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1. Introduction
Markovian jump linear systems (MJLS) comprise an important class of stochastic time-

variant linear systems that have been in great evidence over the last years. This family of systems can
model several problems where the structure of the plant is subject to random abrupt changes due to,
for instance, failures or repairs, sudden environment changes, modification of the operating point of a
non-linear system, etc. This large number of applications lead to a great interest on this field and
several results, regarding applications, stability conditions and optimal control problems, can be found
in the current literature (see, for instance, [1],[3]-[9],[11]-[14],[17]-[23]).

Convex programming applied to control problems have been extensively studied in the last
years (see, for instance, [2],[4],[10],[15],[16],[22]). Due to the large number of fast and reliable
computational techniques available for convex programming nowadays, this approach has showed to
be an important tool to derive numerical algorithms for control problems. In particular algorithms
using convex programming for obtaining constrained quadratic control of uncertain systems, H -2
guaranteed cost control for uncertain systems, H -control problems, and mixed H /H -control_ _2
problems have been recently presented in the literature (cf. [2],[10],[15],[16]).

In this paper we study the constrained quadratic control problem of a discrete-time MJLS.
Quadratic control problem for MJLS has been studied in the current literature (e.g. see [1],[3]-
[5],[7],[8],[11]-[14],[18]-[21]) usually under the assumption that no constrains are imposed on the
state and control variables. The transition probability matrix is also usually assumed to be known. In
[22] the authors considers the case in which the transition matrix of the Markov chain of a
continuous-time MJLS belongs to a convex set, and study the robust (with respect to the
uncertainties on the transition matrix) state feedback stabilization problem of the system. We trace a
parallel with the results presented in [4], [15] and [22] to derive an algorithm, written in terms of an
LMI (linear matrix inequalities) optimization problem, that is capable of handling the quadratic control
problem with restrictions on the state and control  variables for MJLS, as well as uncertainties on the
transition probability matrix . The initial state value is not assumed to be exactly known, only�
supposed to be in a convex set with probability one. To our knowledge, there is no other analytical
or numerical way of handling this kind of problem in the literature.

The paper is organized in the following way. Section 2 presents the notation that will be used
throughout the work. Section 3 deals with the appropriate notions of stability and stabilizability for
MJLS, as well as some auxiliary results. In section 4 we show that the problem of constrained
quadratic control for MJLS, when the initial state and transition probability matrix  belong to�
appropriate convex sets, can be stated in terms of an LMI optimization problem, so that convex
programming can be used for obtaining an approximation of the optimal solution. Section 5 presents
some numerical examples to illustrate the developed results. The paper is concluded in section 6 with
some final comments.

 2. Notation
We denote by  the -dimensional real space, and set ,  the normed linear‘ Œ ‘ ‘8 8 78 Ð Ñ

space of all  by  real matrices. Whenever  we write   for7 8 7œ 8 Ð ß Ñ œ Ð ÑŒ ‘ ‘ Œ ‘8 8 8

simplicity. The superscript  will indicate transpose.  and  will be used if a self-adjointw P   ! P � !
matrix is positive semi-definite or positive definite respectively and we write
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Œ ‘ Œ ‘ Œ ‘Ð Ñ œÖP− Ð Ñà P œ P  !× Þ Ð Ñ8 8 w 8+  . We denote by  either the induced norm in  orl l
the standard norm in .‘8

We define  the linear space made up of all -sequence of matrices[7ß8 R
Z œÐZ ßá ß Z Z − Ð ß Ñ 3 œ " ßáßR œ œÖZ" R 3

7 8 8ß8 8 8), , . We set  and  =Œ ‘ ‘ [ [ [ +

ÐZ ßá ß Z − à Z − Ð Ñ ß 3 œ " ßá ß LœÐL ßá ßL Ñ Z" R 3 " R
8 8)  N}. For  and  =[ Œ ‘ +

ÐZ ßá ß Z L Ÿ P ÐL�PÑ L Ÿ P ÐL � P Ñ" R 3 3 3 3
8) in  the notation   indicates that   for each[ +

3 œ " ßáßR.

