0,00) = minB{ [ Cyy (1) + Digyutd) |2t + | (XY V2l 12}
s 0(r(k))

wherethe minimizationisover {u(t); 0 < ¢t < 7(k)}.

Lemma33: Foreachk=0,1,..., and system (2.3) with areal vector xg and 6y = i,
oy REAX) g = JF(ao, ) (313)

Proof: Let us apply induction on k. For k = 0, theresult istrue by definition. Supposeit holdsfor k. Since
{6(t),z(t) : t > 0} isastrong Markov process, we apply standard results on dynamic programming to
obtain the following Bellman equation:

7(1)
T#¥(a0,60) = min B 0, { [ 1| Coye (1) Dgy®) 1 + 1| (B (W) ¥2tr(2)) 112}
0

Let s At indicates min{s,t}, and denote by t — z;(¢) the trajectories defined by z;i(¢t)=Ax(t)+
Bju(t) withzi(0) =20 € R, foreachi=1,...,N. Wecanwrite



T(1)AE

Fagan{ | 1| Cotoyr(s)+ Daggyuts) || s = 314
0
= ([ ([ 1ew e )l 2ar)ass ([ 10wer)+Dutr %) Y1y
J#

t :
= —Aiﬂz‘ﬁ/ Cgr)+D 2dr) d +W/ Cgr)+D 2d >1 i
([ =xe ([ 1ce i+ Dutrl 2ar) as ([ 1catr) +Dur))?ar) )10,
1 t
= [ =ty Catry+ w1 2+ ([ 1)+ Date) 1 6r) ) 1pgym
0 0
it
= [ 0w s)+ Dus) | 2ds 19—y
0
Define V; = Rf*l(XO) and Vj = R;?(XO) for j # i. We have that
Eyg 00 12(1(3 A ) Vyran (Y A t) —ap Vg zo}
Eqg.00 12(T(1) Y Voo 2 (D)1 1)<y +2 () Voy 2 ()1 {r(1)>1) — 4V, w0}

= Egq 00 {26, (7(2) Y Vagray)zay (D)1 (1)<} + 2, (1Y Vo gy (D1 {r(1)>1) — 25V, 70}

= </0te)‘ii3(;)\ijxi(sfv]r{s )ds—l—xz(t)ng: I{OszE0> “Lgo=i}
(/ s z#:)\”ml I Vieds) + (Am(s)+Bu(s)) Vi s
V=)

o s Y Vi(Ajri(s) + Bu(s)) ds) g

Therefore, with (3.14) we get that

T(L)AE
Fagan{ [ 1 Cot(5)+ Digyu(s) |2 s +0(1(3 A Y Vaagyny (o A £) = Vi 0}
0
4
= [ (1wt +Duo)+ SredsTViols) +

J#i
(A\le(s)—l—Bzu(s)')‘{wl(s)—Q—xl(sf%(;l\zxz(s)—i-Bu(s))) ds) “Lygy=iy

_/0 )\175 ( )(D/DZ) ( )ds'l{e():’i}

where, ¢;(s) = DiDju(s)+(BV;+DIC)xfs). Since Vy, = ng:l()co), and taking the limit ¢ — oo,
Voryne — Vo)) = RZ(T(].)) (XO) (by definition, 6(( 1)) #1), we get that
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(1)

Fagay { [ 1 oy )+ Dagoyuts) I 2as + 1| (BE ) (¥ ¥2(r(2)) 112}
0

o0
= ([ ity DDy i) dsraf REHA)an) - 10,
and the minimum is achieved when ¢;(s) = 0,0 > s,foreachi = 1,..., N, showing (3.13). O

Similarly, define the following sequence of {3 }-stopping times
£(0):=0, E(k)y=min{t>&(k—1):0(t)>0(t")}

With this definition, we have a counterpart of Lemma 3.3 for Method |.

Corallary 3.1: For k = 0,1,2, ..., and system (2.3) with areal vector xy and 6y = 1,
&(k)
2y (A0)zy = min E(/ | Cogeye (5)+Dpsyuls) I| 2d st || (X )V 2(6Ck)) | 2)
0

isverified, wherethe minimizationisover { u (¢):0 <t < &(k)}.
Proof: Parallelsthe proof of Lemma 3.1. O

It isimportant to notice that the following holds:
7(n) < &(n). (3.15)

In the sequel, a and b are as in Proposition 2.1 part c), and ¢ = max{ || X? | ;¢=1,...,N}.Denote
by (2*(t),u*(t)) the state and control variables generated by (2.3) when u*(t)= Ky «*(t) and
P=(A,...,Py),K=(Ky..., Ky) areasis Section 2 and (2.4). Note that

¢
Tao, i) = hPiro = B [ | Gy (s)+ Dagoyu(s) | 2ds+ | PI2a0 1 2) 319
0

¢
> B( [ 1 Coya*(5)+ Doy (s) | 2ds)
0

holds for any {S¢ }- stopping time .

