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1. Introduction

Markovian jump linear systems (MJLS) comprise an important class of stochadtic time-
variant linear systems that have been in great evidence over the last years. This family of systems can
modd several problems where the structure of the plant is subject to random abrupt changes due to,
for ingtance, failures or repairs, sudden environment changes, modification of the operating point of a
non-linear system, etc. This large number of gpplications lead to a great interest on this field and
severd results, regarding gpplications, stability conditions and optima control problems, can be found
in the current literature (see, for instance, [1],[3]-[9],[11]-[14],[17]-[23]).

Convex programming applied to control problems have been extensvely studied in the last
years (see, for instance, [2],[4],[10],[15],[16],[22]). Due to the large number of fast and reliable
computationd techniques available for convex programming nowadays, this approach has showed to
be an important tool to derive numerica dgorithms for control problems. In particular dgorithms
using convex programming for obtaining congtrained quadratic control of uncertain systems, Ho-
guaranteed cost control for uncertain systems, Ho-control problems, and mixed Hy/Ho-control
problems have been recently presented in the literature (cf. [2],[10],[15],[16]).

In this paper we study the constrained quadratic control problem of a discrete-time MJLS.
Quadratic control problem for MJLS has been studied in the current literature (e.g. see [1],[3]-
[51.[7],[8],[11]-[14],[18]-[21]) usudly under the assumption that no constrains are imposed on the
date and control variables. The trandtion probability matrix is dso usudly assumed to be known. In
[22] the authors condders the case in which the trandtion matrix of the Markov chain of a
continuous-time MJLS belongs to a convex set, and study the robust (with respect to the
uncertainties on the trangtion matrix) state feedback stabilization problem of the system. We trace a
pardle with the results presented in [4], [15] and [22] to derive an dgorithm, written in terms of an
LMI (linear matrix inequalities) optimization problem, that is cgpable of handling the quadratic control
problem with restrictions on the state and control  variables for MJLS, as well as uncertainties on the
trangtion probability matrix IP. The initid date vaue is not assumed to be exactly known, only
supposed to be in a convex set with probability one. To our knowledge, there is no other andytica
or numericad way of handling thiskind of problem in the literature.

The paper is organized in the following way. Section 2 presents the notation that will be used
throughout the work. Section 3 deds with the gppropriate notions of stability and stabilizability for
MJLS, as wdl as some auxiliary results. In section 4 we show that the problem of congtrained
quadratic control for MJLS, when the initid dtate and trangtion probability matrix P belong to
gppropriate convex sets, can be dated in terms of an LMI optimization problem, so that convex
programming can be used for obtaining an approximation of the optimal solution. Section 5 presents
some numerica examples to illustrate the devel oped results. The paper is concluded in section 6 with
somefind comments.

2. Notation

We denote by R" the n-dimensond rea space, and set M(R",R"") the normed linear
goace of dl m by n red matrices. Whenever m =n we write M(R" ,R") = M(R") for
smplicity. The superscript / will indicate trangpose. L > 0 and L > 0 will be used if a sdf-adjoint
matrix is pogtive semi-definite or  podtive  definite  respectivdy and  we  write



M(R™)* ={Le M(R"); L =L >0}. We denote by ||.]| &ither the induced norm in M(R") or
the sandard norm in R".

We ddine H™" the liner space made up of dl N-sequence of matrices
V=V,....,Vn§), V; € M(R™,R"), i=1,...,N. We set H"" =H" and H"* ={V =
Vi,...,VN\)eH"; Ve MR™)*,i=1,...,N}. For H=(Hj,...,Hy) and V =
(V4,..., V) in H" the notation H < L (H< L) indicates that H; < L; (H; < L;) for each
i=1,...,N.

We define £ as the Hilbert space formed by the sequence of second order random
variables z=(2(0),z(1),...) withz(k)e R" foreechk = 0,1,... and such that

0
2l =2 =R) < o

where ||2(k)|I3 = E (||=(k)]%).