We define   as the Hilbert space formed by the sequence of second order randomj
#
8

variables  with  for each  and such thatDœÐDÐ!ÑßDÐ"ÑßáÑ DÐ5Ñ− 5 œ !ß"ßá‘8

l l l l!D ³ DÐ5Ñ � _2 2
k=0

# #
_

   ,

where .l l l lDÐ5Ñ ³IÐ DÐ5Ñ Ñ2
# #

For any set  of matrices (vectors) with the same dimensions, we writeÖL ß á ß L ×" <

convÖL" j j j j<
jœ" jœ"

< <
ß á ß L × ³ ÖLàLœ L ß   ! œ"×   ,  .! !! ! !

Finally we conclude this section with the following remark which will be useful in the sequel.

Remark 1 : If  then  if and only if  (see [2]).V � ! [ œ   ! U WV W
U W

W V” •w
�" w

3. Stability Results
Consider the following discrete-time MJLS on a probability space ,Ð ß Ö ×ß ßTÑH Y Y5

BÐ5 � " ÑœE BÐ5Ñ
~

 (1.a))Ð5Ñ

BÐ!ÑœB ß Ð!Ñœ0 0     (1.b)) )

where } is a discrete-time Markov chain with finite state space 1  andÖ Ð5Ñà5œ!ß"ßá Ö ßáßR×)

transition probability matrix ,  = ( ) , and  a second order random
~ ~ ~

� [œÒ: Ó E E ßá ßE − B34 " !
8

N
variable in . For any )  we define  as‘ [ X X X8 8

" " RZ œÐZ ßá ß Z − Ð Z Ñœ Ð ÐZÑ ßáß ÐZÑÑN

X Œ ‘3 34 4
4œ"

R
8Ð Z Ñ³ : Z − Ð Ñ! . (2)

We make the following definitions:

Definition 1 : Model (1) is mean square stable (MSS) if  as  for any initialIÐ BÐ5Ñ Ñ Ä ! 5 Ä_l l2

condition  and initial distribution for .B! !)

Remark 2 : It can be shown that stability of each model is neither necessary nor sufficient for MSS.
Moreover if (1) is MSS then  as  with prob. .l lBÐ5Ñ Ä ! 5 Ä _ "
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We present now the definition of mean square stabilizability and detectability. Consider
EœÐE ßá ßE Ñ − FœÐF ßá ßF − G œ ÐG ßá ßG Ñ −" R " R " R

8 7ß8 8ß:[ [ [, )  and .

Definition 2 : We say that  is mean square stabilizable if there exists  =ÐEßFÑ O

( )  such that model (1) is MSS with  + . In this case we say that
~

O ßá ßO − E œE F O" 3 3 3 3N
n,m[

O ÐEßFÑ œÖO− àO ÐEßFÑ stabilizes  in the mean square sense and set  stabilizes  in theŠ [8ß7

mean square sense . Similarly, we say that  is mean square detectable if there exists× ÐGßEÑ

LœÐL ßá ßL − E œE � L G L" 3 3 3 3
:ß8

N)  such that model (1) is MSS with , and we say that 
~

[
stabilizes  in the mean square sense.ÐGßEÑ

The following auxiliary results will be required in the sequel. For the proofs, see [5],[6].
Proposition 1: Model (1) is MSS if and only if  we can find  =  such thatT ÐT ßá ß T Ñ � !" R

T � E ÐTÑE � ! 3 œ " ßáßR3 3 33
w~ ~

  , . (3)X

Proposition 2: Suppose  is mean square detectable. If there exits  ÐGßEÑ T œ ÐT ßá ß T Ñ   !" R

and )  such that for each ,O œ ÐO ßá ßO − 3 œ " ßáßR" R
8ß7[

     (4)T �ÐE � F O Ñ ÐTÑÐE � F O Ñ   ÐG G � O H H O Ñ3 3 3 3 3 3 3 3 3 3 3
w w w w

3 3 3X 1
$#

for some , then .$ Š� ! O œ ÐO ßá ßO Ñ −" R

4. Constrained Quadratic Control Problem
Consider now the following system  in , ,Z H Y YÐ ß Ö ×ß TÑ5

 |   =   (5.a)- BÐ5 � "Ñ E BÐ5Ñ � F ?Ð5Ñ) )Ð5Ñ Ð5Ñ

 |
  =  - | 0 , (5.b)Z ) )BÐ Ñ œ B Ð!Ñœ! !

