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Abstract : In this paper we consider the mixed H,/H.-control problem for the class of discrete-time
linear systems with parameters subject to Markovian jumps (MJLYS). It is assumed that both the state
variable and the jump variable are available to the controller. The transition probability matrix may not
be exactly known, but belongs to an appropriate convex set. For this controlled discrete-time Markovian
jump linear system, the problem of interest can be stated in the following way. Find a robust (with
respect to the uncertainty on the transition Markov probability matrix) mean square stabilizing state and
jump feedback controller that minimizes an upper bound for the Hy-norm, under the restriction that the
Hoo-norm is less than a pre-specified value 6. The problem of the determination of the smallest Hoo-
norm is also addressed. We present an approximate version of these problems via LMI optimization.
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1. Introduction

A great ded of attention has been given nowadays to a class of stochagtic linear systems
subject to abrupt variations, namely, Markovian jump linear systems (MJLS). This family of system is
modeled by a set of linear systems, with the transitions between the models determined by a Markov
chain taking vaues in afinite set. Due to a large number of applications in control engineering, severa
results on this field can be found in the current literature, regarding applications, stability conditions and
optima control problems (see, for instance, [1]-[11],[13]-[18],[21]-[28]).

The mixed Hy/Hy and Hyo control problems for time-invariant discrete-time linear systems
has been studied in the current literature usually using a state space approach, leading to non-standard
algebraic Riccati equations and Lyapunov-like equations (see, for instance, [12], [19], [20]). The Hy
and Hy, control problems for MJLS have recently been analyzed in [5], [6], and [11]. For the H,
control problem, a convex programming approach was applied in [5] and numericad agorithms
developed. In this paper we study the mixed H,/H-control and Hy, control problems of a discrete-
time MJLS. We will assume that the transition probability matrix for the Markov chain is not exactly
known, but belongs to an appropriate convex set. In this case a robust mean square (state and jump
feedback) stabilizing controller is defined as a state-feedback controller, which aso depends on the
jump Markov variable, that stabilizes in the mean square sense the MJL S for every appropriate Markov
transition probability matrix. This kind of concept was first introduced by Rami and El Ghaoui in [27] for
continuous-time MJLS. Under these conditions, the mixed Hy/H, control problem of a MJLS can be
formulated as follows: we are interested in finding a robust mean sgquare stabilizing controller that
minimizes an upper bound for the Hy-norm, under the restriction that the Hyo-norm is less than a pre-
specified vaue 6. The problem of minimizing the Hoo-norm is also addressed. We trace a paralel with
the discrete-time linear system theory of Hy/H~ and Hoo control to derive our results. When restricted
to the case with no jumps, the egquations presented here can be seen as dual to the ones derived in [12].
Asin [12], we present an approximate version of the mixed Ho/H~, and Hso control problems of MJLS
based on linear matrix inequaities (LMI) optimization.

The paper is organized in the following way. Section 2 presents the notation that will be used
throughout the work. Section 3 dedls with previous results derived for stability, Hy and Ho-control of
MJLS, as well as some other auxiliary results. Section 4 presents a sufficient condition for the existence
of a mean square stabilizing controller that makes the H,-norm of the MJLS less than a pre-specified
value 6. The condition is written in terms of the existence of a solution P = (Py,...,Py) and K =
(Kq,...Kp) for aset of coupled Lyapunov-like equations. This solution P leads to an upper bound for
the Hy-norm of the MJLS, so that an approximation for the mixed Hy/Hoo-control problem for the
MJLS can be determined by minimizing this functiona over the set of solutions P and K. The Hyo-
control problem can aso be addressed through this Lyapunov-like equation. In section 5 we consider
the case in which the trangition probability matrix belongs to an appropriate convex set and, using the
results of section 4, derive a LMI optimization problem that leads to an gpproximation for the mixed
Ho/Hs and Hoo-control problems. Numerical examples are presented in section 6 and the paper is
concluded in section 7 with some final comments.