Lemma34: Fork=0,1,2,,..., and any real vector o and 6y = i, zfoRf(O)xo < zgsjf(())xo, and,
o) R¥A0) g < af) SF(A0)ag (317)
) RE(0)z0 < o RNX)z0 < 2y Pizg +ac B (e7®) (3.18)
2, $5(0)a0 < 2y (X020 < 2y Pizg +ac B(e*M). (3.19)

Moreover, we havethat RF(A”) — P and S¥(2%) — Pask — oc.

14



Proof: Relation (3.17) isimmediate from Lemma 3.1 (i). Let us show (3.18) only, the other inequalities follow
inasimilar way. From Lemma 3.1, (3.16), and Proposition 2.1 (c):

(k)
ngf(O)xozminE(/ | Coeyw (1) + Doyl | 2t )
0
(k)
<minB( [ Coyr(0)+ Dutt) | 2dt + 1| B2 atr()) 1)
0
= o RNX0)z0 < 2 Bag + ¢ E (|| 2 ¢k) ) || ) < afyPizg +acE (W),

From (3.15), it follows that 0 < E (e%(0) < E (¢"h)) - 0 as k — oo since ¥ — 0P-as. as k — .
From Theorem 3.1, RF(0)— P; and $%(0)— P; as k — oo, and thus, (3.18) and (3.19) leads to
RE(XY) — Prand SH(A0) — Pask — oo. O

Proof of Theorem 3.1: It follows from Lemma 3.4.

Proof of Theorem 3.2:

(i) In view of (3.15), (3.17), (3.18), (3.19) and Lemma 3.4, Method Il should have a slower rate of
convergence than Method I.

(i) 1t follows from Lemma 3.2. O

Proof of Theorem 3.3: For Method 11 one can conclude from Lemma 3.3 that for arbitrary o and 6y,
T(zo, 00) = Ry (K)o (320)
(k)

< g { [ 1| Canpe () +Dagyut) | 2ae + || Fy/% (1) 112}
0

for any ¢ — w(t); in particular for any u(t) = Kgy(;)=(t). Now, suppose that R;"(XO) divergesfor somes,
as k — oo; it implies that the right-hand side of (3.20) diverges with 6y =i, xz( real vector, and any
t — u(t), thus, the system can not be mean square stabilizable. Conversely, suppose that Rf(XO) — B
ask — oo for eachi. Then P satisfies (2.1) and we set K; asin (2.4) to conclude for any z and 6y that

Ey,. 90{f I (Cary + Doy Koqp))=(t) || 2dt} = af, Py 0 < oo. Since condition H1) or H2) in section 2.2

is satlsﬂed, it follows that £ g, || z(?) || 2 0, i.e. the system is mean square stable. The proof for
Method | follows aong the same lines. O

4. Numerical Examples

4.1. Examples
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This section presents some numerical tests with the proposed methods, and it includes comparisons with
existing methods. Methods I, I1, 11l and 1V are easily implemented with cyclical updates using standard
Matlab routines for solving Riccati and Lyapunov equations3. The examples are the following.

= Example 1 (V = 3) Borrow from [1].

25 3 8
diag{5,1,331
Ai=|1 32 ,B1—diag{.707,1,1},01—< lag{o,? }>
0O 5 -2 3x3
25 12 3
diag{6.08,8.36,5.83
As=| -5 5 1 ,Bz:diag{.?O?,l,.?O?},C’gz<'ag{ P03 }>
2% 12 2 3x3
2 15 -4
iag{3.16, 4, 4.
A3 =122 3 7 ,Bgzdiag{_707,1,1}103:<d'ag{3067, 58})
11 9 -2 3x3
0 3 5 25
DL:( ?}X?’), —1,23. A=|1 2 1
’ 7 3 1

= Example 2 (IV = 6) It was produced by augmentation of Example 1 with three more forms, generated
randomly. The extraforms and the transition matrix are as follows:

27
4
39

Ay =

-.69
-1.0
-40

As =

20
21
13

Ag =

.03
30
89

-1.3
-.67
-04

91
11

18 '
93 |, B = diag{.151, .854, 822},Cy = (d'ag{'98§7-3347 -760}>
23 3x3
-14 _
-76 |, B; = diag{.645, 289, .309},C;5 = <d|ag{.53(§),.783, .794})
-66 33
20

iag{.059,.305,.971
90 |, By = diag{.838, 546, .795},Cg = (dlag{ 0553, 305,.9 })
21 3x3