For any set {Hy, ..., H } of matrices (vectors) with the same dimensons, we write
T T
conwv{Hy,....,H} ={H;H=)> ayHy, ay >0,> oy =1}.
(=1 (=1

Findly we conclude this section with the following remark which will be useful in the sequdl.

Q

Remark 1:If R > 0thenW = {S’

;] >0ifandonlyif Q> SRS (see[2]).
3. Stability Results
Consider the following discrete-time MJLS on a probability space (€2, { Fy }, F, P),

z(k+1)=Agyz(k) (19
z(0)=zo , 6(0)= 0o (Lb)

where {0(k);k=0,1,...} isadiscretetime Markov chain with finite stete space {1,..., N} and
trangtion probability matrix P =[p;;], A = (A1,..., ANn) € H", and zp asecond order random
vaigbleinR"™. Forany V =(V,..., W) € H" weddineE(V) = (E1(V),...,En(V)) as

N
E(V)= leijvj € M[R"). ()
=

We make the following definitions:

Definition 1: Mode (1) is mean square stable (MSS) if E(||z(k)||%) — 0 ask — oo for any initial
condition zp and initid digtribution for 6.

Remark 2 : It can be shown that stability of each mode is neither necessary nor sufficient for MSS.
Moreover if (1) isMSSthen ||z(k)|| — 0 ask — oo with prob. 1.



We present now the definition of mean square stabilizability and detectability. Consider
A:(Al,...,AN) GH”,B:(Bl,...,BN)EHm’n andC = (Cl,...,CN) € H™P.

Definition 2 : We sy tha (A,B) is men square dabilizable if there exits K =
(K1,...,KN) € HMM such that modd (1) is MSS with A; = A4; + B;K;. Inthis case we say that
K dabilizes (A, B) in the mean square sense and st K = { K € H™""; K dabilizes (A, B) inthe
mean square sense}. Similaly, we say that (C,A) is mean square detectable if there exigts
H=(Hy,...,HN) € HP'™ such that modd (1) is MSS with Zli = A; + H;C;, and we say that H
dabilizes (C, A) in the mean square sense.

The following auxiliary results will be required in the sequel. For the proofs, see [5],[6].
Proposition 1: Modd (1) isMSSif and only if wecanfind P= (Py,..., Py) > 0 such that

P —A&(P)A; >0 ,i=1,...,N. (3)

Proposition 2 Suppose (C,A) is mean square detectable. If there exits P = (Pp,..., Py) >0
and K = (Kq,...,Ky)e H™""™ suchthatforeechi =1,..., N,

P —(Ai + BiK) &(P)(A; + BiK;) > 55 (C/C; + K/D|D;K;) (4)

forsomes > 0, then K = (Kq,...,Ky) € K.

4. Constrained Quadratic Control Problem
Consider now the following system G in (2, { F. }, F,P),

[ z(k+1) = Agpyz(k) + Byyu(k) (59
|

G=-| (0 =xp,0(0)=0 (5.b)
|
| 2(k)=Cyryz (k) + Dy(yu(k) (5.0
|

where 0y € {1,...,N}, x( isasecond order random variable belonging to conv{zg 1,..., 7o s}
with probability 1, A=(Ay,...,Ay) € H", B=(Byq,...,By)e H™", C = (Cy,...,Cy)
€ H"P, D=(Dy,...,Dy)e H™P with C/D; =0 for eech i =1,...,N. The transition
probability of the Markov chain IP is not exactly known, but belongs to conv{Py, ...,P}, where
Pg:[pijj],ﬂ:l,...,li.

For K = (K1,...,Ky) € Kst

T(E)i= |2l = 52 B (w8 Gy Coagr (k) + (K Dl Doy ()



with z=(2(0),...) given by (5.c) whenu (k)= — Ky, (k). Wewant to find the smallest 6 > 0
such thet

J(K)<é
subject to the redtrictions
|E,x (k) +Gou(k)|| < p, with probability 1, for k=0,1,..., . =1,...,t. (6)

The motivation for redrictions in (6) is that many systems are subject to inequdities condrains on
manipulated and controlled variables. For ingtance, in industrid processes, redtrictions on control
vaves and process variables are quite often. In section 5 we present some examples to illusirate the
use of these congtrains.