2. Notation

We shall write C" and R" to denote the n-dimensiona complex and rea spaces respectively,
and M(C",C™) the normed linear space of al m by n complex matrices. For smplicity we set
M(C",C") = M(C"). We write * to indicate the adjoint operator and, for real matrices, 'will indicate
transpose. L > 0 and L>0 will be used if a sdf-adjoint matrix is positive semi-definite or postive



definite respectively and we write M(C")* = {L € M(C"); L = L" > 0}. We denote by || .|| the
standard norm in C".

Let ™" be the linear space made up of al N-sequence of matrices V = (Vq,..,.Vn),
V; € M(CMC"). For V € H™" we define the following norm || . || 2:

N . 1/2
|V 2= < dotr (Vi Vi>> (where tr(.) denotes the trace operator).
i=1

It is easy to verify that H™" equipped with the norm || . || o is a complex Hilbert space with inner
product given by:

N
<VH> = gtr<(vi H) ).

We set K" = H" and H™ ={V = (V1,..,Vy) € H"; V, e M(C")*, i =1,..,N}. For H =
(Hy,...Hy) and V = (V4,...,.Vy) in K" the notation H < L (H < L) indicatesthat H; < L; (H; < L;)
foreachi=1,...,N.

For an increasing filtration { 7} defined on a probability space (2,F,P), we set ég(fk) asthe
Hilbert space formed by the sequence of second order random variables z = (z(0),z(1),...) with
z(k) € R" and F -adapted for each k=0,1,.., and such that

1213=5 12012 < oowhere || 209 | 3:=EC 200 1)

For any complex Banach space Z we denote by B(Z) the Banach space of al bounded linear
operators of Z into Z with the uniform induced norm represented by || .|| and for L € B(Z) we
denote by r;(L) the spectral radius of L.

Finally we conclude this section with the following well known result used in LMI's, which will
be useful in the sequel.

S
Remark 1:I1f R > Othen W = {g, R] > 0if and only if Q > SR'1S.

3. Auxiliary Results
3.1. Stability Results

Consider the following stochastic system on an appropriate probability space (Q2.{ F\} .F.P),
x(k+1) = Ay x(K) (1.8)
X(O) =Xo 9(0) = 90 (1b)

where {0(k); k=0,1,...} is a discrete-time Mgrkov Ehai n ~With finite state space {1,...,N} with transition
probability matrix ' = [ p; ]. We consider A = (Ay,...Ay) € H" real, and X, asecond order random
vaiablein R". We set Q(k) = (Qq (K),....Qn (K)), where

Q (k) := E(x(K) x(K)' L gy =j3 ) € M(CM)* )

and 1; , stands for the Dirac measure.



For S = (S;,..,.S\y) € H" we define the operator 7 € B(H") as 7(S) = (71(S),.--.In(9)
where

N
T(S) = LA SA; &)
1=
It is easy to verify that with the inner product as defined above we have £ := 7" given by:
-~ s N ~
=1

In particular, rs (L) = ry (7). The following result, shown in Proposition 3 of [7], provides a connection
between (2) and (3):

Proposition 1 : For every k =0,1,2,..., Q(k+1) = 7 (Q(k)).

We make the following definitions:

Definition 1 : Mode (1) is mean square stable (MSS) if || Q(K) || ;f — 0ask — oo forany initid
condition xq and initia distribution for 6.

Remark 2 : It can be shown that stability of each mode (that is, r,,(;&i) < 1fori=1,.,N)isnether
necessary nor sufficient for MSS (see [16]). Moreover if (1) is MSS then || x(k) || — 0 ask— oo
with prob. 1 (see [7]).