 |
 | (5.c)DÐ5ÑœG BÐ5Ñ�H ?Ð5Ñ) )Ð5Ñ Ð5Ñ

 |-

where ,  is a second order random variable belonging to )! ! !ß" !ß=− Ö"ßáßR× B ßá ß B ×convÖB
with probability 1, , ) , EœÐE ßá ßE Ñ − FœÐF ßá ßF − G œ ÐG ßá ßG Ñ" R " R " R

8 7ß8[ [
− HœÐH ßá ßH Ñ − G H œ ! 3 œ " ßáßR[ [8ß: 7ß: w

" R 33,    with  for each . The transition
probability of the Markov chain  is not exactly known, but belongs to , where� � �convÖ " ßá ß ×,
� ,j 34ßj = [ ], .: jœ " ßá ß

For  setO œ ÐO ßá ßO Ñ −" R Š

NÐOÑ³ D œ I BÐ5Ñ G G BÐ5Ñ�?Ð5ÑH H ?Ð5Ñl l Š ‹!
2

5œ!

_
w w w w

Ð5Ñ Ð5ÑÐ5Ñ Ð5Ñ) )) )
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with  given by (5.c) when . We want to find the smallest DœÐDÐ!ÑßáÑ ?Ð5Ñœ � O BÐ5Ñ � !)Ð5Ñ $

such that

NÐOÑŸ$

subject to the restrictions

l lJ BÐ5Ñ�K ?Ð5Ñ Ÿ " 5 œ !ß"ßáß œ" ßáß >+ + +  with probability , for  . (6)3 +

The motivation for restrictions in (6) is that many systems are subject to inequalities constrains on
manipulated and controlled variables. For instance, in industrial processes, restrictions on control
valves and process variables are quite often. In section 5 we present some examples to illustrate the
use of these constrains.

We shall find an upper bound for the problem posed above in terms of a convex programming
formulation. For this, set (  for  and  => Œ ‘ ‘3ßj 3 ßj 3Rßj

R8 8œÒ: Má : MÓ− ß Ñ 3 œ " ßáßR j1
1/2 1/2

" ßáß,, and define the following problem:

Problem I : find ,   such that$ � ! U œ ÐU ßá ßU Ñ�! ß ] œ Ð] ßá ß ] Ñ" R " R

738 $
subject to,

– —" B

B U
 !ß œ" ßáß = 3 œ " ßáßR!ß

w

!ß 3

/

/
for , , (7)/

Ô ×Ö ÙÖ ÙÖ ÙÕ Ø

U ÐU E � ] F Ñ U G ] H

ÐE U � F ] Ñ .3+1ÖU × ! !

G U ! M !
H ] ! ! M

  !

3 3 3ßj 33 3 3 3 3 3
w w w w w w

3ßj
w

3 3 3 3

3 3

3 3

 

(8)

>

>

$
$

%

for ,  ,3 œ " ßáßR j œ" ßá ß,

– —U U E � ] F

E U � F ] U
  !

3 3 3 3 3
w w w

3 3 3 3 4

 
   (9)

for  and  such that  for some  , and3 œ " ßáßR 4 : � ! j œ" ßá ß34ßj ,

– —3+ + + + ++ + +

+

# w w w w
3 3 33

3
w w

3

M � Ð J U J � K ] J � J ] K Ñ K ]

] K U
  !

 
, (10)

for , ,3 œ " ßáßR œ" ßáß >+

where  is the matrix in  formed by  in the diagonal, and zero.3+1ÖU × Ð Ñ U ßá ßU% Œ ‘R8
" R

elsewhere.