3We employed in the tests the Matlab 5.1 and routines Iqr and lyap of the Matlab Control Toolbox,
versions revised on 7-18-90.
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35 5 0 1 1
1 -2 01 00
A= 1 2 -1 5 1 1
lo 1 1 35 5
1 00 1 20
5 1 1 1 2 1
and D;i = 1,...,6 asinexample 1.
4.2. Comparison between Methodsl, I1, I11 and IV

Since the Lyapunov methods (I11 and V) require an initialization procedure, we tried three types of
comparisons:

» XY =0 for the Riccati methods, and account for time spent in the initialization step L1 for the
Lyapunov methods. The initialization matrices X, FY were obtained by solving N uncoupled Riccati
equations in X", with matrices C and D, and F) = — (D D;) (B, XY + D]C;). Theresuitsfor the two

examplesare shownin Table 4.1.

Table4.1 Overall Load. (relative precision = 10‘8)

Example 1 Example 2
Iterations™ | CpuTime* | Iterations | Cpu Time
Method | 8 059 (L.1) 7 205 (L)
Method I 13 0.98 (1:1.66) 23 3.86 (1:1.88)
Method 111 8 081 (11.37) 15 302 (L147)
Method IV 14 124 (1:2.10) 21 4.02 (1:1.96)

Note: The fastest method was Method | in the two examples. It spent a cpu time between 1.66 and 2.10
times smaller in the two examples to attain the same precision, if compared with existent methods
(Methods |1 and 1V).

= All four methods are initialized with a set of matrices A¥ = (X ... X9), 70 = (F7,... X3 that

stabilizes each mode 4, obtained as described in the previous test. Notice that F does not satisfy a
coupled Lyapunov eguation. The time spent with the initialization is not accounted in the Table 4.2.

Table4.2- XV asinthe step L 1. (relative precision ~ 10~%)

Example1 Example2
Iterations | CpuTime | Iterations | CpuTime
Method | 7 0.56 (1:1.05) 12 211(1:1)
Method 11 12 0.92 (1:1.73) 2 3.72(1:1.76)
Method 111 7 0.53(1:2) 14 247 (L1.17)
Method IV 13 0.95(1: 1.79) 20 3.56 (1:1.69)

Note: Method 111 was slightly faster than Method | in Example 1 whereas method | was the fastest in
the Example 2. The time ratios does not vary much in the two examples.

TTheinitialization step for the Lyapunov methods is counted as one in the number of iterations.
*In seconds and the rel ative time ratios among the methods.
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= The methods are initialized with a set of matrices that satisfies a coupled Lyapunov equation. The
stabilizing control is obtained as described in the first test, and the corresponding coupled equation is
obtained using the method in [3]. The time spent in this initialization is not accounted for in Table 4.3.
Theorem 3.2 (iii) applies here, concerning the number of iterations.

Table4.3- X0 solution of coupled Lyapunov equation (relative precision ~ 10_8)

Example1 Example2
Iterations | CpuTime | Iterations | CpuTime
Method | 6 0.48 (1:1.09) 12 206 (1:1)
Method 11 1 0.86 (1:1.95) 23 3.85(1:1.87)
Method 111 6 044 (1:2) 15 262 (1:1.27)
Method IV 1 0.78 (1:1.77) 25 4.34(1:211)

Note: Method 111 was slightly faster than Method | in Example 1 whereas method | was the fastest in
the Example 2. We observed that the sequence are monotone decreasing and the number of iterations for
the Riccati methods is smaller or equal the number of iterations for the corresponding Lyapunov method,
as expected.

The tests run in a Sun 5 Sparc Station, and the cpu time correspond to an average of 6 replications.
The residuals of the solutions was monitored by the relative precision criteriac max { | Xerr;/X; || oo :
i=1..,N} where | Al = max{|a|} for amatrix A, and / indicates the element by element
division (array division). The value Xerr; is produced with the use of the Matlab routineric.

4.3. Comparison between theLM1 and Methods| and 111.

The convex method was implemented with the package LMIsol [14], dedicated to numerical solution of
LMI's. We compare the cpu time with the Matlab routines in section 4.1, adjusted to attain a comparable
relative precision. The procedure for Methods | and 111 and the time accounted is the same as described in
thefirst test of section 4.1.

Table 4.4 - Comparison with LMI method

Example 1 (precision ~ 10~5) | Example 2 (precision ~ 10~°)
Iterations Cpu Time Iterations CpuTime
Method | 6 056 (1:1) 9 155 (1:1)
Method 111 7 0.72(1:1.29) 12 247 (1:1.59)
LMI 17 210 (1.375) 20 885 (L5.71)

Note: Method | attains the best performance; the performance marks are wider apart when the
dimension of the problem increases.