The next result has been proved in Theorems 1 and 2 of [7]:

Proposition 2 : The following assertions are equivaent:
a) Modd (1) isMSS
brs(7) <1
Or.(L) <l
d) Thereexistsa € (0,1) anda € R, a > 0, such that for each k = 0,1,...,
E( x®) | %) < aak.
€) (coupled Lyapunov equations) given any S = (S;,..,Sy) > 0in H"* there exists P = (Py,...,Py) > 0

o0
in H"* satisfying P- 7(P) = Swith P=>_7X(S).
k=0
f) (adjoint coupled Lyapunov equations) given any S = (S;,..,Sy) > 0 in H"* there exists P =

o0
(P1,...Py) > 0inH™* satisfying P - £(P) = Swith P= 3 £K(9).

k=0
Moreover if ry (7) < 1 then for any Se H" there exists a unique P € H" such that P-7(P) = S. If
S>T >0(> 0respectively) andP-7(P) =S L-7(L)=TthenP>L > 0(>0). Theseresults
aso hold replacing 7 by L.

We present now the definition of mean square stabilizability and detectability. Consider A =
(A1,..,AN) € H",B=(By,...By) € H™" and C = (C;,...,.Cy) € H™P redl.

Definition 2: We say that (A,B) is mean square stabilizable if there exists K = (Kq,....Ky) € H™M
such that model (1) isMSSwith A; = A, - BK.;In this case we say that K stabilizes (A,B) in the mean
sguare sense and set K ={ K € H"™M; K stabilizes (A,B) in the mean square sense}. Similarly, we say



that (C,A) is mean square detectable if there exists H = (Hy,...,Hy) € HP:" such that model (1) is
MSSwith A; = A; - H;C;, and we say that H stabilizes (C,A).

The next proposition follows from Proposition 6 in [9]. Consider D = (D1,...,.Dy) € H™P such

N
that D'D; > 0and set &(L) =2 pjLj,i=1..N, for L = (Ly,...Ly)
=1

Proposition 3 : Suppose (C,A) is mean square detectable and P = (Py,...Py) > 0, K = (Ky,...,
KN) € Hn'm Sa“Sfy

<P+ (Ai-BK)'E(P)A-BK) + (6-BK)(G-DK) < O @
ThenK = (K1,..Ky) € K.

3.2. TheH,-Norm
Consider again on (2,{ 7.} .F,P), thefollowing system G

x(k+1) = A gy x(K) + I(K) (5.)
G =14 x(0)=0,0(0 = (5.0)
l 2(K) = Gy x(K) (5.c)

where A = (A,..Ay) € H", C = (C;,...Cy) € HMP and J € M(C' ,C"), with A, C, J red and
JJ > 0.

Suppose that r, (7) < 1 (that is, modd (1) isMSS) and w = (w(0),...) isan impulse input. From
Proposition 2.d) we have z = (z(0),z(1),...) € 65 (Fk)- The next definition is a generalization of the Ho-
norm from discrete-time deterministic systems to the stochastic Markovian jump case:

Definition 3 : We define the H,-norm of system G as
r N
1G153=>2 Xzl

s=1 =1
where zg; represents the output sequence (z(0),z(1),...) given by (5.c) when
a) the input sequence is given by w = (w(0),w(1),...), w(0) = es, w(k) =0, k > 0,es € R" the unitary
vector formed by 1 at the st position and zero el sawhere, and
b) 6(0) = 6(1) =].

For the deterministic case (N=1 and p;;=1) the above definition reduces to the usua H,-norm.
As in the deterministic case, we have that the H,-norm as defined above can be calculated as the
solution of the discrete-time coupled gramian of observability and controllability. For this, define C =

(€,C1,.C\Cy) € HM™, T = (... 7)€ K™, and L = (Ly,...Ly) € KM, P= (Py,...Py) € H
the unique solution of the equations (recal that r, (7)=r, (£) < 1 and see Proposition 2)

L = £(L) + C (observability gramian) (6)
P=7(P) + J (controllability gramian). @)

The next result was proved in [5] and represents a characterization of the Hy-norm in terms of the
solution of the observability and controllability gramians.