The link between Problem I and the control problem established by equations (5), (6), and quadratic
cost  is given by Theorem 1 below.NÐOÑ
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Theorem 1 : Suppose ,  is mean square detectable and there is a solution  forÐG EÑ Ð ßU ß] Ñ$

Problem I. Define  , , and  as inO œ ] U ß 4 œ " ßáßR O œ ÐO ßá ßO Ñ ?Ð5ÑœO BÐ5Ñ4 4 " R4
"

Ð5Ñ
-

)

(5) above. Then , (6) is satisfied, andO − Š
NÐOÑ Ÿ .$

Proof: First of all notice that (8) is equivalent to (see Remark 1)

U   ÐUE � ] F Ñ : U ÐE U � F ] Ñ � ÐU G G U � ] H H ] Ñ
"

3 3 34ßj 3 3 3 3 3 3 3 3 33 3 3 3 3 3
w w w w w w

4œ"

R

4Š ‹" -1
$

(11)

for , . Set  = , , . Since  =3 œ " ßáßR jœ" ßá ß T U 3 œ " ßáßR T œ ÐT ßá ß T Ñ, �3 " R3
-1

! !
j j

j j j j
=1 =1

, ,
! � ! ! for some 0,  = 1, we get that 

X !3 j 3 4 j
j

( ) =  pT T! !Š ‹
=1 j=1

N
, j

,

and thus from (11),

T  ÐE � F O Ñ ÐTÑÐE � F O Ñ � ÐG G � O H H O ÑÞ
"

3 3 3 3 3 3 3 3 3 3 3
w w w w

3 3 3  (12)X
$

The assumption that  is mean square detectable and Proposition 2 imply that  stabilizesÐGßEÑ O
ÐEßFÑ B − -98@ÖB ßá ß B × (see (4)). Recalling that, with probability 1, , we get from (7) that! ß" ß=0 0

for , , = H = ! ! ! ) =− B Ð Ñ œ B ß   ! œ"ß Ð Ñœ3 ß! ß !
œ" œ"

= =! !
/ /

/ / //0

– — – —"" B Ð Ñ

B Ð Ñ U
œ   !

" B

B U
!
w

! Ð Ñ œ"

= w
!ß

!ß 3

=

=
!

) = /

/
/

/!

and from Remark 1,  , that is, with probability 1,"   B Ð ÑU B Ð Ñ!
w �"

Ð Ñ != =
) =!

B T B Ÿ"Þ!
w

!)! (13)

Pre and pos multiplying equation (12) by  and  respectively, and recalling thatBÐ5Ñ BÐ5Ñw

BÐ5 � "ÑœÐE � F O ÑBÐ5Ñ) ) )Ð5Ñ Ð5Ñ Ð5Ñ ,

we get that

BÐ5Ñ T BÐ5Ñ BÐ5ÑÐE � F O Ñ ÐTÑÐE � F O ÑBÐ5Ñ �

BÐ5Ñ ÐG G �O H H O ÑBÐ5Ñ

BÐ5 � "Ñ

w w w
Ð5Ñ Ð5Ñ Ð5Ñ Ð5Ñ Ð5Ñ Ð5Ñ Ð5Ñ Ð5Ñ

w w w w
Ð5Ñ Ð5Ñ Ð5ÑÐ5Ñ Ð5Ñ Ð5Ñ

w

) ) ) ) ) ) ) )

) ) )) ) )

X

$
X

 
1

= )

) ) )) ) )

Ð5Ñ

w w w w
Ð5Ñ Ð5Ñ Ð5ÑÐ5Ñ Ð5Ñ Ð5Ñ

ÐTÑBÐ5 � " Ñ�

BÐ5Ñ ÐG G �O H H O ÑBÐ5Ñ
1

. (14)
$

Note that  is -measurable, and thusBÐ5 � "Ñ Y5
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IÐBÐ5 � "Ñ T BÐ5 � "Ñ ± ÑœBÐ5�"Ñ T BÐ5 � "Ñw w
� 5 Ð5Ñ) )(k 1) Y X ( )

so that (14) leads to

BÐ5Ñ T BÐ5Ñ   IÐBÐ5 � "Ñ T BÐ5 � "Ñ ± Ñ � BÐ5Ñ ÐG G �

O H H O ÑBÐ5Ñ

w w w w
Ð5Ñ Ð5Ñ� 5 Ð5Ñ

Ð5Ñ Ð5Ñ
w w

Ð5Ñ Ð5Ñ

) )) )

) ) ) )

  
1

.