We shdl find an upper bound for the problem posed above in terms of a convex programming
formulation. For this, set T'; o =[ph21...pY2 Ile MRY",R") for i=1,...,N and ¢ =

iN,
1,...,k, and define the following problem:

Problem | :find6 > 0,Q = (Q1,...,QnN) >0, Y = (Y1,...,Yy) suchthat

min
subject to,
1 m6
Y1 >0,forv=1,...,s,i=1,...,N, (7)
Zo,v Qz
Q; (QiA, +Y/B)Tip Q;C] YD
Il (4iQi + BY)) diag{Qe} 0 0 > 0 ®
C;Q; 0 ol 0
D;Y; 0 0 61
fori=1,....N,{ =1,...,k,
Qi QiA; +Y/B] >0 ©
A;Q; + BY; Qj
fori=1,...,Nandjsuchthat p;; o > 0forsomel =1,...,x, and
pl— (EQF, TGYE + EYG) GYil 10)
YiGL Qi

fori=1,...,N,.=1,...,¢,
where diag{Q¢} is the matrix in M(IRN”) formed by Q,...,Q N in the diagond, and zero
elsawhere.

The link between Problem | and the control problem established by equations (5), (6), and quadratic
cost J(K) isgiven by Theorem 1 below.



Theorem 1 : Suppose (C,A) is mean square detectable and there is a solution (6,Q,Y") for
Problem I. Define K; = Y;Q}l, j=1,...,N, K= (Ky,...,Ky),andu(k)=Kpy)z(k) asin

(5) above. Then K € K, (6) isdtisfied, and
J(K) <6é.

Proof: Firg of dl notice that (8) is equivaent to (see Remark 1)
N 1
Qi > (QA], + Y;/B;)(Zpij,ﬁQ}l) (4;Q; + B)Y;) + E(Qz‘C{CzQﬂr Y/D'DY;) (11)
j=1

for i=1,...,N, £=1,...,5. Set B = Q}, i=1,...,N, P=(Py,...,Py). Snce P =
K K
> aylPp for someay >0, Y ayp =1, we get that

=1 =1
K N
&(P) = Zaé( ZI%@PJ)
==
and thus from (11),
1
P, >(A; + BK;) &(P)(A; + BK;) + E(Ci/ci + K, D,D;K;). (12)

The assumption that (C, A) is mean square detectable and Proposition 2 imply that K dabilizes
(A,B) (see(4)). Recdling that, with probability 1, o € conv{zq1, ..., o}, We get from (7) that

S S
forwe Q, zp(w)=> avrgy, aw>0,> =1, p(w)=

=1 =1

/

1 T,y
[«To(w) Q. ] Z“”[ Qi]ZO

=1

and from Remark 1,1 > ) ( w)Qe_Ol( )% (w), that is, with probability 1,

zpy Py, o <1. (13)
Pre and pos multiplying equation (12) by = (k)" and (k) respectively, and recaling that
x(k +1)=(Ag) + Bor) Ko ) (k),
we get that
(k) Py (k) > (kY (Agqry + Bag) Kor)) oy (P)(Agi) + Bor) Koy )x (k) +
(k) (Cyiy Coky + K'p(ry Dary Dok Koy )z (k)
2(k + 1) &y (Pz(k + 1) +

(k) (C/(k) Co(r) + Kg(k) (k)De(k)Ka(k))ﬂf(k)- (14)

Q'3||—‘ || Qﬁll—‘l\/

Note that = (k + 1) is Fj-measurable, and thus



BE(x(k + 1) Pyrnyz(k + 1) | Fi) =2 (k+1) Ey (P (k + 1)
so that (14) leadsto
1
z(k) Pygyx(k) > E(x(k+ 1) Py r(k + 1) | Fr) + sk ) (Cyry oy +
Koy Doy Doy Kory )2 (k).