N N
Proposition 4: || G || 5 =3_tr(JL{) = Ztr((}PJCJ-').
=1 =1

3.3. The Hoo-Norm

Congider again system G asin (5) above with w = (w(0),...) € Eg(]-“k). The following result was
proved in Proposition 2 of [6].

Proposition 5: r, (7) < 1 if and only if x = (0x(2),...) € ﬁg(]-“k) for every w = (w(0),w(1),...) €
O (F)-
2

Suppose that r, (7) < 1. From the above Proposition, x = (0,x(2),...) € 63 (Fx) and thusz =
0,2(D),..) € ég(]-"k). The Hyo-norm of system G is defined as:

122
Iwlly *

Definition4: || G || o :=sup sup
o w € £}(Fy)

Again, for the deterministic case (N = 1 and p;; = 1), the above definition reduces to the usua
Hoo-norm.

4. Mixed H,/Ho-Control Problem

Consider now a controlled version of system G

{ X(k+1) = Aa(k)X(k) + BH(k) U(k) + J\N(k) (8&)
g:<M®=mﬂ®=% (8.b)
[ ZK) = Cyox(K) + Dy u(k) (8.c)

where A = (Al,...,AN) S Hn, B = (Bll""BN) € Hm‘n, C= (Cl,...,CN) € Hn’p, D= (Dll""DN) S
HMP Je M(C,C") arered, and Ci’Di =0foreachi=1,.,N.

For K = (Ky,....KN) set Gk as system (8) with u(k) = -K g x(K). We have the following result.

Theorem 1 : Suppose (C,A) is mean sguare detectable and 6 > O fixed areal number. If there exists
P=(Py,...Py) > 0and K = (Ky,...,.Ky) € HMM such that for eachi = 1,...,N,

P+ (A BK)E(PIA-BK) + (G-DK)(C-DK) + % PIIR < O ©

then K = (K1,...Ky) € K and
| Gk |l 2, < 62(1-v) < 62

N
where v € (0,5 Y_tr(JP,J). Moreover,
i=1

N
I G 13 < 2P,
i=

E’roof : Comparing (4) and (9) it is immediate from Proposition (3) that K € K. Set f&i =A - BK;and
G = C;- DK. Recalling from Proposition 5 that, for any w = (w(0),...) € Eg(]-'k) we have x =
(OX(),...) € £5(Fy), and that x(K), 6(K) and w(k) are F.-measurable, we get from (9) that



E(x(k+1) PygesyX(k+1)) = EEMX(K+L) PygesyX(k+1) | Fie)) = EX(K+L) E(Py(rny | FidX(k+1))
= E((A g X(K) + W(K))'Eggey (P)(A g X(K)+Iw(K)))

~ = 1
< E<X(k)'(Pe(k) ~Cor G0 - 52 Pe(k)JJPG(k))X(k) +

WYY €5 (PYAgaX(K) + X(K) A g g (PIINEK) + W(K)'T Eqg I(K) )

S0 that,
| P;{ﬁﬂ)X(kﬂ) II§ -l P;{ﬁ)X(k)llg +|| Z(k)||§ <- éIIJPg(k)x(k) ||§ +

EW(K)'T € (P X(K)) + ECx(K) Ao €9 i (PIIWEK)) + | €52 (PIw(k) || 2 =

- 35 1 IPoaox(®) [ 2+ 3 || IPygerpyX(k+D) |12 - %5 || IPygerpyX(ktl) || 2 +

2 E(W(k)'I 9o (P)(Aggx(K) + I(K)) - E(WY T Eggy PIX(K) ) -

Thus,

| PoayX*D 112 -1 PR2X) 11 - 55 (| IPyganyx(ktD) [| 3 + 35 | IPygox() 11 2 + 11 2K) || 2
<

<55 || IPasnyX(k¥2) || 2 + 2EW(K)'T PyeryX(k+D) - 62 || w(k) [| 2 + E(w(k) (621-F €y (PIW(K))