(k 1) Y
$

Taking the expected value from both sides, we get from (14) that

½ ½ l l
½ ½ l l

T BÐ5Ñ œIÐBÐ5Ñ T BÐ5ÑÑ IBÐ5�"ÑT BÐ5 � "Ñ � DÐ5Ñ
"

œ T BÐ5 � "Ñ � DÐ5Ñ Þ
"

) ) )

)

Ð5Ñ
w w

Ð5Ñ �

Ð5�"Ñ
#

1/2 2
2

2
(k 1) 2

1/2
2

2

2

( )

(15)

$

$

Summing up (15) from  to , and recalling that  so that, from MSS of (5),5 œ ! _ O − Š

½ ½T BÐ5Ñ Ä ! 5 Ä_
)Ð5Ñ
1/2

2

2
 as , we obtain that

NÐOÑœ D œ DÐ5Ñ Ÿ T BÐ!Ñ œ IÐB T B Ÿl l l l ½ ½"
2 2

1/2
2

2
# # w

5œ!

_

Ð!Ñ ! !$ $ $
) )! ) ,

where the last inequality follows from (13). From (9) it follows that (see Remark 1)

U   U ÐE � F O Ñ U ÐE � F O ÑU3 3 3 3 3 3 3 3 3
w �"

4

and thus

U  ÐE � F O Ñ U ÐE � F O Ñ3 4
�" w �"

3 3 3 3 3 3

for all such that  for some  (that is, the above equation3 ß 4œ" ßáßRß : � ! j − Ö"ßáß ×34ßj ,

holds for all  that can be reached from  in one step for some transition probability ). Pre and pos4 3 �j
multiplying the above equation by  and  respectively, we obtain thatBÐ5Ñ BÐ5Ñw

BÐ5Ñ U BÐ5Ñ BÐ5�"ÑU BÐ5 � "Ñw �" w �"
Ð5Ñ Ð5�"Ñ) )

and from equation (13), we get that with probability ,"

"   B T B  BÐ5ÑT BÐ5Ñ BÐ5�"ÑT BÐ5 � "Ñ!
w w w

! Ð5Ñ Ð5�"Ñ) ) )! (16)

for all  . From Remark 1, we have that (10) is equivalent to5 œ !ß"ßá

3 ++ + + + + ++ + +
2 -1M � Ð J U J � K ] J � J ] K Ñ � K ] U ] K  !ß 3 œ "ßáßRß œ" ßáß >3 3 3

w w w w w w
3 33   

which is equivalent to

3 ++ + + + +
2 - -
M   Ð JU � K ] U ÑÐJ U � K ] U Ñ ß 3 œ "ßáßRß œ" ßáß >

3 3 3 33 3
w

" " " "
# # # #  
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and thus

3 ++ + +
#

3 33  J U � K ] U ß 3 œ " ßáßR œ" ßáß >¾ ¾" "
# #-

2
 , . (17)

From (16) and (17) we get that with probability ,"

l l ½ ½
¾ ¾ ¾ ¾ ¾ ¾
J BÐ5Ñ�K ?Ð5Ñ œ ÐJ � K ] U ÑBÐ5Ñ œ

ÐJ U � K ] U ÑU BÐ5Ñ Ÿ J U � K ] U U BÐ5

+ + + + ) )

+ + + +) ) ) ) ) )) )