Taking the expected vaue from both sides, we get from (14) that
2 1
| Pz 2 )| =B (k) Py (k) 2 e (k+1f Py + 1) + 5 126113
2 1
= | PA2, 12t + D[, + 52013 (15)

Summing up (15) from k=0 to oo, and recdling that K € K so that, from MSS of (5),

HP;{%)Z‘(I{?)HE — 0 ask — oo, weobtain that

—quz—Zn W3 < 8| P2 2(0) [ = (et Py ) <,

where the last inequdity follows from (13). From (9) it follows that (see Remark 1)
Qi > Qi(A; + BiKz')/Q;l(Az' + B K;)Q;
and thus
Q7' =(Ai+ BIK:)Y Q7 (A + BiK;)

fordl i,j=1,...,IV, such that p;; ¢ >0 for some £ € {1,...,x} (that is, the above equation
holds for dl j that can be reached from 7 in one step for some trangition probakility IP,). Pre and pos
multiplying the above equation by (k)" and x (k) respectively, we obtain that

(k) Qg (k) > o (k+1]Qp ek +1)
and from equation (13), we get that with probability 1,
1> af Poyzo 2o (k) Py (k) 2@ (k+1f Py (e + 1) (16)
fordl k=0,1,... . From Remark 1, we have that (10) is equivalent to
P2l — (EQiF, + GY;F, + FY/G) — GYiQY/G, >0,i=1,....,N, 1 =1,...,t

which is equivaent to

1

1 J1
pLI>(FQ2 + GLYQ NEQ +GYQ) i=1,...,N,t=1,....t



and thus

2

L -1
FLQZQ—'_GL}/ZQZQ ,izl,...,N,Lzl,...,t. (17)

P> ‘
From (16) and (17) we get that with probability 1,
2
|Fu (k) + Gou)|? = || (B + Gy Qg 2(R) | =

2
<

2 2

1 1 1

1 Lol 1 1
H(FLQg(k) + GLY@(’C)QG?/C))QG?JC)"E(]‘C) FLQg(k) + GLYQ(]C)QH?k)

< p (k) Qg (k) =pla(k) Pypyz (k) <pf

1

Qi (k)

foayk=0,1,...,and.=1,...,t, completing the proof of the Theorem. O

Remark 3: For the particular case with only one mode of operation (N=1), equetion (9) isaways
satisfied from equation (8) and thus could be removed. Indeed in this case equation (12) with
E1(P)=P leads to P, >(A; + B1K1)' B (A1 + By K1) which is equivdent to (9) from
Remark 1. For V > 1 however we cannot guarantee that equation (8) will imply equation (9) and we
need to keep it as aredrictions for our LMI optimization problem.

We have assumed in Theorem 1 that (C',A) is mean square detectable. Since P is not
exactly known, we need a condition to check this, which is provided below. Define the convex set

7. R; N
V={|:RZ/ V_Z:|ZO, Z;>0, P,>0,i=1,...,N, such that ZZ-EZpZ'j’ng,gz
i Vi j=1

1,...,ki=1,...,Nand A} Z; Ai+ C/R, A+ A'R;C;+ C]V;C;- P; <0,i=1,...,N}.

Proposition 3: Supposethat V # (). Then (C, A) is mean square detectable.

R;

Proof: Let | 2

]20, P,>0, i=1,...,N, bdong to V. Then from Remak 1,

K K K N
Vi > RZR;. For some oy >0, Y ap =1, P = Y a/Py, and thus Z; > Zaﬁ(ZPiMPJ) =
/=1 /=1 =1 ]:1
E(P)>0,i=1,...,N. Therefore
(Ai +(ZR)C) E(P)(A; +(Z*R)C)) — P, <
(A; +(Z'R)Cy) Z (A +(Z'R)Cy) — Py =
A Z; A+ CIR,Ai+ AJR;Ci+ CIR|Z'R;Ci— Py <
ALZ A+ CR A+ ALR, G+ ClV;Ci— Pi< 0
foo ¢=1,...,N. From Propostion 1 and equaion (3), we conclude that
H=(Z;'Ry,..., Z;}Ry) davilizes (C, A) in the mean square sense. O



5. Numerical Examples
In this section we present two examples, based on [1] and [23], to show the usefulness of the

developed reaults. In both examples we have that the linear systems represent linearization of non-

linear plants, and thus the state and control variables are variations around operating points. For

further details, the reader isrefereed to [1] and [23].