[l 3Pkl - ow() || 2+ EWRY(621 - JEu(PIWK) < E(w(k) (6]
I o (PYIW(K)).
Taking the sum for k = 0 to oo, and recaling that x(0) = O, || x(k) || » — 0 ask — oo, we get

1215 < PLEWII - 5 TPy W) < (00 | w2

N
where v € (0,5 Y tr(JP,J). Thus,
i=1

|G le=sp sp 2 <sa-0)2<s
90 WGE;(fk)

N
Finally notice from Proposition 4, || Gy [| 5 = >_tr(JSJ), where
i=1

S =AE((9A + GG.

From (9) and some V; > 0,i =1,...,N,
— 7 .
Pi=AE(PA + GG+ & PIIR+ VIV,

so that, from Proposition 2, P, > Sfor dl i = 1,...,N. Thisimplies that



N N
| Gk | 2= 2IS9) < Yxr(IRY)
i=1 i=1
completing the proof of the Theorem. O

The above Theorem suggests the following approximation for the mixed H,/H.-control
problem: for 6 > Ofixed, find P=(Py,...,Py) > Oand K = (Ky,...,.Ky) such that

N
mintrQ_JP;J)
i=1
subject to (9). If we are interested in minimizing the Hoo-norm, then 6 becomes a variable of our

N
problem, and we just have to replace tr(}_JP;J) above by §2. For the case in which N=1, p;;= 1,
i=1
equation (9) can be seen as dua to the one obtained in [12], Lemma 3.1.

5. Convex Approach

We will assume now that the transition probability matrix P is not exactly known, but belongs to

q q

aconvex set D ={P; P => oy, a; >0, Doy = 1}, where Pt, t = 1,...,g, ae known transition
t=1 t=1

probability matrices. We make the following definition.

Definition 5: We say that K = (Ky,...Ky) € H™M robustly stabilizes (A,B) in the mean square sense
if system (1) with A; = A, - BK jis MSS for every P € D, and we set Ky :={ K € H™™M; K robustly
stabilizes (A,B) in the mean square sense}.

We want to solve the following mixed H,/Ho control problem: given 6 > O, find K € K which
minimizes ¢ subject to || Gk || 2 < ¢, || 9k || o < 6, for every P € D. Let us show now that an

approximation for this problem can be obtained viaa LMI optimization problem. Set Fit =, /pit1 I ...
\ /p}N 1] e M(CNN C") fori = 1,...,N, t =1,...,q, and define the following problem:

Problem | : Set ;o = 62. Find P = (Py,...Py) >0, Q = (Q,..Qn) >0, L = (Ly,...Lpy) >0, Y =
(Y11-"1YN) such that

&=min tr(%J’PiJ)
i=1

subject to
[ Q QiA{’in'Bi' QiCi’ Yi’Di’ J ]
CiQ; 0 I 0 0| >0,i=1,..N (10
D;Y; 0 0 I 0
J 0 0 0 ul
L; LiFit _
>0i=1,.. =1,..
Ff’Li dia{ O} >0i=1..Nt=1..q9 (12)

[Fl’i CIQ. >0,i=1..N (12)



where diag{ Q..} isthe matrix in M(CN") formed by Q,...,Qy in the diagonal, and zero esewhere.