2 -1 2

- - - -
2 2

Ð5Ñ Ð5Ñ

Ð5Ñ Ð5Ñ Ð5Ñ Ð5Ñ Ð5Ñ Ð5ÑÐ5Ñ Ð5Ñ

" " " " " "
# # # # # # Ñ

Ÿ BÐ5Ñ U BÐ5Ñœ BÐ5Ñ T BÐ5ÑŸ

#

# w # w
Ð5Ñ Ð5Ñ3 3 3+ + ) +)

-1 2

for any  and  = , completing the proof of the Theorem.5 œ !ß"ßáß " ßáß >+ ¨

Remark 3 : For the particular case with only one mode of operation ( , equation (9) is alwaysRœ"Ñ
satisfied from equation (8) and thus could be removed. Indeed in this case equation (12) with
X" " " " " " " " " "

wÐTÑœT T  ÐE � F O Ñ T ÐE � F O Ñ leads to   which is equivalent to (9) from
Remark 1. For  however we cannot guarantee that equation (8) will imply equation (9) and weR � "
need to keep it as a restrictions for our LMI optimization problem.

We have assumed in Theorem 1 that ,  is mean square detectable. Since  is notÐG EÑ �
exactly known, we need a condition to check this, which is provided below. Define the convex set

i œ Ö   ! ^ � ! T � ! 3 œ " ßáßR ^   : T j
^ V

V Z” • !3 3

3
w 3 3 34j 4

3 4œ"

R
, , , , such that ,  =3 ,

" ßáß 3 œ " ßáßR E ^ E � G V E � E V G � G Z G T � 3 œ "ßáßR×,,  and  -  0, .3 3 3 3 3
w w w w w

3 3 3 3 3 3 3 3

Proposition 3: Suppose that . Then  is mean square detectable.i Á g ÐGßEÑ

Proof: Let 0, , , belong to . Then from Remark 1,” •^ V

V Z
  T � ! 3 œ " ßáßR

3 3

3
w 3

3
i

Z   V ^ V   œ " ^   : T œ3 3 j j j j j 3 4 j3
w

3
jœ j j 4œ

R
-1

1 =1 =1 1
, j. For some 0, ,  = , and thus  ! ! � ! � !! ! ! !Š ‹, , ,

3

X3( ) , . ThereforeT � ! 3 œ " ßáßR

ÐE �Ð^ V ÑG Ñ ÐTÑÐE �Ð^ V ÑG Ñ � T Ÿ

ÐE �Ð^ V ÑG Ñ ^ ÐE �Ð^ V ÑG Ñ � T

E ^ E � G V E � E V G � G V ^ V G � T Ÿ

E ^ E

3 3 3 3 3 3 3 33 3
w

3 3 3 3 3 3 3 33 3
w

3 3 3 3 3 3
w w w w w w

3 3 3 3 3 3 3 33

3
w

3

-1 -1

-1 -1

-1

X

 =

 

3 3 3 3 3 3 33 3 3 3
w w w w� G V E � E V G � G Z G � T � !

for . From Proposition 1 and equation (3), we conclude that3 œ " ßáßR

LœÐ^ V ßá ß^ V Ñ ÐGßEÑ1
- -1

1
"

R R  stabilizes  in the mean square sense. ¨
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5. Numerical Examples
 In this section we present two examples, based on [1] and [23], to show the usefulness of the
developed results. In both examples we have that the linear systems represent linearization of non-
linear plants, and thus the state and control variables are variations around operating points. For
further details, the reader is refereed to [1] and [23].

Example 1: The first example considers a MJLS with three operation modes describing an
economic system, adapted from [1], which relates government expenditure (the control variable )?
and national income (the state variable ). See [1] and references therein for more details. TheB
operation modes account for the general economic situation ("normal", "boom" or "slump"), which is
assumed as non-deterministic, changing from one mode to another according to a Markov chain
)Ð5Ñ. The parameters for this system are presented in Table 1.

operation modes
parameters (normal)  (boom)  (slump)3 œ " 3 œ # 3 œ $

E
! " ! " ! "

�#Þ& $Þ# �%Þ$ %Þ& &Þ$ �&Þ#

F
! ! !
" " "

G

"Þ&%(( �"Þ!*('
�"Þ

3

3

3

” • ” • ” •
” • ” • ” •

Ô ×
Õ Ø!*(' "Þ*"%& �!Þ&!)# #Þ()#% �"Þ#(#) "Þ'*("

! ! ! ! ! !