Example 1. The fird example consgders a MJLS with three operation modes describing an
economic system, adapted from [1], which relates government expenditure (the control variable w)
and nationd income (the date varidble x). See [1] and references therein for more detalls. The
operation modes account for the general economic Stuation ("normd”, "boom” or "dump"), which is
assumed as non-determinigtic, changing from one mode to another according to a Markov chain

(k). The parameters for this system are presented in Table 1.

operation modes
parameters i =1 (normd) i = 2 (boom) i =3 (dump)
A [ 0 1} [ 0 1} {0 1 ]
L —2.9 3.2 —4.3 4.5 5.3 —95.2
. d i d
¢ 1 1 1
|'1.5477 —1.0976'| [3.1212 —0.5082-| |'1.8385 —1.2728"
C; —1.0976  1.9145 —0.5082  2.7824 —1.2728  1.6971
L o o ||l o o ||l o 0 |
| b o] o]
" | Lotzs | Lorod | Losio

Table 1. Parameters for Example 1.

The nomind trangition probability matrix that relates the three operation modesis given by

IP)nom =

Three design cases are considered:

a) Uncondrained (that is, no limits on the government expenditure) quadratic control without
uncertainties. For this case, the trangtion probability matrix is assumed to be exactly known, and such

b) Condrained quadratic control without uncertainties. For this case we assume that the
government expenditure isbounded as ||u|| < 1. Ason thefirst case, P = Ppom.
¢) Congtrained quadratic control with uncertainties. As on the second casg, ||u|| < 1. The

[
l

0.67 0.17 0.16-|
0.30 047 0.23 .
0.26 0.10 0.64J

trangtion probability matrix is not exactly known, but is such that

{[0.55 0.23 0.22] [0.79 0.11 0.10
Peconvd | 036 035 0.29],]0.27 0.53 0.20
[0.32 0.16 0.52J L

0.23 0.07 0.70

Iy




For dl three cases the initid condition xy = [1 } is assumed to be exactly known. The designed

controllers, dong with the value of ¢ are presented in Table 2. Montecarlo smulations (using Py,om)
of the closed-loop system were performed for a total of 1000 possible redizations of the Markov
chain. Figure 1 presents the mean vaue of the state (only the second component of the state vector)
for the smulated redizations. Note that adthough case (b) has a smdler cogt than case (c), the
differences on the expected Sate vaue are dmost negligible, to the extent of not being discernible in
the figure. As would be expected, performance of the uncondtrained case is better than the
congtrained ones. The mean system input is represented as a solid line on the plots of Figure 2. The
dashed line on the graphics is an envelope of the obtained inputs for dl smulations, reflecting thus
eventual worst cases. As can be seen from the figure, dthough the expected input sequence does not
violate the redtrictions, an unfavorable evolution of the Markov chain might take the input well out the
range of admissible vaues (i. e ||u(k)|| < 1), which does not happen in cases (b) and (c). Case (¢)
has dso the advantage of guaranteeing mean square stability and non violation of the redtrictions for
any trangtion probability matrix in the convex set considered.

case o controller restrictions uncertainties
F| =[23172 —2.3317]
Fy =[4.1684 —3.7131]
F3 =] —5.1657 5.7933]
F) =[2.3107 —2.0425]
() | 114.86 | F =[3.4189 —2.6547] | |ju(k)|| < 1
Fy =] —4.5374 5.3507]
Fp =[2.3039 —2.0359]
(©) | 130.27 | F» =[3.3753 —2.6051] | |ju(k)|| <1 | P not exactly known
F3 =] —4.5418 5.3554]

Table 2: Controllersfor Example 1.

@ | 23.95

1 T T T T T T T
0.5} i
case (a) cases (b) and (c)
0 1 1 1 1 e __
0 10 20 30 40 50 60 70 80

Figure 1: State for example 1.