Theorem 2 : Suppose Problem | has asolution P, Q, L and Y. Set K = (Ky,...Ky) as K = - YiQi'l, i
N

=1..,Nand&=> tr(JPJ). ThenK € Ky and || G || » < 55, | Gk || o < 6, forevery P e D.

i=1
Proof: Firgt of al notice that (10), (11) and (12) are equivaent to (see Remark 1)

Qi > Qi(A-BKYLHA-BK)Q + Q(G-OK)(C-DK) Qi+ 1 Q(QHIQHQ (13

L > Li(gjpithj'l)Li t=1..0, (14)
j=1

N
Since we are minimizing tr(>__JP;J) and JJ > 0 by hypothesis, we must have from (15) that P, = Qi'l.
i=1

q q
Consider any IP € D. Then by definition we have p; = Zatpitj for some a4 >0, > oyt =1. Thus from
t=1

t=1
(14) we get
Lt > (J_%quj_l) =&(P),
and from (13),
P=Q' > (ArBKYLMABK) + (G-DK)(C-DK) + PSR
> (A BKYEP)A-BK) + (G-QK)(CrDK) + p P JJR. (16)
The desired result follows from (16), Proposition 2.f), and Theorem 1. O

Remark 3: If we desire to minimize the H,-norm, then 1. becomes a variable in problem 1 above, and
N

we just have to replace the value function tr(3> Y P;J) by p. Inequalities (12) can be diminated.
i=1

6. Numerical Examples

This example is adapted from [12] for the case in which we have two modes of operation, with
trangition probability matrix between the models given by P. The matrices are:

A1=A2=|:

0.9974 0.0539 _ | 0.0013 _10.0013 (10
-0.1078 11591 |'~17 [ 00539| ' °27 | 010787 [1 0.1 ]

11 0
C1:C2: 0 0 ,D1:D2: 1| -

We consider the following cases.
a.1) Ho/Hxo-control problem with ¢ = 80, and transition probability matrix exactly known, given by:



p.[07 03
~ |02 08]"

For this case the obtained solution is Ky =[1.36 4.43], Ky =[1.6 4.64], and the optimal value function is
& = 728. The closed-loop system is mean square stable, with r, (7) = 0.8624.

a.2) the same as above but with P belonging to D, where I is defined through the transition probability
matrices P! and P? defined below

{ 0.65 0.35]

075 025
025 0.75 '

015 0.85

For this case the obtained solution isK; =[2.13 4.95], Ky =[2.4 6], and the optimal vaue function is
¢ = 983. Figure 1.ashows r, (7) for al elements of the convex set D. This set is parametrized by «,
where P(a) = aP! + (1-a)P?, o € [0,1]. Notice by the curve that the system is mean square stable for
al eements of the convex set D.

b.1) Heo-control problem with the same data as in a.1) above. The minimal value obtained for . (= 62)
is 4369, with the controllers given by Ky = [547 7.02], Ky =[4.89 5.97]. For thiscase, r, (7) =
0.8126.

b.2) the same as above but with P € I, where D is defined asin a.2). The minimal value obtained for
is 5042, with the controllers given by K; = [6.86 6.96], Ky = [5.97 7.32]. Figure 1.b shows the
spectra radius of 7(.) as afunction of «, asin a.2). It can be seen from the curve that the closed-loop
system is mean sgquare stable for all elements of the convex set D..
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Figure 1: Spectrd radii for P € D (parametrized by «).

7. Conclusions

In this paper we have considered the problem of mixed H,/Hxo-control of discrete-time
Markovian jump linear systems (MJLS). It has been assumed that both the state variable and the jump
variable are available to the controller. The transition probability matrix may belong to an appropriate
convex set. We are interested in finding a state and jump feedback controller that robustly stabilizes a
MJLS in the mean sguare sense and minimizes an upper bound for the Hy norm, under the restriction
that the Hoo-norm is less than a pre-specified value 6. This kind of problem has been studied in the
current literature for discrete-time deterministic linear systems, usualy using a state space approach,
leading to non-standard agebraic Riccati and Lyapunov-like equations. We have traced a parale with
the discrete-time linear system theory of Hy/Hy, and Ho, control to derive our results. An
gpproximation for the problem has been proposed by minimizing a linear functional over the positive
semi-definite solutions of a set of coupled Lyapunov-like equations. Furthermore it has been shown that
this problem can be written in a convex programming formulation, leading to numerical agorithms. The
Ho-control problem has also been addressed.
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