$Þ"#"# �!Þ&!)# "Þ)$)& �"Þ#(#)

H

! !
! !

"Þ'"#& "Þ!(*%

!
!

"Þ!&%!

Ô × Ô ×
Õ Ø Õ Ø

Ô × Ô × Ô ×
Õ Ø Õ Ø Õ Ø3

Table 1: Parameters for Example 1.

The nominal transition probability matrix that relates the three operation modes is given by

�897 œ Þ

!Þ'( !Þ"( !Þ"'
!Þ$! !Þ%( !Þ#$
!Þ#' !Þ"! !Þ'%

Ô ×
Õ Ø

Three design cases are considered:
 a) Unconstrained (that is, no limits on the government expenditure) quadratic control without
uncertainties. For this case, the transition probability matrix is assumed to be exactly known, and such
that � �œ Þ897

 b) Constrained quadratic control without uncertainties. For this case we assume that the
government expenditure is bounded as . As on the first case, l l? � " œ Þ� �897
 c) Constrained quadratic control with uncertainties. As on the second case, . Thel l? � "
transition probability matrix is not exactly known, but is such that

� − -98@ ß Þ

!Þ !Þ# !Þ !Þ( !Þ" !Þ"
!Þ$ !Þ !Þ# !Þ#( !Þ&$ !Þ#!
!Þ !Þ" !Þ& !Þ#$ !Þ!( !Þ(!

Ú Þ
Û ßÜ à
Ô × Ô ×
Õ Ø Õ Ø

55 3 22 9 1 0
6 35 9

32 6 2
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For all three cases the initial condition is assumed to be exactly known The designedB œ Þ
"
"! ” •

controllers, along with the value of  are presented in Table 2. Montecarlo simulations (using )$ �897
of the closed-loop system were performed for a total of 1000 possible realizations of the Markov
chain. Figure 1 presents the mean value of the state (only the second component of the state vector)
for the simulated realizations. Note that although case (b) has a smaller cost than case (c), the
differences on the expected state value are almost negligible, to the extent of not being discernible in
the figure. As would be expected, performance of the unconstrained case is better than the
constrained ones. The mean system input is represented as a solid line on the plots of Figure 2. The
dashed line on the graphics is an envelope of the obtained inputs for all simulations, reflecting thus
eventual worst cases. As can be seen from the figure, although the expected input sequence does not
violate the restrictions, an unfavorable evolution of the Markov chain might take the input well out the
range of admissible values (i. e. ), which does not happen in cases (b) and (c). Case (c)l l?Ð5Ñ � "
has also the advantage of guaranteeing mean square stability and non violation of the restrictions for
any transition probability matrix in the convex set considered.

case controller restrictions uncertainties

(a)

(b)

$

#$Þ*&

J œ #Þ$"(# �#Þ$$"(

J œ %Þ"')% �$Þ("$"

J œ �&Þ"'&( &Þ(*$$

""%Þ)'

J œ #Þ$"!( �#Þ!%#

"

#

$

"

c dc dc dc d&
J œ $Þ%")* �#Þ'&%(

J œ �%Þ&$(% &Þ$&!(

?Ð5Ñ � "

" Þ# ?Ð5Ñ � "

J œ #Þ$! �#Þ!$

J œ $Þ$ �#Þ'

J œ �%Þ& &Þ$&

#

$

"

#

$

c dc d l l
c dc dc d l l(c) 30 7  not exactl

39 59
753 051

418 54
� y known

Table 2: Controllers for Example 1.

0 10 20 30 40 50 60 70 80
0

0.5

1

case (a) cases (b)  and (c)

Figure 1: State for example 1.

As seen in figure 1, the performance of the controllers for cases b) and c) were deteriorated
by the constrains on the control variable . This is due to the fact that the violation of the control?
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constrain is more likely to happen when the state variables are further away from the origin (see figure
2), and we have used a fixed conservative controller from beginning to end, no matter how close to
the origin the system was getting to. A possible way of improving it would be to solve the LMI
optimization problem for different initial conditions closer to the origin, and switch from one controller
to another as the system gets closer and closer to it. By doing this we would get less conservative
controllers, and the performance should be improved.