As seenin figure 1, the performance of the controllers for cases b) and c) were deteriorated
by the congrains on the control variable w. This is due to the fact that the violation of the control



congrain ismore likely to happen when the Sate variables are further away from the origin (see figure
2), and we have used a fixed conservative controller from beginning to end, no matter how close to
the origin the sysem was getting to. A possble way of improving it would be to solve the LMI
optimization problem for different initia conditions closer to the origin, and switch from one controller
to another as the system gets closer and closer to it. By doing this we would get less conservative
controllers, and the performance should be improved.

0 10 20 30 40 50 60 70 80

Figure 2: Input for example 1.

Example 2. This example, taken from [23], considers the dynamics of the steam boiler of a solar-
powered centra receiver. In this case the state variable represents the steam temperature and the
manipulated varigble the inlet flow, controlled by a vave. In this plant, movable mirrors reflect and
focus sunlight on a boiler. The atmospheric conditions (clear or obstructed sky) play an important
role in sysem dynamics, and are essentidly unpredictable. [23] suggests a two-operation-mode
Markovian mode for the steam temperature regulation system of the plant, as presented in Table 3,
with nomind trangtion probability metrix given by

P _10.9767 0.0233
oM 10,0435 0.9565 |

10



operation modes
parameters | ¢ = 1 (clear ky) | ¢ = 2 (dense cloud)

A; 0.8353 0.9646
B; 0.0915 0.0982

[0.1884 ] [0.1884 ]
Ci 0 | 0

[ TT 1 IT

Table 3: Parameters for Example 2.

As before, three cases are considered.

a) Uncondrained (thet is, no congrains on the vave postion) quadratic control without
uncertainties, with P = Py, o, .

b) Condraned (tha is, limitaions on the vave postion) quadraic control without
uncertainties, with ||u|| <0.015 and P = Ppom.

¢) Congrained quadratic control with uncertainties, with ||u|| <0.015 and

rewn{[t 15 1)

In dl cases the initid condition xg = 1is assumed to be exactly known The obtained ¢'s and
controllers are presented in Table 4.

case ) controller redrictions uncertainties
@ | 03603 Fp =[ —0.0103]

' F,=1-0.0331]
0) | 04220 | L1 =L[700120] lu(k)|| <0.015

Fo=[—0.0150]
Fi=[-5.33x107%]

C 0.4935 k 0.015 | P not exactly known
© B [ 00150 | < y

Table 2: Controllers for Example 1.

200 possible redizations (usng Py,m) for the Markov chain were considered for the smulaions
presented in Figures 3 and 4. The figures are amilar to those of Example 1. As before, it should be
noted that in the unconstrained case, unfavorable redizations of the Markov chain could cause the
gystem to violate the redtrictions, which does not happen in cases (b) and (c). Case (c) of this
example dso shows the viability of conddering uncertainties in matrix P. Even for a very large
uncertainty there is no significant loss of performance when compared with case (b). Thisis atypica
gpplication for a congrained controller, with the input given by a control valve postion.

11



0.5

cases (a), (b) and (c)

0 20 40

Figure 3: State for Example 2.
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0.03 T T T T
0.02

0.01

___________

O Il Py
60 80 100
003 T T T T
0.02} -
0.01f e -
b T ——
0 20 40 60 80 100

Figure 4: Input for Example 2.

6. Conclusions

In this paper we have considered the quadratic control problem of discrete-time MJLS with
condrains on the norm of the state and control variables, and uncertainties on the trangtion
probability matrix IP. Theinitid sate isassumed to be in an gppropriate convex set with probability 1.
Both the gtate variable and the jump variable are assumed to be available to the controller. Tracing a
pardld with the current literature for discretetime determinigtic lineer systems we derived a
formulation for the problem in terms of a convex optimization involving LMI. The solution of this
problem leads to a sate feedback mean square stabilizing controller that satisfies the congtrains and
makes the quadratic cost less than a value 6, whatever the initid vaue and trangtion probability

13



meatrix insgde the appropriate convex sets are. Finally numerical examples were presented to show the
usefulness of the proposed technique.
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