5. Conclusions
Tables 4.1, 4.2 and 4.3 indicate a significant gain in the cpu time regarding the forms of carrying new
updates: Methods | attains a reduction between 1:1.66 to 1:1.88 when compared with Method 11, and

Method 111 attains a reduction between 1:1.33 and 1:1.77 when compared with Method 1V. In the best case,
thereductionintimeis 1:2.10 and in the worse is 1:1.33, see Table 4.1.

18



The number of iterations of the Lyapunov methodsis always large or equal the number of iterations of
the Riccati methods and this is the prevailing factor in the examples. Even if the solution of a Riccati
eguation is more costly than that of a comparable Lyapunov equation, the best performance is attained by
Method I, in most cases, and by Method |11 in some cases. Most importantly, it performs better in all cases
in Tables 4.1 and 4.4 where the overall time spent by the Methods | and 111 is expressed; the Lyapunov
method |11 spent between 29% to 59% more time than the Riccati method | in these two tables.

A second aspect in favor of the Riccati method is theinitialization step (L 1) required by the Lyapunov
method, not needed for the Riccati technique. Moreover the convergence of the Riccati methods is by
itself averification of the mean square stabilizability of the MJLS, as established by Theorem 3.3.
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Appendix: Proof of Proposition 2.3
Consider the ARE in (2.5), and set C = (I—D(D'D)~1D")C
~ C ~ D ~ o~ ~ ~ g~~~ _
L= (Y]JZ)’ D:<0>, A=A-B(DD)'DL=A-B(DD)lDC,
-~

~ ~ ~ ~ C
C=(I-D(DD)ID)L = <Y”2>

LemmaA.1: Suppose that (C', A) is detectable. Then (C,A) is also detectable.
Proof: Obvious. O

Lemma A.2 Suppose that (Z,B) is stabilizable and (5,X)js detectable. Then there exists a unique
positive semi definite solution X for equation (2.5). Moreover, A+ B K isstable, where
K=—(DOD)YBX+ D0 (A.2)

Proof: From LemmaA.1, (5,}{) is detectable. Notice that equation (2.5) can be written as
AX+XA+LL-(XB+LD)(DD)\(BX+DL)=0

and the Lemmafollows from standard results on ARE's. O

LemmaA.3: Suppose that (X,B) isstabilizable and (f),g) is detectable, and X > 0 satisfies:
AX+XA+Cb—(XB+CD)(D'D)"N(BX +DC)<0

Then A+ B K isstablewith K asin (A.1).

Proof: We can rewrite the above equation as in (2.5) for some appropriate Y > 0. Therefore considering
this Y > 0 fixed and solving the corresponding ARE we must have that the solution is X by uniqueness
of the positive semi definite solution of (2.5). Theresult follows from LemmaA.2. O

Proof of Proposition 2.3:
First, we prove part (ii). From (2.6) we have

(A+BKJX+X(A+BK)=— (Y+ C'C+ SB(D'D)'B'S)<0

and thus, X > 0 since (;1+BK) is stable. In addition, after some algebraic manipulations, (2.6) can be
written as

AX+ XA+ (XB+CD)(DD) Y (BX+DU) (A2)

=— Y- (K-K)(DD)(K-—K)<0

where K = — (D'D)~(B'X + D'C'). Since (4, B) is stabilizable and (C', A) is detectable, we can apply
Lemma A.3 to (A.2) to conclude that (A+BK) with K = — (D'D)"Y(B'X + D () is stable. To
complete the proof of (ii), we notice that from (A.2)
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(A+ BEYX+X(A+BK)+(C+DK)(C+DK)
+Y+(K—K)(DD)(K-K)=0
and

(A+ BKIX+X(A+BK)+(C+DK)(C+DK)+Y=0

Therefore

(A+BEK§(X-X)+(X-X)(A+BK)+(Y-Y) + (A3)
(K—K)(DD)(K—-K)=0.
(A.3) and the stability of A+ BK yieldthat X < X, which completesthe proof of (ii).
Part (i): The first assertion in part (i) is proven in LemmaA.2. Let us consider Y = Y < Y in(25). If
(A B) is stabilizable and (C,A) is detectable,Lemma A.2 states the existence of a unique positive
definite solution X to the equation (2.5), and it is such that (A+ BK) is stable, with K asin (A.1), with
X = X . If we now set Y = Y we can conclude similarly the existence of a unique semi-positive solution

X of (2.5) and akK given by (A.1) with X = X. After algebraic manipulations similar to that employed in
(A.2), (A.3), we get that

(A+BK} (X - X)+(X X)(A+BK) H(Y=Y)+
(K—K)DD(K-K)=0.

It then follows from the stability of A+ BK that < X. O
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