0 10 20 30 40 50 60 70 80
-2

-1

0

1

2

Figure 2: Input for example 1.

Example 2:  This example, taken from [23], considers the dynamics of the steam boiler of a solar-
powered central receiver. In this case the state variable represents the steam temperature and the
manipulated variable the inlet flow, controlled by a valve. In this plant, movable mirrors reflect and
focus sunlight on a boiler. The atmospheric conditions (clear or obstructed sky) play an important
role in system dynamics, and are essentially unpredictable. [23] suggests a two-operation-mode
Markovian model for the steam temperature regulation system of the plant, as presented in Table 3,
with nominal transition probability matrix given by

�897 œ
!Þ*('( !Þ!#$$
!Þ!%$& !Þ*&'&” •.
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operation modes
parameters (clear sky)  (dense cloud)

Table 3: Param

3 œ " 3 œ #

E !Þ)$&$ !Þ*'%'

F !Þ!*"& !Þ!*)#

G
!Þ"))% !Þ"))%

! !

H
! !
" "

3

3

3

3

” • ” •
” • ” •

eters for Example .#

 As before, three cases are considered.
 a) Unconstrained (that is, no constrains on the valve position) quadratic control without
uncertainties, with � �œ Þ897

 b) Constrained (that is, limitations on the valve position) quadratic control without
uncertainties, with  and l l? �!Þ!"& œ Þ� �897
 c) Constrained quadratic control with uncertainties, with  andl l? �!Þ!"&

� − -98@ ß Þ
! " " !
" ! ! "œ �” • ” •

In all cases the initial condition is assumed to be exactly known The obtained ´s andB œ " Þ! $
controllers are presented in Table 4.

case controller restrictions uncertainties

(a)

(b)

(c)

$

!Þ$'!$
J œ �!Þ!"!$

J œ �!Þ!$$"

!Þ%##! ?Ð5Ñ �!Þ!"&
J œ �!Þ!"#&

J œ �!Þ!"&!

!Þ%*$&
J

"

"

c dc dc dc d l l
2

2

"
�%œ �&Þ$$‚"!

J œ �!Þ!"&!
?Ð5Ñ �!Þ!"&

� ‘
c d l l

2
� not exactly known

Table 2: Controllers for Example 1.

200 possible realizations (using ) for the Markov chain were considered for the simulations�897
presented in Figures 3 and 4. The figures are similar to those of Example 1. As before, it should be
noted that in the unconstrained case, unfavorable realizations of the Markov chain could cause the
system to violate the restrictions, which does not happen in cases (b) and (c). Case (c) of this
example also shows the viability of considering uncertainties in matrix . Even for a very large�
uncertainty there is no significant loss of performance when compared with case (b). This is a typical
application for a constrained controller, with the input given by a control valve position.



12

0 20 40 60 80 100
0

0.5

1

cases (a) ,  (b)  and (c)

Figure 3: State for Example 2.
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0 20 40 60 80 100
0

0.01

0.02

0.03

0 20 40 60 80 100
0

0.01

0.02

0.03

Figure 4: Input for Example 2.

6. Conclusions
In this paper we have considered the quadratic control problem of discrete-time MJLS with

constrains on the norm of the state and control variables, and uncertainties on the transition
probability matrix . The initial state is assumed to be in an appropriate convex set with probability 1.�
Both the state variable and the jump variable are assumed to be available to the controller. Tracing a
parallel with the current literature for discrete-time deterministic linear systems we derived a
formulation for the problem in terms of a convex optimization involving LMI. The solution of this
problem leads to a state feedback mean square stabilizing controller that satisfies the constrains and
makes the quadratic cost less than a value , whatever the initial value and transition probability$
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matrix inside the appropriate convex sets are. Finally numerical examples were presented to show the
usefulness of the proposed technique.
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